Läsanvisningar till kapitel 3
|
|
- Fredrik Lind
- för 6 år sedan
- Visningar:
Transkript
1 Kapitel 3 Läsanvisningar till kapitel 3 Den moderna vägen till holomorficitet dess konsekvenser Vi ska i detta kapitel definiera ett begrepp som kallas holomoficitet, det kommer visa sig att vara precis samma sak som deriverbarhet. Därefter så ska vi formulera om vissa satser vi visade i förra kapitlet samt visa några kompletterande satser. Vi vill börja med att försöka definiera de komplexa deriveringsoperatorerna. Vad vill man att dessa ska uppfylla? Jo, det är naturligt att de ska z z uppfylla Ansätt, för z = x + iy, Då gäller att z z = 1, z z = 0, z z = 0 z z = 1. z = a x + b y z = c x + d y. 1 = ( z z = a x + b ) (x + iy) = a + ib y 0 = ( z z = a x + b ) (x iy) = a ib. y Dessa ekvationsystem ger a = 1/2 b = i/2. Liknande uträkningar ger att c = 1/2 d = i/2. Alltså så definierar vi 1
2 Definition 3.1. Låt f : U C, U C öppen, vara en C 1 -funktion låt z = x + yi. Då definierar vi z f := 1 ( 2 x i ) f y z f := 1 ( 2 x + i ) f. y Observation 3. Observera att minustecknet hamnar på z inte på z. Anmärkning 30. Ni har sett detta sätt att definiera saker tidigare, nämligen när vi definierade e z. Man definierar ett objekt utifrån vad man vill att de ska uppfylla. INLÄMNINGSUPPGIFT 42. Visa att differentialoperatorerna z z är båda komplexlinjära, dvs z (αf + βg) = α z f + β z g för alla α,β C f,g C 1 (U), samma sak för z. Vi kan nu definiera holomorficitet på ett nytt sätt. Definition 3.2. Låt f C 1 (U), U C öppen. Vi säger att f är holomorf om Detta betecknar vi med f O(U). z f = 0. Observation 4. Ett annat sätt att säga att f är holomorf är att den ligger i kärnan till operatorn z. INLÄMNINGSUPPGIFT 43. Låt Ω C vara ett område låt f,g: Ω C vara C 1 (Ω). Betrakta f g där det är definierat, utred kedjereglerna: (f g) z (f g), z dvs hitta formler för dessa. Förenkla dessa formler då (a) f,g O(Ω) (b) g O(Ω) 2
3 (c) f,ḡ O(Ω) Som ni ser så bygger holomorficitet på att det inte får finnas något z i funktionen. Detta har vi sett tidigare då vi definierade deriverbarhet. Vi kan nu lätt visa att Sats 3.3. Låt Ω C vara ett område. Låt f = u + iv: Ω C vara en funktion. Då är följande ekvivalent: (a) f är holomorf (b) f är deriverbar (c) f uppfyller Cauchy-Riemanns ekvationer Bevis. Vi har redan sett ekvivalensen mellan (b) (c) i förra kapitlet. Vi ska nu visa ekvivalensen mellan (c) (a). Antag först att f O(Ω). Då gäller att 0 = f z = 1 2 ( x + i y ) (u + iv) = 1 2 ( u x v ) + i ( u y 2 y + v ) x dvs att u = v u = v. x y y x Omvänt om Cauchy-Riemanns ekvationer håller på Ω, så betyder det att f z = 1 ( u 2 x v ) + i ( u y 2 y + v ) = 0, x så f O(Ω). Anmärkning 31. Det är oftast f = 0 som kallas för Cauchy-Riemanns ekvationer z i komplex analys branschen. Då skriver man f = 0, där uttalas d-streck. Ekvationen f = 0 kallas även för den homogena Cauchy-Riemann ekvationen, ty man kan ha ett högerled som inte är noll utan en annan funktion g. Då kallas ekvationen f = g för den inhomogena Cauchy-Riemann ekvationen. Följd 3.4. Om f : U C är holomorf, U C öppen, så är Bevis. Eftersom f är holomorf så är dvs f = i f. Vidare så är x y så z f = x f. z f = x f = i y f. 0 = z f = 1 2 ( x + i ) f, y 0 = z f = ( z x 3 ) f,
4 INLÄMNINGSUPPGIFT 44. Låt f,g O(C) antag att f(x) = g(x) för alla x R C. Visa att f(z) = g(z) för alla z C. Definition 3.5. En funktion som är holomorf på hela C kallas för en hel funktion. Exempel 47. Exempel på hela funktioner är e z, sin z, cos z alla polynom. Exempel 48. Vi ska visa att sin 2 z + cos 2 z = 1. Sätt f(z) = sin 2 z + cos 2 z. Eftersom sin z cosz är hel så är även sin 2 z cos 2 z hel, vilket ger att f(z) är hel. Derivering ger att f (z) = 2 sin z cos z 2 cos sinz = 0, så eftersom C är sammanhängande öppen så betyder det att f är konstant. Eftersom f(0) = 1 så betyder det att f(z) = 1 för alla z. Alltså är sin 2 z+cos 2 z = 1. Låt oss betrakta Green-Gauss integralsats igen. Vi betraktar alltså ett begränsat område Ω med styckvis C -rand. För en snäll funktion f så gäller då att f x dxdy = fdy Ω Ω Ω Ω f y dxdy = fdx. Ω Lägger vi till i/2 gånger andra ekvationen till halva den första så får vi att ( ) 1 f 2 x + if f = y Ω z dxdy = 1 f(dx + idy) = fdz. 2i Ω Ω På samma sätt så kan vi lägga till i/2 till halva den första, varvid man ser att ( ) 1 f Ω 2 x if f = y Ω z dxdy = 1 f(dx idy) = fdz. 2i Ω Ω Observation 5. Man definierar alltså dz = dx + idy dz = dx idy, som är precis tvärtom som vi definierade deriveringsoperatorerna. Anledningen z z till detta är att man vill att dz ( ( z) = 1 dz ( z) = 1, att dz z) = 0 dz ( z) = 0. Mer om hur sådanhära operationer görs kan ni läsa i en differentialgeometri kurs. Gå nu igenom bokens framställning av ett annat bevis av Cauchys integralformel. Beviset är en aning tekniskt så koncentrera er på att förstå ideérna bakom beviset. Därefter så kommer en väldigt viktig sats. 4
5 Sats 3.6. (Generella Cauchys integralformel) Låt Ω C vara ett begränsat område med styckvis C -rand. Om f C 1 ( Ω) så gäller att f(z) = 1 2πi Ω där Ω är positivt orienterad. f(ζ) ζ z dζ + 1 2πi Ω f ζ z dζd ζ, Anmärkning 32. Med konventionen att dxdx = 0 dydy = 0 att dxdy = dydx så blir dζd ζ = (dx + idy)(dx idy) = 2idxdy. Detta betyder att den generella Cauchys integralformel tar formen f(z) = 1 2πi Ω f(ζ) ζ z dζ 1 π Ω f ζ z dxdy, där Ω är positivt orienterad. Det är denna framställning boken har. Observation 6. Om f O(Ω) så är f = 0 så vi får tillbaka den gamla hederliga Cauchys integralformel: f(z) = 1 f(ζ) 2πi Ω ζ z dζ, där Ω är positivt orienterad. Det jag inte har tagit upp i dessa läsanvisningar kan ni läsa själva i boken. Gör sedan följande inlämningsuppgifter: INLÄMNINGSUPPGIFT 45. Gör uppgift 45 i boken. INLÄMNINGSUPPGIFT 46. Gör uppgift 47 i boken. Grenar för logaritmen potenser Eftersom boken inte gör någon vidare framställning av grenar holomorficitet av grenar för logaritmen potenser, så tänkte jag dra några exempel satser (utan bevis), ge några uppgifter på det. Sats 3.7. Log z O(C\], 0]) d dz Log z = 1 z. Sats 3.8. Varje gren av log z är holomorf. 5
6 Sats 3.9. Det finns ingen gren av log z i C \ {0}. Exempel 49. Vi ska bestämma ett område där f(z) = Log(3z i) är holomorf. Låt g(z) = 3z i. För principalgenen så får inte g(z) 0, så vi ska bestämma de punkter där detta händer till att börja med. Låt z = x + iy varvid 3x + i3y i 0 betyder att x 0 y = 1/3. Så f är holomorf på C \ {z = x +iy : x 0, y = 1/3}. Exempel 50. Vi ska finna en gren till log(z 2 + 1) som är holomorf i z = 0 antar värdet 2πi där. Låt f(z) = log g(z) där g(z) = z Det är tillräckligt att hitta en gren av logaritmen som är holomorf i g(0) = 1 antar värdet 2πi där. Vi vet att varje gren av logaritmen är holomorf. Låt L τ (z) = ln z + iarg τ, där arg τ är grenen ]τ,τ + 2π]. Då är L τ (z) en holomorf gren till logaritmen. Vi ska alltså hitta τ så att L τ (g(z)) = 2πi i z = 0, dvs vi ska lösa ekvationen 2πi = ln 1 + iarg τ 1 = iarg τ 1 2π = arg τ 1. Denna har lösning τ = π + 2πk, k = 0, ±1, ±2,..., så vi kan t.ex. välja τ = π. Alltså är L τ (g(z)) en holomorf gren till f(z) som antar värdet 2πi i z = 0. INLÄMNINGSUPPGIFT 47. Betrakta exemplet ovan, hitta en gren till log(z 3 2) som är holomorf i z = 0. Exempel 51. Vi ska nu hitta en gren till (z 2 1) 1/2 som är holomorf för z 1. Vi ska alltså hitta en funktion w = (z 2 1) 1/2 som är holomorf för z 1 så att w 2 = z 2 1. Observera att vi inte kan välja principalgrenen, som är e 1/2 Log(z2 1), ty z betyder att 1 x 1 hela y-axeln. Betrakta istället z(1 1/z 2 ) 1/2. Den uppfyller att w 2 = z 2 1. Principalgrenen för denna är e 1/2 Log(1 1/z2). Denna är definierad för x [ 1, 1], ty 1 1/z 2 0 ska vara uppfyllt. Så funktionen w = f(z) = z(1 1/z 2 ) 1/2 är en gren till (z 2 1) 1/2 som är holomorf för z 1. Exempel 52. Vi ska bestämma den största öppna mängd Ω så att (1 z 2 ) 1/2 blir holomorf. Per definition så ges Ω av de z C så att 1 z 2 ], 0], så vi ska 6
7 börja kolla vilka z som uppfyller att 1 z 2 ], 0]. Sätt z = x + yi, då får vi att 1 z 2 = 1 x 2 + y 2 2xyi. För att 1 z 2 ], 0] så måste xy = 0, vilket ger två fall: Fall 1: (x = 0) Då har vi att 1 z 2 = 1 + y 2 1. Fall 2: (y = 0) Då har vi att 1 z 2 = 1 x 2, så 1 x 2 = 0, vilket betyder att x 1. Om vi slår ihop fall 1 2 så får vi att den största mängden så att (1 z 2 ) 1/2 blir holomorf är Ω = {z C : x < 1 /eller y = 0}. INLÄMNINGSUPPGIFT 48. Var är f(z) = (e z + 1) 1/2 holomorf? Hitta mängden där f är holomorf. 7
Läsanvisningar till kapitel 4
Kapitel 4 Läsanvisningar till kapitel 4 Taylors sats samt Cauchyuppskattningar och några konsekvenser Taylorserier är något ni är bekannt med sedan era reellanalyskurser. Höjdpunkten i detta avsnitt säger
Läsanvisningar till kapitel
Läsanvisningar till kapitel 2.3 2.5 2.3 Analytiska funktioner Analytiska funktioner, eller holomorfa funktioner som vi kommer kalla dem, är de funktioner som vi komer studera så gott som resten av kursen.
Läsanvisningar till kapitel
Läsanvisningar till kapitel 5. 5.8 5. Följder och serier Detta avsnitt är repetition, och jag hoppas att ni snart kan snappa upp det som står däri. Speciellt viktigt är det att komma ihåg vad en geometrisk
Läsanvisningar till kapitel Komplexa tals algebraiska struktur
Läsanvisningar till kapitel. 2.2 Jag tänkte bara kort berätta hur strukturen hos dessa läsanvisningar kommer vara innan vi kör gång på allvar. Jag kommer i dessa läsanvisningar säga vad jag anser är viktigt
Läsanvisningar till kapitel
Läsanvisningar till kapitel 6. 6.7 6. Residuesatsen Hela kapitel 6 handlar om att beräkna olika typer av integraler på så gott som samma vis. Om ni kommmer ihåg från förra avsnittet om Laurentserieutvecklingar,
Kursstart. Kursen startar tisdagen den 10 oktober kl i sal MA236 i MIT-huset. Schemat kan erhållas från matematiska institutionens hemsida.
Kursinformation för Komplex analys, 3p, ht 2006. Civ.ing. (Teknisk Fysik) Ingår som ett moment i kursen Fysikens matematiska metoder, 10p. Ulf Backlund Kursstart Kursen startar tisdagen den 10 oktober
k=0 kzk? (0.2) 2. Bestäm alla holomorfa funktioner f(z) = f(x + iy) = u(x, y) + iv(x, y) sådana att u(x, y) = x 2 2xy y 2. 1 t, 0 t 1, f(t) =
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Funktionsteori 5 9 kl 4 9 Hjälpmedel: Bifogat formelblad. Lösningarna skall vara försedda med ordentliga motiveringar. Skriv fullständiga meningar och
3. Analytiska funktioner.
33 Fysikens matematiska metoder : Studievecka 3. 3. Analytiska funktioner. Varför komplexa tal? Syfte : Att ur vissa funktioners uppträdande utanför reella axeln ( Nollställen poler m.m) kunna sluta sig
Lösningsmetodik för FMAF01: Funktionsteori
Lösningsmetodik för FMAF0: Funktionsteori Johannes Larsson, I2 0 mars 204 Allmänt Detta är lösningsmetoder för de vanligaste tentauppgifterna, grupperade efter hur ofta de kommer på tentan och därmed också
Tentamen, Matematik påbyggnadskurs, 5B1304 fredag 20/ kl
Institutionen för Matematik KTH Mattias Dahl Tentamen, Matematik påbyggnadskurs, 5B134 fredag /8 4 kl. 14. 19. Lösningar 1. Lös differentialekvationen x 3 y + x y xy + y x 3 ln x, x >. Lösning: Motsvarande
SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december Lösningsförslag. F n ds,
Institutionen för matematik, KTH Serguei Shimorin SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december 211. Lösningsförslag 1. Räkna ut flödesintegral F n ds, där F = (x e y,
Funktionsteori sammanfattning
Funktionsteori sammanfattning Martin Sundeqvist October 2014 1 Komplexa funktioner Definition 1.1 Gränsvärde, komplexvärd funktion Anta att f är en komplexvärd funktion som är definierad på någon omgivning
DERIVATA. = lim. x n 2 h h n. 2
DERIVATA Läs avsnitten 6.-6.5. Lös övningarna 6.cd, 6.2, 6.3bdf, 6.4abc, 6.5bcd, 6.6bcd, 6.7, 6.9 oc 6.. Läsanvisningar Allmänt gäller som vanligt att bevisen inte ingår i kursen, men det är mycket nyttigt
Lipschitz-kontinuitet
Kapitel 2 Lipschitz-kontinuitet Vi börjar med att presentera den formella definitionen av gränsvärde och kontinuitet. Vi presenterar sedan en variant av kontinuitet som är lättare att använda och som ger
TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning
TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning Johan Thim 23 april 2018 1 Differentialoperatorer För att underlätta notation och visa på underliggande struktur introducerar vi begreppet
1. Lös ekvationen (2 i) sin z + cos z = 2 i. Svara med komplexa tal på formen a + bi. u(x, y) = φ(x)(1 y),
Tentamensproblem 003-0-3 Lös ekvationen ( i) sin z + cos z = i Svara med komplexa tal på formen a + bi Bestäm alla analytiska funktioner f = u + iv med realdel u(x, y) = φ(x)( y), där φ är en två gånger
Läsanvisningar till kapitel
Läsanvisningar till kapitel 7.1 7.4 7.1 Invarians av Laplaceekvationen Om f O(Ω), Ω C ett område, är bijektiv med holomorf invers så säger vi att f är biholomorf. Detta avsnitt handlar om att harmoniska
Harmoniska funktioner
Harmoniska funktioner Lars Hörmander vt 98 Definitioner och grundläggande egenskaper Enligt definitionen är en analytisk funktion f i Ω C en C lösning till Cauchy-Riemanns differentialekvation f z =. Enligt
Patologiska funktioner. (Funktioner som på något vis inte beter sig väl)
Patologiska funktioner (Funktioner som på något vis inte beter sig väl) Dirichletfunktionen Inte kontinuerlig någonstans Inte Riemannintegrerbar Weierstrass funktion Överallt kontinuerlig Inte deriverbar
Instuderingsfrågor i Funktionsteori
Instuderingsfrågor i Funktionsteori Anvisningar. Avsikten med dessa instuderingsfrågor är att ge Dig möjlighet att fortlöpande kontrollera att Du någorlunda behärskar kursens teori. Om Du märker att Du
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
Blixtkurs i komplex integration
Blixtkurs i komplex integration Sven Spanne 8 oktober 996 Komplex integration Vad är en komplex kurvintegral? Antag att f z är en komplex funktion och att är en kurva i det komplexa talplanet. Man kan
Föreläsning 9: Komplexa tal, del 2
ht016 Föreläsning 9: Komplexa tal, del Den komplexa exponentialfunktionen För att definiera den komplexa exponentialfunktionen utgår vi ifrån att den ska följa samma regler som för reella tal. Vi minns
Tentamen i Komplex analys, SF1628, den 21 oktober 2016
Institutionen för matematik KTH Håkan Hedenmalm Tentamen i Komplex analys, SF68, den oktober 06 Skrivtid 4.00-9.00. Inga hjälpmedel är tillåtna. Skriv tydliga lösningar med utförliga motiveringar. För
ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XV. Föreläsning XV. Mikael P. Sundqvist
Föreläsning XV Mikael P. Sundqvist Förändring och lutning Till snälla funktioner kan man prata om förändring. Med det menar vi lutningen på den linje som tangerar grafen (se den blå linjen). Den röda och
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både
Tentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning
TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer
gränsvärde existerar, vilket förefaller vara en naturlig definition (jämför med de generaliserade integralerna). I exemplet ovan ser vi att 3 = 3 n n
TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 5 mars 208 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal
Komplexa tal: Begrepp och definitioner
UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,
y= x dx = x = r cosv $ y = r sin v ,dxdy = rdrdv ' 2* så får vi att
TH-Matematik Lösningsförslag till Tentamenskrivning 5-6-, kl. 8.-3. 5B7, matematik III för E och ME 6p) Del A, 3-poängsuppgifter x. xy y )dy dx x y y3 3 ) * x 3 x3 3, x3 -. dx 5 5 x4 6 4 y x y 5 4 dx.
Instuderingsfrågor för Endimensionell analys kurs B1 2011
Instuderingsfrågor för Endimensionell analys kurs B1 2011 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp
Funktionsserier och potensserier. som gränsvärdet av partialsummorna s n (x) =
Funktionsserier och potensserier Viktiga exempel på funktionsföljder är funktionsserier. Summan s(x) av f k (x) definieras som gränsvärdet av partialsummorna s n (x) = n f k (x) för varje fixt x I. Serien
Riemanns avbildningssats
Riemanns avbildningssats En studie av bijektiva avbildningar mellan öppna och enkelt sammanhängande områden i det komplexa planet Kandidatarbete inom civilingenjörsutbildningen vid Chalmers Johan Karlsson
Ordinära differentialekvationer
Ordinära differentialekvationer Lars Hörmander vt 198 1 Existens av analytiska lösningar Redan i kapitel VI observerade vi att för varje analytisk funktion f i en cirkelskiva kan man finna en analytisk
Några viktiga satser om deriverbara funktioner.
Några viktiga satser om deriverbara funktioner Rolles sats Differentialkalkylens medelvärdessats (=) 3 Cauchys medelvärdessats Sats Om funktionen f är deriverbar i en punkt x 0 så är f kontinuerlig i samma
Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A
Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm
Meningslöst nonsens. December 14, 2014
December 4, 204 Fråga. Hur visar man att sin(x) x tan(x)? Fråga. Hur visar man att sin(x) x tan(x)? Fråga 2. Hur visar man att a > lim n a n =? Fråga 2. Hur visar man att a > lim n a n =? Röd: Det är ett
Cauchys integralformel och några av dess konsekvenser
En Webbaserad Analyskurs Analytiska Funktioner Cauchys integralformel och några av dess konsekvenser Lars Hörmander MatematikCentrum LTH anderskallen@gmail.com Cauchys integralformel och några av dess
Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.
Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x
Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Tisdagen den januari 7 DEL A. En partikel rör sig så att positionen efter starten ges av (x, y, z (t cos t, t sin t, t
MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 9 januari Skrivtid:
HÖGSKOLAN I HALMSTAD Tentamensskrivning Akademin för informationsteknologi MA00 Envariabelanalys 6 p Mikael Hindgren Tisdagen den 9 januari 08 05-670 Skrivtid: 9.00-.00 Inga jälpmedel. Fyll i omslaget
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp gy, IT, W, X 2011-10-26 Sammanfattning av föreläsningarna 11-14, 16/11-28/11 2012. Här lär vi oss använda transformer för att
KORT INTRODUKTION TILL ANALYTISKA FUNKTIONER OCH POTENSSERIER
KORT INTRODUKTION TILL ANALYTISKA FUNKTIONER OCH POTENSSERIER M. SAPRYKINA 1. INLEDNING Syftet med denna lilla text är att ge en kort sammanfattning av baskunskaper inom komplexa tal och introducera begreppet
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive
Instuderingsfrågor för Endimensionell analys kurs B1
Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande
Doktorandkurs i flera komplexa variabler, vt 2010
Doktorandkurs i flera komplexa variabler, vt 2010 Frank Wikström 17 februari 2010 Frank Wikström () Doktorandkurs i flera komplexa variabler, vt 2010 17 februari 2010 1 / 26 Dagens program Konvexa och
Nollställena till Riemanns Zeta-funktion och dess Beteende på den Kritiska Linjen. Linus Bergkvist
Nollställena till Riemanns Zeta-funktion och dess Beteende på den Kritiska Linjen Linus Bergkvist Introduktion Riemannhypotesen beskrevs för första gången 859 av Bernhard Riemann och lyder: Alla icke-triviala
Några saker att tänka på inför dugga 2
LINKÖPINGS UNIVERSITET 17 oktober 017 Matematiska institutionen TATA68 Matematik och tillämpad matematik Några saker att tänka på inför dugga Dugga omfattar HELA kursen, så titta även på de tips som lämnades
Lösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z
UPPAA UNIVERITET Matematiska institutionen Abrahamsson, 4715, 7-57 (tyf, 47119, 77-517) Prov i matematik IT, K, X, W, EI, MI, NVP samt fristående kurs. Flerdimensionell analys och Analys MN 5-1-9 krivtid:
Läsanvisningar till kapitel Komplexa tals algebraiska struktur
Läsanvisningar till kapitel 1.1. Jag tänkte bara kort berätta hur strukturen hos dessa läsanvisningar kommer vara innan vi kör gång på allvar. Jag kommer i dessa läsanvisningar säga vad jag anser är viktigt
Kursens Kortfrågor med Svar SF1602 Di. Int.
Kursens Kortfrågor med Svar SF62 Di. Int. Allmänt om kortfrågor: Kortfrågorna är ett viktigt sätt för er att engagera matematiken. De kommer att dyka upp på kontrollskrivningar. Syftet är att ni ska gå
v0.2, Högskolan i Skövde Tentamen i matematik
v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
Kap Inversfunktion, arcusfunktioner.
Kap 3. 3.5. Inversfunktion, arcusfunktioner. 30. (A) Förenkla uttrycken så långt som möjligt a. ln 8 ln + ln 8 ln + ln b. ln 3 log 0 3 log 0 e + 3 ln 3 log 3 e 30. (A) Lös ekvationerna a. e x = e x b.
Läsanvisningar till kapitel 4 i Naturlig matematik
Läsanvisningar till kapitel 4 i Naturlig matematik Avsnitt 4.1 I kapitel 4 kommer du att möta de elementära funktionerna. Dessa är helt enkelt de vanligaste funktionerna som vi normalt arbetar med. Här
MA2001 Envariabelanalys
MA2001 Envariabelanalys Något om derivator del 1 Mikael Hindgren 11 november 2018 Derivatans definition Exempel 1 s-t-graf för ett föremål i rörelse. s(0) = 0. s s = v t Hastigeten konstant: Rät linje
Partiella differentialekvationer av första ordningen
Partiella differentialekvationer av första ordningen Kjell Holmåker 23 februari 2005 En kvasilinjär partiell differentialekvation av första ordningen är av formen P (x, y, u)u x + Q(x, y, u)u y = R(x,
Lösningsförslag för omtentamen i Komplex analys, SF1628, 21/
Institutionen för matematik KTH Håkan Hedenmalm Lösningsförslag för omtentamen i Komplex analys, SF1628, 21/12 2016 Skrivtid 08.00-13.00. Inga hjälpmedel är tillåtna. Skriv tydliga lösningar med utförliga
ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XII. Föreläsning XII. Mikael P. Sundqvist
Föreläsning XII Mikael P. Sundqvist Vad handlar gränsvärden om? Det är en kamp mellan epsilon (ε) och delta (δ) analystens främsta verktyg! Klicka här för bild på Barry Simon Gränsvärde av f (x) då x +
Lösningar av uppgifter hörande till övning nr 5.
Lösningar av uppgifter hörande till övning nr 5. H.7 a) Antag att p är ett polynom med grad p < n. Då kan p skrivas som en linjärkombination av ortogonalpolynomen p k, där k < n. Alltså är p c k p k, m
SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016
SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del, flervariabel, för F1. Tentamen onsdag 7 maj 9, 1.-19. 1. Låt F (x, y, z) sin(x + y z) + x + y + 6z. a)
Envariabelanalys: Vera Koponen. Envariabelanalys, vt Uppsala Universitet. Vera Koponen Föreläsning 5-6
Envariabelanalys: Föreläsning 5-6 Vera Koponen Uppsala Universitet Envariabelanalys, vt 2011 Derivata: allmänt Antag att f (x) är en funktion. Derivata: allmänt Antag att f (x) är en funktion. Derivatan
Tavelpresentation - Flervariabelanalys. 1E January 2017
Tavelpresentation - Flervariabelanalys 1E January 2017 1 Innehåll 1 Partiella derivator 3 2 Differentierbarhet 3 3 Kedjeregeln 4 3.1 Sats 2.3.4............................... 5 3.2 Allmänna kedjeregeln........................
Föreläsning 7. SF1625 Envariabelanalys. Hans Thunberg, 13 november 2018
Föreläsning 7 SF1625 Envariabelanalys 13 november 2018 SF1625 CDEPR1, CENMI1, CLGYM TEMI2 HT18 F7 1 / 23 Dagens teman: exponentialfunktioner och logaritmer standardgränsvärden tillväxtproblem SF1625 CDEPR1,
FÖRELÄSNING 1 ANALYS MN1 DISTANS HT06
FÖRELÄSNING ANALYS MN DISTANS HT06 JONAS ELIASSON Detta är föreläsningsanteckningar för distanskursen Matematik A - analysdelen vid Uppsala universitet höstterminen 2006. Förberedande material Här har
Introduktion till Komplexa tal
October 8, 2014 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).
SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017
Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den januari 27 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt
Rekursionsformler. Komplexa tal (repetition) Uppsala Universitet Matematiska institutionen Isac Hedén isac
Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 21. Vi nämner något kort om rekursionsformler för att avsluta [Vre06, kap 4], sedan börjar vi med
Anteckningar för kursen "Analys i en Variabel"
Anteckningar för kursen "Analys i en Variabel" Simone Calogero Vecka 5 Viktig information. Dessa anteckningar är inte avsedda som en ersättning för kurs litteratur men bara som en kort sammanfattning av
Läsanvisningar till kapitel 6 i Naturlig matematik. Avsnitt 6.6 ingår inte.
Läsanvisningar till kapitel 6 i Naturlig matematik Avsnitt 6.6 ingår inte. Avsnitt 6.1 Detta avsnitt illustrerar hur sekanten övergår i en tangent genom att den ena skärningspunkten rör sig mot den andra.
Tentan , lösningar
UPPALA UNIVERITET MATEMATIKA INTITUTIONEN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 2008 Tentan 2008-12-16, lösningar 1. Avgör om det finns någon punkt på ytan (x 1) 2 + 2(y 1) 2 + 2z 8 som är
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de
Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning
Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)
TATA42: Föreläsning 5 Serier ( generaliserade summor )
TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 0 januari 207 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2
SF625 Envariabelanalys Lösningsförslag till tentamen 23--24 DEL A. Den :a januari 26 låstes kg av ett visst radioaktivt ämne in i en källare. Ämnet sönderfaller i en takt som är direkt proportionell mot
x ( f u 2y + f v 2x) xy = 24 och C = f
Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet
Lösningar till övningstentan. Del A. UPPSALA UNIVERSITET Matematiska institutionen Styf. Övningstenta BASKURS DISTANS
UPPSALA UNIVERSITET Matematiska institutionen Styf Övningstenta BASKURS DISTANS 011-0-7 Lösningar till övningstentan Del A 1. Lös ekvationen 9 + 5x = x 1 ( ). Lösning. Genom att kvadrera ekvationens led
BEGREPPSMÄSSIGA PROBLEM
BEGREPPSMÄSSIGA PROBLEM Större delen av de rekommenderade uppgifterna i boken är beräkningsuppgifter. Det är emellertid även viktigt att utveckla en begreppsmässig förståelse för materialet. Syftet med
x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)
Matematik Hjälpmedel: Inga Chalmers Tekniska Högskola Tentamen 5--7 kl. 4: 8: Telefonvakt: Samuel Bengmark ankn.: 7-87644 Betygsgränser :a poäng, 4:a poäng, 5:a 4 poäng, max: 5 poäng Tentamensgranskning
Poincarés modell för den hyperboliska geometrin
Poincarés modell för den hyperboliska geometrin Niklas Palmberg, matrikelnr 23604 Uppsats för kandidatexamen i naturvetenskaper Matematiska institutionen Åbo Akademi 12.2.2001 Innehåll 1 Presentation av
Övningstenta: Lösningsförslag
Övningstenta: Lösningsförslag Onsdag 5 mars 7 8:-: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. (4 poäng) Bestäm tangentplanet i punkten (,, ) till ytan z f(x, y) där f(x, y) x 4
Tentamen i Matematisk analys MVE045, Lösningsförslag
Tentamen i Matematisk analys MVE5 26-8-23 Lösningsförslag Kl. 8.3 2.3. Tillåtna hjälpmedel: Mathematics handbook for science and engineering (BE- TA) eller CRC Standard Mathematical Tables. Indexeringar
Repetitionsfrågor i Flervariabelanalys, Ht 2009
Repetitionsfrågor i Flervariabelanalys, Ht 2009 Serier 1. Visa att för en positiv serie är summan oberoende av summationsordningen. 2. Visa att för en absolutkonvergent serie är summan oberoende av summationsordningen.
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF66 Flervariabelanals Lösningsförslag till tentamen --9 EL A. En kulle beskrivs approximativt av funktionen 5 hx, ) + 3x + i lämpliga enheter där hx, ) är höjden. Om du befinner dig i punkten,, ) på kullen,
MA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om komplexa tal Mikael Hindgren 17 oktober 2018 Den imaginära enheten i Det finns inga reella tal som uppfyller ekvationen x 2 + 1 = 0. Vi inför den imaginära
Om konvergens av serier
Om konvergens av serier Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I den här artikeln diskuteras några av de grundläggande satserna som hjälper oss att avgöra om en serie
Lösningsförslag TATM
Lösningsförslag TATM9 0-0-0. a) Summan är geometrisk med kvoten q = / och termer. Alltså, 50 k = 50 k+ = k ) ) ) ) =. k= k= b) Från definitionen av binomialkoefficienter ser vi att ) ) n n nn ) 6 = = =
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 01-1-10 DEL A 1. Låt funktionen f ha definitionsmängden D f =]0, [ och ges av f(x) = e x 1 x. (a) Finn f:s invers f 1. ( p) (b) Finn inversens värdemängd
LMA515 Matematik, del B Sammanställning av lärmål
LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)
Kontrollskrivning 1A
Kontrollskrivning 1A i 5B1147 Flervariabelanalys för E, vt 2007. 1. Låt g(t) vara en deriverbar envariabelsfunktion. Visa att tvåvariabelsfunktionen f(x, y) = g(2x y 2 ) satisfierar den partiella differentialekvationen
Explorativ övning 7 KOMPLEXA TAL
Explorativ övning 7 KOMPLEXA TAL Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet då man försökte lösa kvadratiska
SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014
SF65 Envariabelanalys Tentamen Lördagen den januari, 04 Skrivtid: 9:00-4:00 Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra
Dubbelintegraler och volymberäkning
ubbelintegraler och volymberäkning Volym och dubbelintegraler över en rektangel Alla funktioner nedan antas vara kontinuerliga. Om f (x) i intervallet [a, b], så är arean av mängden {(x, y) : y f (x),
Introduktionskurs i matematik LÄSANVISNINGAR
UPPSALA UNIVERSITET Matematiska institutionen Höstterminen 006 Introduktionskurs i matematik för civilingenjörsprogrammet F Tentamen på Introduktionskursen i matematik äger rum lördagen den 6 september
av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)
Lösningsskisser till TATA69 Flervariabelanalys 16-1- 1 Stationära punkter ges av f (4x 3 + 4x, 3y + 6z, z + 6y (,,, dvs (x, y, z (,, eller (x, y, z (, 6, 18 Ur andraderivatorna fås de kvadratiska formerna
MVE035. Sammanfattning LV 1. Blom, Max. Engström, Anne. Cvetkovic Destouni, Sofia. Kåreklint, Jakob. Hee, Lilian.
MVE035 Sammanfattning LV 1 Blom, Max Engström, Anne Cvetkovic Destouni, Sofia Kåreklint, Jakob Hee, Lilian Hansson, Johannes 11 mars 2017 1 Partiella derivator Nedan presenteras en definition av partiell