Matematik 92MA41 (15hp) Vladimir Tkatjev

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Matematik 92MA41 (15hp) Vladimir Tkatjev"

Transkript

1 Matematik 92MA41 (15hp) Vladimir Tkatjev

2 Med anledning av de nya kursplanerna har Strävorna reviderats. Formen, en matris med rutor, är densamma men istället för att som tidigare anknyta till mål att sträva mot anknyter de nya Strävorna till kursplanernas centrala innehåll och de förmågor som eleverna ska få utveckla. Nämnare,

3 Mönster och generaliseringar Hur många vita sträckor begränsar de blåa rutorna i Strävorna? Sätt 1. Tänka lokalt, d.v.s. att räkna upp Sätt 2. Tänka globalt, d.v.s. att hitta mönster Genom att formulera aritmetiska samband på olika sätt ökar förmågan att formulera samband utifrån olika problemsituationer. Att inte enbart teckna tal och operationer utan också uttrycka dem muntligt är en viktig prealgebraisk del i matematikundervisningen, även när många operationer är automatiserade. Risken finns annars att betydelsen och begreppet har gått förlorade, och att operationerna inte fungerar när man skall operera med okända tal. (Bergsten, et. al. 1997, s. 88)

4 Exempel 1: Tornet Hur många kuber behövs för att bygga tornet på bilden? Hur många kuber behövs det för att bygga ett liknande torn som är 12 st kuber högt? Hur många kuber behövs det för att bygga ett liknande torn som är n st kuber högt? (Hagland et al, 2005, s 85)

5 Tornet: från konkreta världen till abstrakta världen Matematiska områden/matematiska idéer: Aritmetik/Algebra Söka mönster, göra en tabell. Pröva med olika fall, samla data i tabell och analysera: Figur nr n Antal klossar totalt Ökning = antal klossar på våning Ökning av ökning

6 Tornet: från konkreta världen till abstrakta världen Matematiska områden/matematiska idéer: Aritmetik/Algebra Söka mönster, göra en tabell. Pröva med olika fall, samla data i tabell och analysera: Figur nr n Antal klossar totalt Ökning = antal klossar på våning Ökning av ökning

7 Tornet: från konkreta världen till abstrakta världen Matematiska områden/matematiska idéer: Aritmetik/Algebra Söka mönster, göra en tabell. Pröva med olika fall, samla data i tabell och analysera: Figur nr n Antal klossar totalt Ökning = antal klossar på våning Ökning av ökning

8 Tornet: från konkreta världen till abstrakta världen Matematiska områden/matematiska idéer: Aritmetik/Algebra Söka mönster, göra en tabell. Pröva med olika fall, samla data i tabell och analysera: Figur nr n Antal klossar totalt Ökning = antal klossar på våning Ökning av ökning

9 Tornet: från konkreta världen till abstrakta världen Matematiska områden/matematiska idéer: Aritmetik/Algebra Söka mönster, göra en tabell. Pröva med olika fall, samla data i tabell och analysera: Figur nr n Antal klossar totalt Ökning = antal klossar på våning Ökning av ökning = = = 4 7? = 12? Vilket samband finns mellan de röda och blåa talen? 276 = Udda tal?

10 Tornet: från konkreta världen till abstrakta världen Matematiska områden/matematiska idéer: Funktionslära/Matematisk analys Betrakta antal klossarf(n) som funktion av antal våningar n. Tolka ökning i tabellen som derivata f (n) Tolka ökning av ökning som andra derivatan, d.v.s. f n = 4, Vilket medför att f(n) är andragradsfunktion, alltså f n = 2n 2 + an + b (varför?) Bestämmer a och b med hjälp av tabellen: 1 = f 1 = 2 + a + b 6 = f 2 = 8 + 2a + b vilket ger b = 0 och a = 1, d.v.s. f n = n(2n 1). Alltså f 12 = = 276

11 Tornet: från konkreta världen till abstrakta världen Geometri/Algebra Rita en bild! Klossarna placeras så att de bildar trianglar och rektanglar. Arean av en rektangel med den korta sidan n och den långa sidan (n 1) (n 1) är n ((n 1) (n 1)) som förkortas till n(2n 1). Arean av 2 rektanglar med sidorna n och n 1 samt en pelare med höjden n är 2 n(n 1) + n. Arean av 4 trianglar med höjden n och basen (n 1) samt en mittpelare med höjden n är 4(n(n 1)/2) = n(2n 1)

12 Viktiga frågor Anpassning: Hur väl passar problemet elever med skilda förkunskaper? Problemet kan lösas av elever som enbart känner till naturliga tal. För att finna det generella uttrycket krävs kunskaper om aritmetisk talföljd, areabegreppet, differentialekvationer eller integraler (en lösning för areaberäkning). Anpassning: Hur kan problemet formuleras om för att bli enklare eller svårare? Uppgiften är formulerad för en anpassning från det enskilda fallet till det generella. Problemet kan förstöras genom att delproblem nr 3 stryks så att man inte söker efter det generella fallet. Hur väl fungerar problemet som brygga mellan olika matematiska områden? För att problemet ska fungera som en brygga kan lösningen presenteras med flera alternativa lösningsstrategier. Vilka utvidgningar kan man göra för att formulera problem med samma matematiska idé? Utvidgningen innebär att finna ett generellt uttryck, att identifiera problemtypen och kunna formulera matematiskt liknande problem. Denna problemtyp är allmänt förekommande i talföljder som t ex kan uppstå ur tändsticksproblem eller andra talmönster som t.ex. triangeltal etc.

13 (Taflin, 2007) Lösningsexempel Algebraisk lösning med aritmetisk talföljd eller en geometrisk lösning med areaberäkning

14 Skolvägen David och Frida går i samma skola men bor olika långt från skolan. Båda cyklar till samma busshållplats. När Frida står och väntar på bussen har hon cyklat 1/3 av hela sin skolväg. David har, när han kommer till busshållplatsen, cyklat 2/5 av hela sin skolväg. Vem har längst väg till skolan? Hur är förhållandet mellan David och Fridas skolvägar?

15 Lösningsexempel

16 Viktiga frågor Anpassning: Hur väl passar problemet elever med skilda förkunskaper? Eleverna bör känna till bråkbegreppet för att förstå uppgiften. Problemet kan lösas med mätning och kräver då inte några mer specifika kunskaper. Anpassning: Hur kan problemet formuleras om för att bli enklare eller svårare? Om problemet formuleras med en sträcka så blir det enklare men samtidigt tar man bort det som gör problemet till ett rikt problem. De givna bråken kan ersättas så att 2/5 skrivs som 40 %. Båda bråken kan också bytas ut mot andra tal som ger större gemensam nämnare. Hur väl fungerar problemet som brygga mellan olika matematiska områden? Problemet kan visa på sambandet mellan ett bråkuttryck och ett algebraiskt uttryck. Problemet kan också visa på en längd, ett avstånd som ett bråkuttryck. Vilka utvidgningar kan man göra för att formulera problem med samma matematiska idé? Genom att byta enhet och t ex formulera ett problem med pengar kan man hålla fast vid den matematiska idén.

17 Mönster och generaliseringar Ingen katt har två svansar, en katt har en svans mer än ingen katt, alltså har en katt tre svansar.

18 Spela Uggla Uppgiften kan spelas av två personer eller grupper, A och B, som använder en speciell uppsättning föremål. A väljer ut ett föremål, utan att avslöja vilket. B måste ställa frågor till A för att få reda vilket föremål som A valt. A får endast svara ja eller nej. När B kommit fram till rätt föremål byter A och B roller. Vinnare av en dubbelomgång är den som kommer fram till rätt föremål med hjälp av minst antal frågor. Uppgift: gissa figur! T.ex., grupp A valde figur. B: Har figuren fler än fyra hörn? A: Ja B: Har den fler än två vinklar som är större än 90? A: Nej B: Har den endast räta vinklar? A: Ja B: Då måste det vara figur (a).

19 Omkrets vs Area (Nämnaren, nr 3, 2006) En av dina elever kommer upphetsad till lektionen och berättar att hon funnit en regel som du ännu inte avslöjat för klassen. Hon förklarar att hon upptäckt att om man ökar omkretsen på en sluten figur så ökar också arean. Hon visar följande bild för att bevisa vad hon gör: 4 cm 8 cm 4 cm 4 cm Omkrets = 16 cm Omkrets = 24 cm Area = 16 cm 2 Area = 32 cm 2 Hur svarar du denna elev?..

20 Dramatisera situationen! Finns det någon rektangel med omkretsen 10 cm och area 1000 cm 2?.. Varför?... Finns det någon rektangel med area 10 cm 2 men omkretsen, t ex, 1000 cm?.. En typisk rektangel Dela upp den i tre lika stora delar och bygga upp dem till en ny rektangel: Har arean ändrats? Blev omkretsen mindre eller större? Varför?

21 Idé 4 cm 8 cm 11 cm 4 cm 4 cm 2 cm Omkrets = 16 cm Omkrets = 24 cm Omkrets = 26 cm Area = 16 cm 2 Area = 32 cm 2 Area = 22 cm 2

22 Uppgift till seminarium 6 (B. Ulin, Nämnaren, nr 100) Skriv exempelvis 4 naturliga tal i bredd, säg Vi adderar nu angränsande tal två och två och skriver summorna på raden nedanför. Detta upprepas två gånger tills vi landar på ett sista tal, ett bottental I exemplet här får vi resultatet 59. Frågan är nu: kan man på något enkelt sätt förutsäga om bottentalet blir udda eller jämnt? Utredningen kan gärna börja med 4 givna tal, sedan fortsätta med 5 tal.

23 Appendix. En paradox om en fånge En domare berättar en dömd fånge att han kommer att hänga vid lunchtid på en vardag i följande vecka, men att genomförandet kommer att bli en överraskning för den intagne. Han kommer inte att veta dagen för hängande tills bödeln knackar på sin cell dörr vid lunchtid samma dag. Efter att ha funderat på sitt straff, drar fången slutsatsen att han kommer fly från hängande. Hans resonemang är i flera delar. Han börjar med att dra slutsatsen att "överraskningen hängande" inte kan vara på fredag, som om han inte har hängts av torsdag, finns det bara en dag kvar - och så kommer det inte att vara en överraskning om han hängdes på fredagen. Eftersom domarens mening anges att hängningen skulle vara en överraskning för honom, avslutar han det inte kan ske på fredag. Han då skäl att överraskningen hängande inte kan vara på torsdag heller, eftersom fredag redan eliminerats och om han inte har hängts av onsdag kväll, måste hänga ske på torsdag, vilket gör en torsdag hänger inte en överraskning heller. Genom liknande resonemang han drar slutsatsen att hängningen inte heller kan ske på onsdag, tisdag eller måndag. Glädje han går i pension till sin cell säker på att hängningen inte inträffar alls. Nästa vecka slår bödeln på fångens dörren vid lunchtid på onsdag - som trots alla ovanstående, var en fullkomlig överraskning för honom. Allt domaren sade gick i uppfyllelse.

Matematik 92MA41 (15hp) Vladimir Tkatjev

Matematik 92MA41 (15hp) Vladimir Tkatjev Matematik 92MA41 (15hp) Vladimir Tkatjev Planering Del 1: Redovisning av Uppgift till seminarium 6 Undervisning genom problemlösning Del 2: Grupparbete: rika matematiska problem (förberedelse till SRE2)

Läs mer

7F Ma Planering v2-7: Geometri

7F Ma Planering v2-7: Geometri 7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

8F Ma Planering v2-7 - Geometri

8F Ma Planering v2-7 - Geometri 8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

9E Ma Planering v2-7 - Geometri

9E Ma Planering v2-7 - Geometri 9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder

Läs mer

Svar och arbeta vidare med Cadet 2008

Svar och arbeta vidare med Cadet 2008 Svar och arbeta vidare med Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att arbeta vidare med. Känguruproblemen

Läs mer

Matematik 92MA41 (15hp) Vladimir Tkatjev

Matematik 92MA41 (15hp) Vladimir Tkatjev Matematik 92MA41 (15hp) Vladimir Tkatjev Lite inspiration Går det att konstruera 6 kvadrater av 12 tändstickor? Hur gör man då? (Nämnaren, Nr 2, 2005) Litet klurigt kanske, bygg en kub av stickorna: Uppgift

Läs mer

Formativ bedömning - en väg till bättre lärande. Formativ bedömning - en väg till bättre lärande. Tre centrala processer för formativ bedömning

Formativ bedömning - en väg till bättre lärande. Formativ bedömning - en väg till bättre lärande. Tre centrala processer för formativ bedömning Formativ bedömning - en väg till bättre lärande Formativ bedömning - en väg till bättre lärande Bedömning av kunskap - summativ Bedömning för kunskap - formativ Tre centrala processer för formativ bedömning

Läs mer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna

Läs mer

Under min praktik som lärarstuderande

Under min praktik som lärarstuderande tomoko helmertz Problemlösning i Japan och Sverige Japansk matematikundervisning skiljer sig på många sätt från svensk. Vilka konsekvenser får det för hur elever i respektive länder löser problem? Tomoko

Läs mer

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte i årskurs 3

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte i årskurs 3 BEDÖMNINGSSTÖD till TUMMEN UPP! matte i årskurs 3 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper i årskurs 3. Av tradition har man i den svenska skolan

Läs mer

NAMN KLASS/GRUPP. Poängsumma: Känguruskutt: UPPGIFT 1 2 3 4 5 6 7 8 9 10 SVAR UPPGIFT 11 12 13 14 15 16 17 18 19 20 SVAR

NAMN KLASS/GRUPP. Poängsumma: Känguruskutt: UPPGIFT 1 2 3 4 5 6 7 8 9 10 SVAR UPPGIFT 11 12 13 14 15 16 17 18 19 20 SVAR Känguru 2010 Junior (gymnasiet åk 1) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara

Läs mer

Avdelning 1, trepoängsproblem

Avdelning 1, trepoängsproblem Avdelning 1, trepoängsproblem 1. Vilket är ett jämnt tal? A: 2009 B: 2 + 0 + 0 + 9 C: 200 9 D: 200 9 E: 200 + 9 Frankrike 2. Var är kängurun? A: I cirkeln och i triangeln, men inte i kvadraten. B: I cirkeln

Läs mer

Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11)

Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11) Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11) ( www.skolverket.se) Kunskapskraven i matematik kan delas in i följande områden: problemlösning, begrepp, metod, kommunikation och resonemang.

Läs mer

2. 1 L ä n g d, o m k r e t s o c h a r e a

2. 1 L ä n g d, o m k r e t s o c h a r e a 2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda

Läs mer

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet

Läs mer

Uppgifter till Första-hjälpen-lådan

Uppgifter till Första-hjälpen-lådan Uppgifter till Första-hjälpen-lådan Många Stockholmslärare har fått en första-hjälpen-låda i matematik då de deltagit i de kurser som letts av Karin Kairavuo, matematiklärare från Mattelandet i Helsingfors.

Läs mer

205. Begrepp och metoder. Jacob Sjöström jacobsjostrom@gmail.com

205. Begrepp och metoder. Jacob Sjöström jacobsjostrom@gmail.com 205. Begrepp och metoder Bo Sjöström bo.sjostrom@mah.se Jacob Sjöström jacobsjostrom@gmail.com Hur hög är en stapel med en miljon A4-papper? 100 st 80 grams har höjden 1 cm 1000 1 dm 1 000 000 1000 dm

Läs mer

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll. ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,

Läs mer

Per Berggren och Maria Lindroth 2012-10-30

Per Berggren och Maria Lindroth 2012-10-30 Varierad undervisning Per Berggren och Maria Lindroth 2012-10-30 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga

Läs mer

Uppsala Universitet Instutionen för pedagogik, didaktik och utbildningsstudier Matematik 2, Ht 2014 Tilde Henriksson, Hannah Kling, Linn Kristell

Uppsala Universitet Instutionen för pedagogik, didaktik och utbildningsstudier Matematik 2, Ht 2014 Tilde Henriksson, Hannah Kling, Linn Kristell Del 1: Pedagogisk planering a) Vi har gjort två lektionsplaneringar med fokus på tvådimensionella geometriska figurer för årskurs 1-3. Utifrån det centrala innehållet i Lgr11 för årskurs 1-3 ska eleverna

Läs mer

4-4 Parallellogrammer Namn:..

4-4 Parallellogrammer Namn:.. 4-4 Parallellogrammer Namn:.. Inledning Hittills har du arbetat bl.a. med linjer och vinklar. En linje är ju någonting som bara har en dimension, längd. Men när två linjer skär varandra och det bildas

Läs mer

7E Ma Planering v45-51: Algebra

7E Ma Planering v45-51: Algebra 7E Ma Planering v45-51: Algebra Arbetsform under en vecka: Måndagar (40 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar

Läs mer

mattetankar Reflektion kring de olika svaren

mattetankar Reflektion kring de olika svaren Reflektion kring de olika svaren Taluppfattning och tals användning 15 Skriv trehundrasju Reflektion: 31007 tyder på att eleven tolkar talet som 3, 100, 7 3007 tyder på att eleven tolkar talet som 300,

Läs mer

Lektion isoperimetrisk optimering

Lektion isoperimetrisk optimering Lektion isoperimetrisk optimering Lektionens namn: Isoperimetrisk optimering Kurs: Ma2a, Ma2b, Ma2c Längd: 85 min Inledning Lektionen behandlar ett klassiskt maximeringsproblem (Euklides och Zenodorus):

Läs mer

Ämnesplan i matematik för Häggenås, Bringåsen och Treälven

Ämnesplan i matematik för Häggenås, Bringåsen och Treälven Ämnesplan i matematik för Häggenås, Bringåsen och Treälven (2009-05-14) Namn Utarbetad under läsåret 08/09 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik

Läs mer

Under hösten 2008 deltog jag i en kurs som hette Matematikundervisning

Under hösten 2008 deltog jag i en kurs som hette Matematikundervisning Astrid Karlsson Mönsterproblem i dubbel bemärkelse Med utgångspunkt i det rika problemet Stenplattor synliggörs skillnader i elevers lösningar och hur problem som behandlar mönster kan leda in eleverna

Läs mer

Mönster och Algebra. NTA:s första matematiktema. Per Berggren

Mönster och Algebra. NTA:s första matematiktema. Per Berggren Mönster och Algebra NTA:s första matematiktema Per Berggren 1 Lgr11- Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga

Läs mer

Pedagogisk planering i matematik X + 7 = 30 Myrstacken Äldre årskurs 5, Hällby skola

Pedagogisk planering i matematik X + 7 = 30 Myrstacken Äldre årskurs 5, Hällby skola Pedagogisk planering i matematik X + 7 = 30 Myrstacken Äldre årskurs 5, Hällby skola Gäller för första delen av VT15 Syfte Du ska genom undervisningen ges förutsättningar att utveckla din förmåga att:

Läs mer

Rika matematiska problem

Rika matematiska problem Rika matematiska problem Författare: Kerstin Hagland, Rolf Hedrén, Eva Taflin Här finner du ett antal matematiska problem hämtade ur boken. Du kan skriva ut sidorna och använda exempelvis i din undervisning.

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Matematikplanering 3 geometri HT-12 VT-13 7 a KON

Matematikplanering 3 geometri HT-12 VT-13 7 a KON Matematikplanering 3 geometri HT-12 VT-13 7 a KON MÅL Grundkurs Mäta (med gradskiva) och beräkna vinklar Känna till triangelns vinkelsumma och använda den för att räkna ut vinklar Kunna namnen på några

Läs mer

Mönster och Algebra. NTA:s första matematiktema. Per Berggren & Maria Lindroth

Mönster och Algebra. NTA:s första matematiktema. Per Berggren & Maria Lindroth Mönster och Algebra NTA:s första matematiktema Per Berggren & Maria Lindroth 1 Lgr11- Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter:

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter: Matematik 1-5 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och

Läs mer

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod Lokal planering i Matematik, fskkl. 080415 Grundläggande taluppfattning 1-10, talkamrater 1-10. Träna begrepp som före/efter, mer/mindre, hälften/dubbelt. Parbildning. Ordningstal Längd meter. Vikt kg.

Läs mer

Känguru 2011 Cadet (Åk 8 och 9)

Känguru 2011 Cadet (Åk 8 och 9) sida 1 / 7 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Gissa inte, felaktigt

Läs mer

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att

Läs mer

Om Lgr 11 och Favorit matematik 4 6

Om Lgr 11 och Favorit matematik 4 6 Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med

Läs mer

HEM KURSER SKRIV UT HEM ÄMNE SKRIV UT

HEM KURSER SKRIV UT HEM ÄMNE SKRIV UT Matematik HEM KURSER SKRIV UT MA200 - Matematik A 110 poäng inrättad 1994-07 SKOLFS: 1994:9 et för kursen är att ge de matematiska kunskaper som krävs för att ta ställning i vardagliga situationer i privatliv

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper.

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Lokala mål Tala och lyssna: Jag kan lyssna och förstå

Läs mer

Lösningsförslag Cadet 2014

Lösningsförslag Cadet 2014 Kängurutävlingen 2014 Cadet svar och korta lösningar Lösningsförslag Cadet 2014 1. A 0 2014 2014 2014 2014 = 0 2. D 21 mars Det blir torsdag senast om månaden börjar med en fredag. Då är det torsdag dag

Läs mer

Matematik CD för TB = 5 +

Matematik CD för TB = 5 + Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

Facit åk 6 Prima Formula

Facit åk 6 Prima Formula Facit åk 6 Prima Formula Kapitel 1 Omkrets och area Sidan 7 1 A och C 2 D och E 3 a G, H och J b I och J c J Sidan 8 4 a 1 b 1 c 1 d 4 5 A = 0 B = 2 C = 4 D = 2 6 a 8 0 8 b 1 0 1 c 3 8 3 d 1 3 8 F7 A B

Läs mer

Lokala betygskriterier Matematik åk 8

Lokala betygskriterier Matematik åk 8 Lokala betygskriterier Matematik åk 8 Mer om tal För Godkänt ska du: Kunna dividera och multiplicera med 10, 100 och 1000. Kunna räkna ut kilopriset för en vara. Kunna multiplicera och dividera med positiva

Läs mer

A4-papper där det på varje papper står en siffra, på ett papper står det ett decimaltecken. Det kan också finnas papper med de olika räknesättens

A4-papper där det på varje papper står en siffra, på ett papper står det ett decimaltecken. Det kan också finnas papper med de olika räknesättens Aktivitet 1:1 LÄRARVERSION Göra tal av siffror Eleverna ska träna på positionssystemet. A4-papper där det på varje papper står en siffra, på ett papper står det ett decimaltecken. Det kan också finnas

Läs mer

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt. RÖRELSE Inledning När vi går, springer, cyklar etc. förflyttar vi oss en viss sträcka på en viss tid. Ibland, speciellt när vi har bråttom, tänker vi på hur fort det går. I det här experimentet undersöker

Läs mer

Kortfattade lösningar med svar till Cadet 2006

Kortfattade lösningar med svar till Cadet 2006 3 poäng Kängurun Matematikens hopp Cadet 2006 Kortfattade lösningar med svar till Cadet 2006 1 B 2 0 0 6 + 2006 = 0 + 2006 2 A De tal som ger rest 2 är 8 och 38, summan är 46. 3 D Första siffran längst

Läs mer

Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte

Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte Matematik Syfte Matematiken har en mångtusenårig historia med bidrag från många kulturer och har utvecklats ur människans praktiska behov och naturliga nyfikenhet. Matematiken är kreativ och problemlösande

Läs mer

Gymnasiets Cadet. a: 2 b: 4 c: 5 d: 6 e: 11

Gymnasiets Cadet. a: 2 b: 4 c: 5 d: 6 e: 11 Gymnasiets Cadet Avdelning 1. Trepoängsproblem 1. I en klass finns 1 flickor och 9 pojkar. Hälften av eleverna i klassen är förkylda. Vilket är det minsta antalet flickor som är förkylda? a: 2 b: 4 c:

Läs mer

Lokal studieplan matematik åk 1-3

Lokal studieplan matematik åk 1-3 Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen

Läs mer

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6 BEDÖMNINGSSTÖD till TUMMEN UPP! matte inför betygssättningen i årskurs 6 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper inför betygssättningen i årskurs

Läs mer

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning Allmänt om proven Detta prov består av del 1 och. Här finns också facit och förslag till poängsättning och bedömning. Provet finns på lärarwebben, dels som pdf-fil och dels som redigerbar Word-fil. Del

Läs mer

Gruppledtrådar 6-2A (i samband med sidorna 50-60) Ledtråd 2 Den har 4 begränsningsytor (B). Ledtråd 1 Polyedern är regelbunden.

Gruppledtrådar 6-2A (i samband med sidorna 50-60) Ledtråd 2 Den har 4 begränsningsytor (B). Ledtråd 1 Polyedern är regelbunden. Gruppledtrådar 6-2A (i samband med sidorna 50-60) Polyedern är regelbunden. Den har 4 begränsningsytor (B). Polyedern har 4 hörn (H). Antal kanter (K) kan beräknas med formeln B + H K = 2 Begränsningsytorna

Läs mer

Bedömning för lärande i matematik

Bedömning för lärande i matematik HANDLEDNING TILL Bedömning för lärande i matematik FÖR ÅRSKURS 1 9 1 Handledning I denna handledning ges förslag på hur du kan komma igång med materialet Bedömning för lärande i matematik åk 1 9. Du börjar

Läs mer

Matematik D (MA1204)

Matematik D (MA1204) Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och

Läs mer

Min pool. Hanna Lind 7:2 Alfa

Min pool. Hanna Lind 7:2 Alfa Min pool Hanna Lind 7:2 Alfa RITNING Jag började med att räkna ut ett antal rimliga mått som jag visste blev heltal när jag delade dom på 30, det gjorde jag då skalan var 1:30. I min ritning visar jag

Läs mer

Förpackningsprojekt !!!!!

Förpackningsprojekt !!!!! Förpackningsprojekt Ni ska få möjlighet att i grupp utveckla och visa på era kunskaper om volym och begränsningsarea, enhetsomvandlingar, formelhantering samt skala kommer också att ingå. Inlämning Röd:17/4

Läs mer

5.6 MATEMATIK. Hänvisning till punkt 7.6 i Lpgr 16.1.2004

5.6 MATEMATIK. Hänvisning till punkt 7.6 i Lpgr 16.1.2004 5.6 MATEMATIK Hänvisning till punkt 7.6 i Lpgr 16.1.2004 Undervisningen i matematik skall hos eleverna utveckla det matematiska tänkandet, ge matematiska begrepp samt de mest använda lösningsmetoderna.

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

Trianglar - Analys och bedömning av elevarbeten

Trianglar - Analys och bedömning av elevarbeten BEDÖMARTRÄNING - MATEMATIK ÅRSKURS 6 Trianglar - Analys och bedömning av elevarbeten Analys och bedömning av Jennifers arbete Metod och beräkning Resonemang och kommunikation Eleven löser uppgiften genom

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.

Läs mer

Talmönster och algebra. TA

Talmönster och algebra. TA Talmönster och algebra. TA Diagnoserna i området avser att kartlägga om eleverna kan upptäcka talmönster samt på olika sätt bearbeta algebraiska uttryck och ekvationer. Förståelse av koordinatsystem och

Läs mer

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod: SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara

Läs mer

Hands-On Math. Matematikverkstad. Förskolans nya läroplan 1 juli 2011. Matematik är en abstrakt och generell vetenskap

Hands-On Math. Matematikverkstad. Förskolans nya läroplan 1 juli 2011. Matematik är en abstrakt och generell vetenskap Hands-On Math Matematikverkstad 09.00 10.30 & 10.45 12.00 Elisabeth.Rystedt@ncm.gu.se Lena.Trygg@ncm.gu.se eller ett laborativt arbetssätt i matematik Laborativ matematikundervisning vad vet vi? Matematik

Läs mer

3: A I den vita asken. Kolan ligger i den röda asken så chokladbiten måste ligga i den vita. Problemet kan lösas konkret och med en enkel bild.

3: A I den vita asken. Kolan ligger i den röda asken så chokladbiten måste ligga i den vita. Problemet kan lösas konkret och med en enkel bild. Svar och lösningar 1: D 200 9 Alla de andra är udda. Undersök kombinationerna i multiplikationstabellen med avseende på jämna och udda tal. Hur kan man veta om resultatet av en multiplikation blir ett

Läs mer

Kursplan Grundläggande matematik

Kursplan Grundläggande matematik 2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs

Läs mer

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik D MA04 00p Respektive programmål gäller över kurskriterierna MA04 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår

Läs mer

Inledning...3. Kravgränser...21. Provsammanställning...22

Inledning...3. Kravgränser...21. Provsammanställning...22 Innehåll Inledning...3 Bedömningsanvisningar...3 Allmänna bedömningsanvisningar...3 Bedömningsanvisningar Del I...4 Bedömningsanvisningar Del II...5 Bedömningsanvisningar uppgift 11 (Max 5/6)...12 Kravgränser...21

Läs mer

Matematik. Namn: Datum:

Matematik. Namn: Datum: Matematik Namn: Datum: Multiplikation, tabell 2 och 4. Hur många ben har djuren tillsammans? + = = + + = = + + + + = = + = = + + + = = Skriv färdigt multiplikationen! 3 4 = 4 2 = 2 5 = 4 6 = 4 0 = 4 5

Läs mer

Undersökande arbetssätt i matematik 1 och 2

Undersökande arbetssätt i matematik 1 och 2 Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg Del 6: Undersökande arbetssätt med matematisk programvara Undersökande arbetssätt i matematik 1 och 2 I texten Undersökande arbetssätt

Läs mer

NpMaD ht 2000. Anvisningar. Grafritande räknare och Formler till nationellt prov i matematik kurs C, D och E.

NpMaD ht 2000. Anvisningar. Grafritande räknare och Formler till nationellt prov i matematik kurs C, D och E. NpMaD ht 000 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av december 010. Anvisningar

Läs mer

ARBETSPLAN MATEMATIK

ARBETSPLAN MATEMATIK ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform. 1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd

Läs mer

Arbeta vidare med Junior 2010

Arbeta vidare med Junior 2010 Arbeta vidare med Junior 010 Känguruproblemen är kanske inte av samma karaktär som de problem eleverna möter i läroboken. De är inga rutinuppgifter utan bygger på förståelse och grundläggande kunskaper.

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

Bedömning av matematiska förmågor. Per Berggren och Maria Lindroth 2012-01-26

Bedömning av matematiska förmågor. Per Berggren och Maria Lindroth 2012-01-26 Bedömning av matematiska förmågor Per Berggren och Maria Lindroth 2012-01-26 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla

Läs mer

Föreläsning 4: Aritmetik, forts. Tal i bråkform Tal i decimalform Sambandet mellan tal i bråkform och decimalform Procentbegreppet och Procenträkning

Föreläsning 4: Aritmetik, forts. Tal i bråkform Tal i decimalform Sambandet mellan tal i bråkform och decimalform Procentbegreppet och Procenträkning Föreläsning 4: Aritmetik, forts. Tal i bråkform Tal i decimalform Sambandet mellan tal i bråkform och decimalform Procentbegreppet och Procenträkning Algebra Läroplanen om algebra och algebraiskt tänkande

Läs mer

Inledning...5. Bedömningsanvisningar...5 Allmänna bedömningsanvisningar...5 Bedömningsanvisningar Delprov B...6 Bedömningsanvisningar Delprov C...

Inledning...5. Bedömningsanvisningar...5 Allmänna bedömningsanvisningar...5 Bedömningsanvisningar Delprov B...6 Bedömningsanvisningar Delprov C... Innehåll Inledning...5 Bedömningsanvisningar...5 Allmänna bedömningsanvisningar...5 Bedömningsanvisningar Delprov B...6 Bedömningsanvisningar Delprov C...20 Provbetyg...37 Kopieringsunderlag för resultatsammanställning...38

Läs mer

Kängurutävlingen Matematikens hopp

Kängurutävlingen Matematikens hopp Kängurutävlingen Matematikens hopp Junior 2010 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt

Läs mer

1 C: 2 En vågrät och en lodrät symmetrilinje genom kvadratens mittpunkt.

1 C: 2 En vågrät och en lodrät symmetrilinje genom kvadratens mittpunkt. Svar och lösningar 1 C: 2 En vågrät och en lodrät symmetrilinje genom kvadratens mittpunkt. 2 D: 4 8 = 2 2 2, alltså finns det 2 2 = 4 boxar i bottenlagret. 3 E: 6a + 8b Sidorna är a + a + a = 3a och b

Läs mer

Pedagogiskt café. Problemlösning

Pedagogiskt café. Problemlösning Pedagogiskt café Problemlösning Vad är ett matematiskt problem? Skillnad mellan uppgift och problem - Uppgift är något som eleven träffat på tidigare, kan lösa med vanliga standardmetoder - Matematiskt

Läs mer

Mål Likformighet, Funktioner och Algebra år 9

Mål Likformighet, Funktioner och Algebra år 9 Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter

Läs mer

Södervångskolans mål i matematik

Södervångskolans mål i matematik Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal

Läs mer

matematiska förmågor Per Berggren och Maria Lindroth 2013-05-21

matematiska förmågor Per Berggren och Maria Lindroth 2013-05-21 Varierad undervisning och bedömning av matematiska förmågor Per Berggren och Maria Lindroth 2013-05-21 5x5-spel Vad är mönstret värt? Kul Matematik Per Berggren och Maria Lindroth Matematiska förmågor

Läs mer

Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt

Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt Bedömning för lärande i matematik Mullsjö 16 juni 2014 Katarina Kjellström Inger Ridderlind Anette Skytt PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbeta med materialet

Läs mer

Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna.

Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna. Vid bedömning av ditt arbete med uppgift nummer 17 kommer läraren att ta hänsyn till: Hur väl du beräknar och jämför trianglarnas areor Hur väl du motiverar dina slutsatser Hur väl du beskriver hur arean

Läs mer

geometri och statistik

geometri och statistik Svikten geometri och statistik Innehåll Mönster Geometriska figurer Del av Matematiska ord Längd runt om Tredimensionella figurer Tabeller och diagram Problemlösning Kan du? Hur gick det? 2-3 4-5 6-7 8-9

Läs mer

Cadet. 1. I en klass finns 13 flickor och 9 pojkar. Hälften av eleverna i klassen är förkylda. Vilket är det minsta antalet flickor som är förkylda?

Cadet. 1. I en klass finns 13 flickor och 9 pojkar. Hälften av eleverna i klassen är förkylda. Vilket är det minsta antalet flickor som är förkylda? Cadet Avdelning 1. Trepoängsproblem 1. I en klass finns 1 flickor och 9 pojkar. Hälften av eleverna i klassen är förkylda. Vilket är det minsta antalet flickor som är förkylda? a: 2 b: 4 c: 5 d: 6 e: 11

Läs mer

PROBLEMLÖSNINGSUPPGIFTER

PROBLEMLÖSNINGSUPPGIFTER PROBLEMLÖSNINGSUPPGIFTER ADDERA RÄTT 1. Bestäm vilka siffror bokstäverna A, B, C, och D bör bytas ut mot i additionen nedan för att additionen ska vara riktig. A 6 3 7 B 2 + 5 8 C D 0 4 2 2. Gör ett eget

Läs mer

Vad innebär det att undervisa i algebra i årskurs 1 3? Vart ska dessa

Vad innebär det att undervisa i algebra i årskurs 1 3? Vart ska dessa Åsa Brorsson Algebra för lågstadiet I denna artikel beskriver en lärare hur hon arbetar med algebra redan i de tidiga skolåren. Det är ett arbete som hjälper elever att förstå likhetstecknets betydelse,

Läs mer