Under hösten 2008 deltog jag i en kurs som hette Matematikundervisning

Storlek: px
Starta visningen från sidan:

Download "Under hösten 2008 deltog jag i en kurs som hette Matematikundervisning"

Transkript

1 Astrid Karlsson Mönsterproblem i dubbel bemärkelse Med utgångspunkt i det rika problemet Stenplattor synliggörs skillnader i elevers lösningar och hur problem som behandlar mönster kan leda in eleverna i ett algebraiskt tänkande. Under hösten 2008 deltog jag i en kurs som hette Matematikundervisning som utvecklingsprojekt. Uppgiften var att planera en lektion med målet att ge eleverna ett optimalt lärande. I grupp analyserade jag och några andra kursdeltagare videoinspelade lektioner och omarbetade sedan våra lektionsplaneringar. Jag genomförde mina lektioner i en grupp som bestod av 16 elever, 8 9 år gamla. Att arbeta med mönster Jag valde att arbeta med det matematiska begreppet mönster. Under kursen läste vi en mängd litteratur och jag tog intryck av flera artiklar i Algebra för alla (1997). Eleverna ser mönster överallt, det gäller bara att kunna upptäcka, identifiera och reflektera över dem. För att kunna beskriva ett mönster krävs ett väl fungerande språk. I början räcker elevernas vardagsspråk, men allteftersom krävs det en mer specifik matematisk terminologi. En anledning till att det är viktigt att eleverna får tillfälle att arbeta med uppgifter som behandlar mönster är att det kan hjälpa dem att förstå hur algebraiska uttryck kan skapas och även ge möjlighet till förståelse för variabelbegreppet. I arbetet med mönster finns det olika sätt att närma sig det algebraiska tänkandet. Eleverna kan öva sitt strukturella tänkande genom att upptäcka mönster, se ett talmönster och sammanfatta det i en regel eller formel. De kan även tolka ett geometriskt mönster med en taltabell och sedan undersöka vad de funnit i sin tabell vilket kan resultera i en generalisering. Ett tredje sätt är att eleverna får beskriva ett mönster genom att använda det talade språket eller skriva med vanliga ord. Det är viktigt att skolan ger eleverna möjlighet att utveckla dessa olika sätt att bearbeta mönster innan man börjar med undervisningen där eleverna ska hantera storheter och okända tal med bokstäver. Ett rikt problem ska introducera viktiga matematiska idéer vara lätt att förstå och alla ska ha en möjlighet att arbeta med det upplevas som en utmaning, kräva ansträngning och tillåtas ta tid kunna lösas på flera olika sätt, med olika matematiska idéer och representationer kunna initiera matematiska resonemang utifrån elevernas skilda lösningar, ett resonemang som visar på olika matematiska idéer kunna fungera som brobyggare mellan olika matematiska områden kunna leda till att elever och lärare formulerar nya intressanta problem. (Hagland, Hedrén & Taflin, 2005b) 27

2 Problemet Full av inspiration från artiklar i Nämnaren och från japanska lärares sätt att planera och undervisa (Stigler & Hiebert, 1999) planerade jag två lektionstillfällen där eleverna skulle få arbeta med ett rikt problem. Båda lektionerna indelades i fem faser där lärarens och elevens roll gjordes tydliga. Första lektionen genomfördes i halvklass och den andra lektionen i helklass. Rika problem är rika på många sätt. När eleverna arbetar med dem utvecklar de sin problemlösningsförmåga och alla elever, både de som är i behov av särskilt stöd och elever som behöver utmaningar kan arbeta med dem. Uppgifterna utgår från konkreta händelser och har olika matematiska idéer inbakade i problemformuleringen. Jag valde att presentera en förenklad variant av uppgiften Stenplattor som presenterats av Hedrén, Taflin, Hagland (2005a,b) och diskuterats av Malmberg (2010). Annas pappa lägger nytt kakel i badrummet. Han använder kvadratiska stenplattor, mörka och ljusa. Så här ser det ut: figur 1 figur 2 figur 3 a) Hur många ljusa stenplattor går det åt till figur 5? b) Hur många ljusa stenplattor går det åt till figur 10? c) Hur många ljusa stenplattor går det åt till figur 100? d) Hitta på ett liknande problem. Lös det. Vid första lektionstillfället fick eleverna arbeta med uppgift a c. Uppgift d gavs som en diagnostisk uppgift vid den andra lektionen. Lösningar från den första lektionen Tretton elever lämnade en skriftlig redovisning. Två av dessa gav korrekta svar på alla frågor: Elev 1 Har ritat figur 5 och figur 10. Har förklarat aritmetiskt 5 5 = 25 och = 100 Har svarat Det är 25 ljusa plattor och Det är 100 ljusa plattor. På fråga c svarar eleven med ord: Den sista figuren 100. Det är ljusa plattor. Jag tänkte = Elev 2 Har redovisat sina svar i två kolumner, som om det var en tabell. Den första kolumnen anger figurens nummer och den andra kolumnen anger antal ljusa stenplattor. Eleven förklarade med ord: Vi har räknat multitabell. 28

3 De här två eleverna satt bredvid varandra och använde samma strategi för att lösa problemet. De valde däremot olika uttrycksformer i sin redovisning. Nio elever lyckades redovisa delar av problemet och de hade löst det på flera olika sätt: 1 Utgått från första radens mörka stenplattor som gav talföljden 3, 4, 5. Nästkommande figur hade då 6 mörka stenplattor i första raden och eftersom figurens form var känd, en kvadrat, kunde resten sedan ritas ut. Beräkningarna gav rätt svar. 2 Utgått från den mörka ramen som gav talföljden 8, 12, 16. Nästa ram skulle då innehålla 20 mörka stenplattor och när den var ritad fylldes de ljusa stenplattorna i. Beräkningarna gav inte rätt svar. Eleverna hade inte följt linjerna på det rutade pappret och fick svårigheter när de skulle fylla i de ljusa plattornas antal. 3 Utgått från de vita stenplattorna och använt areabegreppet. Några förklarade sin lösning muntligt och några med en aritmetisk uttrycksform: 1 1 = = = = = = En elev arbetade med strategin rekursion. Det ökar med udda tal. Först var det 1, sen blev det 3 mer, sen blev det 5 mer, sen 7, 9, 11,... Det eleven visade på sitt arbetsblad var 3 mer än föregående (1 + 3), 5 mer än föregående (4 + 5), 7 mer än föregående (9 + 7). Två elever redovisade ett talmönster som de ritat (en med streck och en med kvadrater). En av eleverna översatte mönstret till en talföljd med siffror. En elev gav en muntlig redovisning av lösning 1 ovan och angav en talföljd. Tolv av eleverna förklarade sina lösningar med en konkret uttrycksform som de kompletterade med muntligt framförda resonemang. Den elev som gjorde en tabell ritade ingen bild. En elev använde en muntlig uttrycksform. En elev uttryckte en regel utifrån de mörka stenplattornas ram de svarta ökar med 4. En elev uttryckte en regel utifrån de vita stenplattorna de ökar med udda tal. Eleverna uttryckte sig i huvudsak på ett vardagligt språk. Lösningar från den andra lektionen Eleverna fick i uppgift att göra egna problem med matematiska mönster som de sedan presenterade. I elevernas lösningar återfinns olika aritmetiska talföljder 1, 2, 3,... (ökar med ett), 2, 4, 6,... (ökar med två), 2, 5, 8,... (ökar med tre), 1, 3, 5, 7,... (ökar med två) och 7, 11, (ökar med fyra). Även nya idéer redovisades där eleverna arbetat med geometriska talföljder som 1, 2, 4,... (dubbelt så stor) och 8, 32, 128,... (fyra gånger så stor). Många elever beskrev hur figurerna växte med en regel det ökar med... Eleverna presenterade talföljder men det var inte så lätt för dem att använda ordet talföljd. 29

4 Elevernas egna problem kan tydligt indelas i tre olika kategorier: 1 Problem som tydligt liknar det ursprungliga problemet, där ändringar gjorts i siffror eller frågor. 2 Problem som visar olika geometriska figurer som växer på ett speciellt sätt vilket kan beskrivas med en talföljd. 3 Problem som handlar om vardagssituationer som kan lösas genom användning av en talföljd En skomakare hade 7 hästskor. Han får ytterligare 4 skor för varje dag. Eleven har ritat hästskor och skrivit: Dag 1. 7 hästskor Dag hästskor Dag hästskor Frågan: Hur många hästskor får han på två veckor? Eleven har löst problemet genom att göra ett vågrätt rutmönster med 14 rutor och markerat att varje ruta motsvarar en dag. Beräkningen har inte lett fram till rätt svar. Eleven har ritat tre ormar som växer på ett speciellt sätt. Ormarna är numrerade med 1, 2 och 3. En instruktion ges: Obs, huvud ingår ej. Fråga 1: Hur mycket ökar ormen? Eleven svarar genom att skriva in ökningar på orm 3. Det ökar med 1 i framändan, ökar med 2 på mitten och ökar med 1 i svansen. Som fråga 2 föreslår eleven muntligt Hur lång är femte ormen? Eleven har ritat tre blommor som växer och markerat under bilderna vecka 1, vecka 2, vecka 3. Blommorna är 1, 2 respektive 3 rutor långa. Fråga 1: Hur växer blomman? Fråga 2: Hur kommer blomman att se ut om en vecka? Vid en muntlig förklaring förtydligas att eleven menar hur lång blomman kommer att vara. Eleven svarar muntligt på sin uppgift. Den här eleven har påbörjat en ny uppgift vid sidan om den gamla. Där finns en bild av en blomma som är 10 rutor lång. Eleven har skrivit en fråga: Hur lång är blomman nu? Min reflektion över den lilla extra uppgiften är att den naturliga följdfrågan skulle kunna vara: Hur länge har blomman växt? Erfarenheter från studien Det sätt som eleverna tog sig an uppgiften, intensiteten och kreativiteten som de visade under arbetet, var fantastisk att uppleva. Alla siffror kanske inte blev så fina och alla streck följde inte rutmönstret på pappret, men mitt i all denna krokighet presenterade de talföljder och talmönster. De konstruerade olika geometriska mönster, diskuterade hur mönstret förändrades och pratade om hur det ökade. 30

5 Eleverna visade ett stort engagemang och arbetsglädje men det fanns en elev som inte tyckte uppgiften var rolig. Den här eleven behövde ledtrådar för att komma igång med problemlösningen. Eleven köpte inte mitt förslag utan arbetade vidare på ett förslag från en kamrat. Det finns studier som visar på en risk att läraren och eleven pratar förbi varandra och eleverna tycker att lärarna ofta krånglar till det för mycket. Japanska lärare hjälper elever som inte kommer igång genom att erbjuda färdiga, genomtänkta ledtrådar som de kan använda om de behöver. Många elevers första fråga i det egna problemet var Hur mycket ökar...? Det kanske är ett förslag på en första ledtråd eftersom det verkar vara en naturlig första fråga för eleverna. Alla elever har visat förmåga att kunna beskriva mönster i enkla talföljder samt förmåga att kunna fortsätta konstruera enkla geometriska mönster vilket ingick som mål för årskurs 3 i Lpo94. De flesta eleverna löste uppgiften genom att med en talföljd beskriva hur mönstret förändrades. En elev ritade först förändringen i de ljusa plattornas antal med streck som sedan översattes till en talföljd. Den elev som inte redovisade en talföljd i det inledande problemet visade det i sitt eget problem. De elever som inte hade fortsatt och ritat bilder i problemet Stenplattor ritade en serie bilder av ett mönster som växte på ett speciellt sätt i sina egna problem. När eleverna skapade sina egna problem arbetade de väldigt medvetet med talföljder. Många elever har visat förmåga att kunna upptäcka talmönster samt förmåga att kunna känna igen och beskriva några viktiga egenskaper hos mönster vilket var ett mål att uppnå i årskurs 5 enligt Lpo94. När eleverna, på egen hand, hittade en strategi att lösa problemet Stenplattor visade de att de hade upptäckt ett talmönster. En elev beskrev förändringen i mönstrets ram i det inledande problemet: det ökar med fyra och en elev beskrev en förändring utifrån de vita stenplattorna, de ökar med udda tal.... Min erfarenhet är att rika problem som det jag här diskuterat ger den balans som styrdokumentet menar ska finnas i matematikundervisningen för att eleverna ska bli framgångsrika i matematik. De manar till kreativitet, ger eleverna möjlighet att kommunicera, vara aktiva, söka nya insikter och lösningar på problem. Litteratur Ahlström, R. (red) (1996). Matematik ett kommunikationsämne. (1996) NämnarenTe m a. NCM, Göteborgs universitet. Bergsten, C., Häggström, J. & Lindberg, L. (1997). Algebra för alla. NämnarenTe m a. NCM, Göteborgs universitet. Hagland, K., Hedrén, R. & Taflin, E. (2005a). Rika matematiska problem: inspiration till variation. Stockholm: Liber. Hagland, K., Hedrén, R. & Taflin, E. (2005b) Vad menar vi med rika problem och vad är de bra till? Nämnaren nr 1, Hiebert, J. (2002). Lektionsplanering ny verksamhet i gammal form. Nämnaren nr 1, NCM, Göteborgs universitet. Malmberg, U. (2010). Att göra rika problem rika. Nämnaren nr 4, Stigler, J. W. & Hiebert, J. (1999). The Teaching Gap: best ideas from the world s teachers for improving education in the classroom. New York: Free press. Stiegler, J. W. & Hiebert, J. (2004). Att utveckla matematikundervisningen: Uppslag från TIMMS videostudie. Nämnaren nr 1, Taflin, E. (2007). Matematikproblem i skolan: för att skapa tillfällen till lärande (doktorsavhandling). Umeå universitet. 31

Vad innebär det att undervisa i algebra i årskurs 1 3? Vart ska dessa

Vad innebär det att undervisa i algebra i årskurs 1 3? Vart ska dessa Åsa Brorsson Algebra för lågstadiet I denna artikel beskriver en lärare hur hon arbetar med algebra redan i de tidiga skolåren. Det är ett arbete som hjälper elever att förstå likhetstecknets betydelse,

Läs mer

När vi läste Skolverkets rapport Svenska elevers matematikkunskaper

När vi läste Skolverkets rapport Svenska elevers matematikkunskaper Florenda Gallos Cronberg & Truls Cronberg Två perspektiv på att utveckla algebraiska uttryck Svenska elever påstås ha svårt med mönstertänkande. Eller är det så att de inte får lärarledd undervisning i

Läs mer

Problem med stenplattor

Problem med stenplattor Rolf Hedrén, Eva Taflin & Kerstin Hagland Problem med stenplattor Författarna har under flera år bedrivit ett forskningsprojekt med syfte att ta reda på hur lärare och elever tänker om lektioner kring

Läs mer

År 2006 hittade jag av en slump boken Rika matematiska problem inspiration

År 2006 hittade jag av en slump boken Rika matematiska problem inspiration Ulrihca Malmberg Att göra rika problem rika Att använda rika problem och utnyttja deras potential är inte helt lätt. Här behandlas några svårigheter och problem som visat sig och som varit utgångspunkt

Läs mer

Pedagogiskt café. Problemlösning

Pedagogiskt café. Problemlösning Pedagogiskt café Problemlösning Vad är ett matematiskt problem? Skillnad mellan uppgift och problem - Uppgift är något som eleven träffat på tidigare, kan lösa med vanliga standardmetoder - Matematiskt

Läs mer

Träff 1 Introduktion till Laborativ Matematik

Träff 1 Introduktion till Laborativ Matematik Träff 1 Introduktion till Laborativ Matematik Tid: Onsdagen den 30 januari kl 17.30-20.00 Skolinspektionen (2009). Undervisningen i matematik utbildningens innehåll och ändamålsenlighet. (28 s) Skolinspektionens

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Min egen matematikundervisning har genom åren varit väldigt styrd

Min egen matematikundervisning har genom åren varit väldigt styrd Ulrika Gunnarsson Problemlösning med olika representationsformer Här beskrivs undervisning med problemlösning, där inriktningen på arbetet var att eleverna skulle använda flera olika representationsformer.

Läs mer

Mönster och Algebra. NTA:s första matematiktema. Per Berggren

Mönster och Algebra. NTA:s första matematiktema. Per Berggren Mönster och Algebra NTA:s första matematiktema Per Berggren 1 Lgr11- Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga

Läs mer

Mönster statiska och dynamiska

Mönster statiska och dynamiska Modul: Didaktiska perspektiv på matematikundervisningen 1 Del 3: Fantasi, mönster och sannolikhet Mönster statiska och dynamiska Berit Bergius & Lena Trygg, NCM I många matematiska aktiviteter ska deltagarna

Läs mer

Matematik 92MA41 (15hp) Vladimir Tkatjev

Matematik 92MA41 (15hp) Vladimir Tkatjev Matematik 92MA41 (15hp) Vladimir Tkatjev Planering Del 1: Redovisning av Uppgift till seminarium 6 Undervisning genom problemlösning Del 2: Grupparbete: rika matematiska problem (förberedelse till SRE2)

Läs mer

Vad är ett problem? Kerstin Hagland och Johan Åkerstedt

Vad är ett problem? Kerstin Hagland och Johan Åkerstedt Modul: Problemlösning Del 1: Matematiska problem Vad är ett problem? Kerstin Hagland och Johan Åkerstedt Var och en av oss har föreställningar om vad matematik är. Dessa föreställningar är ofta ganska

Läs mer

Jag tror att alla lärare introducerar bråk

Jag tror att alla lärare introducerar bråk RONNY AHLSTRÖM Variabler och mönster Det är viktigt att eleverna får förståelse för grundläggande matematiska begrepp. Ett sätt att närma sig variabelbegreppet är via mönster som beskrivs med formler.

Läs mer

Mönster och Algebra. NTA:s första matematiktema. Per Berggren & Maria Lindroth

Mönster och Algebra. NTA:s första matematiktema. Per Berggren & Maria Lindroth Mönster och Algebra NTA:s första matematiktema Per Berggren & Maria Lindroth 1 Lgr11- Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att

Läs mer

Matematik 92MA41 (15hp) Vladimir Tkatjev

Matematik 92MA41 (15hp) Vladimir Tkatjev Matematik 92MA41 (15hp) Vladimir Tkatjev Med anledning av de nya kursplanerna har Strävorna reviderats. Formen, en matris med rutor, är densamma men istället för att som tidigare anknyta till mål att sträva

Läs mer

Träff 1 Introduktion till Laborativ Matematik

Träff 1 Introduktion till Laborativ Matematik Träff 1 Introduktion till Laborativ Matematik Tid: Onsdagen den 29 augusti kl 17.30-20.00 Skolinspektionen (2009). Undervisningen i matematik utbildningens innehåll och ändamålsenlighet. Skolinspektionens

Läs mer

Lokal pedagogisk planering

Lokal pedagogisk planering Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Läsåret deltog mitt rektorsområde

Läsåret deltog mitt rektorsområde STAFFAN ÅKERLUND Utveckla undervisning tillsammans Inspirerade av det japanska lektionsutvecklingsarbetet, som beskrivits under namnet Lesson Study, har ett lärarlag arbetat med att utveckla sitt arbete.

Läs mer

Magiska kvadrater. strävorna

Magiska kvadrater. strävorna strävorna 1A Magiska kvadrater taluppfattning huvudräkning mönster Avsikt och matematikinnehåll Avsikten är att ge eleverna färdighetsträning i huvudräkning, tillfälle att upptäcka mönster och att dra

Läs mer

Magiska kvadrater. Material Nio kapsyler Material för att göra egna spelplaner eller spelpåsar, se separata beskrivningar.

Magiska kvadrater. Material Nio kapsyler Material för att göra egna spelplaner eller spelpåsar, se separata beskrivningar. Strävorna 4A Magiska kvadrater... utvecklar sin förmåga att förstå, föra och använda logiska resonemang, dra slutsatser och generalisera samt muntligt och skriftligt förklara och argumentera för sitt tänkande....

Läs mer

Vad skall en matematiklärare kunna? Översikt. Styrdokument. Styrdokument. Problemlösning

Vad skall en matematiklärare kunna? Översikt. Styrdokument. Styrdokument. Problemlösning Vad skall en matematiklärare kunna? Andreas Ryve Stockholms universitet och Mälardalens Högskola. Översikt 1. Vad skall en elev kunna? 2. Matematik genom problemlösning ett exempel. 3. Skapa matematiska

Läs mer

Vad är det som gör skillnad?

Vad är det som gör skillnad? Vad är det som gör skillnad? Pedagogisk Inspiration Maria Dellrup Elisabeth Pettersson Nafi Zanjani Team Munkhättan Lotta Appelros Morin Iwona Charukiewicz Gudrun Einarsdottir Dammfriskolan Emma Backström

Läs mer

Lgr 11 matriser i Favorit matematik 4 6

Lgr 11 matriser i Favorit matematik 4 6 Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor

Läs mer

Med tabell menas enligt Nationalencyklopedin en koncentrerad, överskådlig

Med tabell menas enligt Nationalencyklopedin en koncentrerad, överskådlig Kerstin Hagland Ta till en tabell Tabeller används traditionellt som stöd för minnet, men de kan även utgöra ett bra verktyg vid problemlösning. Med hjälp av en tabell kan man systematiskt undersöka givna

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

bedömning Per Berggren och Maria Lindroth 2014-05-23

bedömning Per Berggren och Maria Lindroth 2014-05-23 Varierad undervisning och bedömning Per Berggren och Maria Lindroth 2014-05-23 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla

Läs mer

Per Berggren och Maria Lindroth 2014-11-19

Per Berggren och Maria Lindroth 2014-11-19 Varierad matematikundervisning Per Berggren och Maria Lindroth 2014-11-19 Luffarschack Med en utmaning! Sfinxen En rik laborativ matematikuppgift som tar sin början i de första skolåren och fortsätter

Läs mer

Matematik - Åk 9 Funktioner och algebra Centralt innehåll

Matematik - Åk 9 Funktioner och algebra Centralt innehåll Matematik - Åk 9 Funktioner och algebra Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer

Läs mer

Om Lgr 11 och Favorit matematik 4 6

Om Lgr 11 och Favorit matematik 4 6 Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med

Läs mer

Utmanande uppgifter som utvecklar. Per Berggren och Maria Lindroth

Utmanande uppgifter som utvecklar. Per Berggren och Maria Lindroth Utmanande uppgifter som utvecklar Per Berggren och Maria Lindroth 2014-11-12 Vilka förmågor ska utvecklas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier när jag löser ett problem,

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

Inlärningsnivåer i matema0k och en varierad undervisning

Inlärningsnivåer i matema0k och en varierad undervisning Inlärningsnivåer i matema0k och en varierad undervisning Per Berggren & Maria Lindroth 2012-04- 24 Lgr11- Matema0ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges

Läs mer

Systematisk problemlösning enligt EPA-modellen

Systematisk problemlösning enligt EPA-modellen Systematisk problemlösning enligt EPA-modellen - MÖJLIGHETER OCH UTMANINGAR EPA-modellen Total tidsutgång 8o min och uppåt Enskilt Par Alla Planera och organisera. Kollegialt samarbete Välja ut ett lärandemål/centralt

Läs mer

Problemlösning Fk- åk 3 19/ Pia Eriksson

Problemlösning Fk- åk 3 19/ Pia Eriksson Problemlösning Fk- åk 3 19/12 2013 Pia Eriksson Fyra glaskulor och tre pappersstjärnor väger 63 gram. Tre glaskulor och två pappersstjärnor väger 46 gram. Alla glaskulor väger lika mycket och alla pappersstjärnor

Läs mer

Lektion isoperimetrisk optimering

Lektion isoperimetrisk optimering Lektion isoperimetrisk optimering Lektionens namn: Isoperimetrisk optimering Kurs: Ma2a, Ma2b, Ma2c Längd: 85 min Inledning Lektionen behandlar ett klassiskt maximeringsproblem (Euklides och Zenodorus):

Läs mer

Matematiklektionen i fokus. Några klassrum öppnar dörren

Matematiklektionen i fokus. Några klassrum öppnar dörren Matematiklektionen i fokus Några klassrum öppnar dörren Brister i matematikundervisningen Lusten att lära med fokus på matematik (Skolverkets rapport nr 221) Den dominerande undervisningen är genomgång

Läs mer

Deltagare från förskoleenhet Skärholmen: Maria Franjic, Gorana Lukic, David Matus Leiva och Gunilla Sjögrund Handledare: Birgitta Furuhagen Väga lika

Deltagare från förskoleenhet Skärholmen: Maria Franjic, Gorana Lukic, David Matus Leiva och Gunilla Sjögrund Handledare: Birgitta Furuhagen Väga lika Deltagare från förskoleenhet Skärholmen: Maria Franjic, Gorana Lukic, David Matus Leiva och Gunilla Sjögrund Handledare: Birgitta Furuhagen Väga lika EKVATION i förskolan Förberedelser: litteratur-kursplaner

Läs mer

Läroplanens mål. Målen för eleverna i grundskolan är i läroplanen uppdelad i mål att sträva mot och mål att uppnå.

Läroplanens mål. Målen för eleverna i grundskolan är i läroplanen uppdelad i mål att sträva mot och mål att uppnå. Läroplanens mål Målen för eleverna i grundskolan är i läroplanen uppdelad i mål att sträva mot och mål att uppnå. Mål att sträva mot är det som styr planeringen av undervisningen och gäller för alla årskurser.

Läs mer

Jag arbetar som matte- och NO-lärare i åk 7 9 på Eriksdalskolan i Skövde,

Jag arbetar som matte- och NO-lärare i åk 7 9 på Eriksdalskolan i Skövde, Katarina Cederqvist Lära genom problemlösning Författaren har i ett fördjupningsarbete under en kurs i Lärarlyftet arbetat med temat problemlösning. Hon ställer frågan om man kan utgå från problemlösning

Läs mer

Mattekollen. Mattekollen 1. Mattekollen 3. Mattekollen 2. 6 Mål för kapitlet. 156 mattekollen. För att avsluta kapitlet

Mattekollen. Mattekollen 1. Mattekollen 3. Mattekollen 2. 6 Mål för kapitlet. 156 mattekollen. För att avsluta kapitlet Mattekollen Eleven har redan under sin tidigare skolgång utvecklat vissa kunskaper kring olika matematiska förmågor genom det centrala innehållet. I Mattekollen 1 sätter eleven ord på det han/hon redan

Läs mer

Under min praktik som lärarstuderande

Under min praktik som lärarstuderande tomoko helmertz Problemlösning i Japan och Sverige Japansk matematikundervisning skiljer sig på många sätt från svensk. Vilka konsekvenser får det för hur elever i respektive länder löser problem? Tomoko

Läs mer

Dubbelt En elev plockar upp en näve kuber. En annan ska ta upp dubbelt så många.

Dubbelt En elev plockar upp en näve kuber. En annan ska ta upp dubbelt så många. Multilink-kuber Varför kuber i matematikundervisningen? Multilink-kuber eller motsvarande material kan utnyttjas till snart sagt alla områden inom matematikundervisningen, i hela grundskolan och även upp

Läs mer

Planering Matematik åk 8 Algebra, vecka Centralt innehåll

Planering Matematik åk 8 Algebra, vecka Centralt innehåll Planering Matematik åk 8 Algebra, vecka 49 2015 Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Problemlösning som metod

Problemlösning som metod Problemlösning som metod - för att lära matematik Fuengirola november 2014 eva.taflin@gu.se evat@du.se Problemlösningsmodulens övergripande syfte Att initiera utveckling av lärares egen undervisning utifrån

Läs mer

Erik Östergren lärarutbildningen, 5hp HT 2015

Erik Östergren lärarutbildningen, 5hp HT 2015 Kurslitteratur Matematik ett kärnämne (Nämnaren Tema) Diverse artiklar All kurslitteratur kommer att finnas tillgänglig på Studentportalen. Kurshemsida http://studentportalen.uu.se Undervisning 20 lektionstillfällen.

Läs mer

Rika matematiska problem

Rika matematiska problem Rika matematiska problem Författare: Kerstin Hagland, Rolf Hedrén, Eva Taflin Här finner du ett antal matematiska problem hämtade ur boken. Du kan skriva ut sidorna och använda exempelvis i din undervisning.

Läs mer

Lokal planering i matematik

Lokal planering i matematik 2007-05-16 Lokal planering i matematik gemensam för Ölmbrotorps skola, Ervalla skola, Hovstaskolan, Lillåns södra skola, Lillåns norra skola och Lillåns skola 7-9 2007-05-16 1 Bakgrund Detta är ett dokument

Läs mer

Av kursplanen och betygskriterierna,

Av kursplanen och betygskriterierna, KATARINA KJELLSTRÖM Muntlig kommunikation i ett nationellt prov PRIM-gruppen ansvarar för diagnosmaterial och de nationella proven i matematik för grundskolan. Här beskrivs de muntliga delproven i ämnesprovet

Läs mer

Bedömning för lärande i matematik

Bedömning för lärande i matematik Bedömning för lärande i matematik Vilka har arbeta med materialet Varför ser det ut som det gör När och hur kan du som lärare använda materialet Katarina Kjellström PRIM-gruppen Vilka har deltagit i arbetet

Läs mer

Terminsplanering årskurs 6 Matematik Ärentunaskolan

Terminsplanering årskurs 6 Matematik Ärentunaskolan Inledning Terminsplanering årskurs 6 Matematik Ärentunaskolan På Ärentunaskolan arbetar vi med läromedlet MatteBorgen. Förutom uppgifter i boken arbetar vi med problemlösning och tränar olika strategier

Läs mer

Enkäten inleds med några frågor om demografiska data. Totalt omfattar enkäten 85 frågor. 30-40 år. 41-50 år. 51-60 år. > 60 år. 6-10 år.

Enkäten inleds med några frågor om demografiska data. Totalt omfattar enkäten 85 frågor. 30-40 år. 41-50 år. 51-60 år. > 60 år. 6-10 år. 1 av 15 2010-11-03 12:46 Syftet med den här enkäten är att lära mer om hur lärare tänker och känner när det gäller matematikundervisningen, särskilt i relation till kursplanen och till de nationella proven.

Läs mer

Mönster och samband i matematiken - Klapplekar i! musiken!

Mönster och samband i matematiken - Klapplekar i! musiken! Eklöf Sophie 650820-1081 Mönster och samband i matematiken - Klapplekar i musiken Uppgift 1- Undervisning i klassrummet (fältstudie) 1 Eklöf Sophie 650820-1081 Inledning Musik och matematik hör ihop. Musik

Läs mer

matematiska förmågor Per Berggren och Maria Lindroth 2013-05-21

matematiska förmågor Per Berggren och Maria Lindroth 2013-05-21 Varierad undervisning och bedömning av matematiska förmågor Per Berggren och Maria Lindroth 2013-05-21 5x5-spel Vad är mönstret värt? Kul Matematik Per Berggren och Maria Lindroth Matematiska förmågor

Läs mer

Rapport av genomförd "Lesson study" av en lektion med temat ekvationer i gymnasiets B-kurs. Bultar, muttrar och brickor

Rapport av genomförd Lesson study av en lektion med temat ekvationer i gymnasiets B-kurs. Bultar, muttrar och brickor Rapport av genomförd "Lesson study" av en lektion med temat ekvationer i gymnasiets B-kurs Bultar, muttrar och brickor Vågad problemlösning Förberedelser Ekvationssystem i matematik B ger progression från

Läs mer

Studiesituationen för elever med särskilda matematiska förmågor

Studiesituationen för elever med särskilda matematiska förmågor Studiesituationen för elever med särskilda matematiska förmågor Eva Pettersson NCM konferens 2011 Övning 1 Hur många prickar finns på bilden? Övning 2 Vilket av talen är störst? Övning 1 6 gånger 6 punkter

Läs mer

Med denna aktivitet försöker jag

Med denna aktivitet försöker jag LAURA FAINSILBER Ett funktionsrum Under Vetenskapsfestivalen i Göteborg 2001 bjöd matematiska institutionen på Chalmers och Göteborgs universitet på matematiska experiment för skolklasser. I en av aktiviteterna

Läs mer

Uppsala Universitet Instutionen för pedagogik, didaktik och utbildningsstudier Matematik 2, Ht 2014 Tilde Henriksson, Hannah Kling, Linn Kristell

Uppsala Universitet Instutionen för pedagogik, didaktik och utbildningsstudier Matematik 2, Ht 2014 Tilde Henriksson, Hannah Kling, Linn Kristell Del 1: Pedagogisk planering a) Vi har gjort två lektionsplaneringar med fokus på tvådimensionella geometriska figurer för årskurs 1-3. Utifrån det centrala innehållet i Lgr11 för årskurs 1-3 ska eleverna

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 3

Enhet / skola: Lindens skola i Lanna Åk: 3 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,

Läs mer

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2014-06-17

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2014-06-17 Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth 2014-06-17 Vad är mönstret värt? Lika eller olika Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika

Läs mer

Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att...

Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att... Innehållsförteckning 2 Innehåll 3 Mina matematiska minnen 4 Korsord - Lodrätt - Vågrätt 5 Chiffer med bokstäver 6 Lika med 8 Formel 1 10 Konsumera mera? 12 Potenser 14 Omkretsen 16 Lista ut mönstret 18

Läs mer

Sedan höstterminen 2010 har jag arbetat med fördjupningsgrupper i

Sedan höstterminen 2010 har jag arbetat med fördjupningsgrupper i Cecilia Eriksson Att tillvarata och utveckla elevers talang och matematikintresse Cecilia Eriksson, Alfaskola i Solna, tilldelas 2012 års Ingvar Lindqvistpris i matematik för sitt framgångsrika arbete

Läs mer

Om Favorit matematik för åk 4-6 och Lgr 11

Om Favorit matematik för åk 4-6 och Lgr 11 Om Favorit matematik för åk 4-6 och Lgr 11 Tydlig och medveten matematikundervisning Mera 4A Mera Favmoatremiattik 4A Favmoatremiattik En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning

Läs mer

Labora&v matema&k - för en varierad undervisning

Labora&v matema&k - för en varierad undervisning Labora&v matema&k - för en varierad undervisning Per Berggren & Maria Lindroth 2012-02- 23 Lgr11- Matema&ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar

Läs mer

Mönster och Algebra. NTA:s första matematiktema. Per Berggren

Mönster och Algebra. NTA:s första matematiktema. Per Berggren Mönster och Algebra NTA:s första matematiktema Per Berggren 1 Mål Varierad undervisning Varierad bedömning Kursplaneinriktad undervisning Rättvist för alla elever 2 Kursplaner för grundskolan (utbildningsdepartementet

Läs mer

Matematik 92MA41 (15hp) Vladimir Tkatjev

Matematik 92MA41 (15hp) Vladimir Tkatjev Matematik 92MA41 (15hp) Vladimir Tkatjev Dagens program Problemlösning i undervisning Vad menas med rika problem? Heuristisk metod: geometriskt ort Problemlösning The question, what is problem solving,

Läs mer

Hands-On Math. Matematikverkstad. Förskolans nya läroplan 1 juli 2011. Matematik är en abstrakt och generell vetenskap

Hands-On Math. Matematikverkstad. Förskolans nya läroplan 1 juli 2011. Matematik är en abstrakt och generell vetenskap Hands-On Math Matematikverkstad 09.00 10.30 & 10.45 12.00 Elisabeth.Rystedt@ncm.gu.se Lena.Trygg@ncm.gu.se eller ett laborativt arbetssätt i matematik Laborativ matematikundervisning vad vet vi? Matematik

Läs mer

Matematikundervisning genom problemlösning

Matematikundervisning genom problemlösning Matematikundervisning genom problemlösning En studie om lärares möjligheter att förändra sin undervisning Varför problemlösning i undervisningen? Matematikinlärning har setts traditionell som en successiv

Läs mer

Intervjuguide. Del 1. Att göra inför intervjun: Kort om intervjuguiden: a. Uppfattningar och intentioner. [8 min / 8 min]

Intervjuguide. Del 1. Att göra inför intervjun: Kort om intervjuguiden: a. Uppfattningar och intentioner. [8 min / 8 min] Intervjuguide Att göra inför intervjun: Tänk igenom den besökta lektionen så att du kan beskriva den kort och neutralt. Titta på den använda läroboken så att du kan diskutera den med läraren. Ha ett anteckningspapper

Läs mer

LPP för årskurs 2, Matte V.46-51 HT12

LPP för årskurs 2, Matte V.46-51 HT12 LPP för årskurs 2, Matte V.46-51 HT12 Värdegrund och uppdrag Skolan ska vara öppen för skilda uppfattningar och uppmuntra att de förs fram. Den ska framhålla betydelsen av personliga ställningstaganden

Läs mer

RÄDDA EKVATIONERNA! Cecilia Christiansen

RÄDDA EKVATIONERNA! Cecilia Christiansen RÄDDA EKVATIONERNA! Cecilia Christiansen Innehåll Introduktion...4 Innan du börjar...6 Lektion 1 Vad är matematiska uttryck och hur förenklar man dem?...8 Lektion 2 Ekvationsspelet del 1...11 Lektion 3

Läs mer

Digitala verktyg i matematik- och fysikundervisningen ett medel för lärande möten

Digitala verktyg i matematik- och fysikundervisningen ett medel för lärande möten Digitala verktyg i matematik- och fysikundervisningen ett medel för lärande möten Ulrika Ryan Hur bygger jag den vetenskapliga grunden för min undervisning? Styrdokument Forskning Beprövad erfarenhet Matematik

Läs mer

Under läsåret arbetade jag med. Konkretion av decimaltal. En nödvändig ingrediens för förståelse. maria hilling-drath

Under läsåret arbetade jag med. Konkretion av decimaltal. En nödvändig ingrediens för förståelse. maria hilling-drath maria hilling-drath Konkretion av decimaltal En nödvändig ingrediens för förståelse Här presenteras ett sätt att förstärka begrepp kring decimaltal. Med hjälp av tiobasmaterial får eleverna bygga tal för

Läs mer

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte i årskurs 3

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte i årskurs 3 BEDÖMNINGSSTÖD till TUMMEN UPP! matte i årskurs 3 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper i årskurs 3. Av tradition har man i den svenska skolan

Läs mer

Inlärningsnivåer i matema0k och en varierad undervisning

Inlärningsnivåer i matema0k och en varierad undervisning Inlärningsnivåer i matema0k och en varierad undervisning Per Berggren & Maria Lindroth 2013-04- 23 Lgr11- Matema0ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges

Läs mer

Upprepade mönster kan talen bytas ut mot bokstäverna: A B C A B C eller mot formerna: Anna-Lena Ekdahl, Högskolan i Jönköping

Upprepade mönster kan talen bytas ut mot bokstäverna: A B C A B C eller mot formerna: Anna-Lena Ekdahl, Högskolan i Jönköping Algebra Del 1 Upprepade mönster Anna-Lena Ekdahl, Högskolan i Jönköping Det är välkänt att barn långt innan de börjat skolan utforskar och skapar mönster på olika sätt och med olika material. Ofta skapas

Läs mer

OBS! Varje gång du börjar på en ny det vill vi att du börjar på ett nytt

OBS! Varje gång du börjar på en ny det vill vi att du börjar på ett nytt Uppsala universitet Institutionen för pedagogik, didaktik och utbildningsstudier Didaktik med inriktning matematik i förskolan och tidiga skolår A H t 2011 Marita Kj ellin ~~l 61 ~ skriftlig examination

Läs mer

Olika sätt att lösa ekvationer

Olika sätt att lösa ekvationer Modul: Algebra Del 5: Algebra som språk Olika sätt att lösa ekvationer Cecilia Kilhamn, Göteborgs Universitet och Lucian Olteanu, Linnéuniversitetet Att lösa ekvationer är en central del av algebran, det

Läs mer

Tränarguide del 2. Mattelek. www.flexprogram.se

Tränarguide del 2. Mattelek. www.flexprogram.se Tränarguide del 2 Mattelek www.flexprogram.se 1 ANTALSUPPFATTNING - MINST/STÖRST ANTAL Övningarna inom detta område tränar elevernas uppfattning av antal. Ett antal objekt presenteras i två separata rutor.

Läs mer

MÖNSTER OCH TALFÖLJDER

MÖNSTER OCH TALFÖLJDER MÖNSTER OCH TALFÖLJDER FÖRELÄSNINGENS INNEHÅLL OCH SYFTE Genomgång av viktiga matematiska begrepp, uttryck och symboler med anknytning till mönster och talföljder. Skälet till att välja detta innehåll

Läs mer

Skolverkets förslag till kursplan i matematik i grundskolan. Matematik

Skolverkets förslag till kursplan i matematik i grundskolan. Matematik Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet

Läs mer

M atematiska cirklar. Studiehandledning

M atematiska cirklar. Studiehandledning M atematiska cirklar Studiehandledning Innehåll Introduktion Vem är vi? Arbetsformer Arbetsinsatser Examination Teknik och utrustning Tidschema Teman för hösten Introduktion Denna studiehandledning innehåller

Läs mer

Bedömning av matematiska förmågor. Per Berggren och Maria Lindroth 2012-01-26

Bedömning av matematiska förmågor. Per Berggren och Maria Lindroth 2012-01-26 Bedömning av matematiska förmågor Per Berggren och Maria Lindroth 2012-01-26 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla

Läs mer

Lesson study. Åsa Holmgren Katarina Holmqvist VT 2007

Lesson study. Åsa Holmgren Katarina Holmqvist VT 2007 Lesson study Ett sätt att öka elevernas engagemang? Åsa Holmgren Katarina Holmqvist VT 2007 Rapport Matematikdidaktisk verksamhetsutveckling Institutionen för matematik, teknik och naturvetenskap Bakgrund...

Läs mer

matematik Prov, Övningsblad och Aktiviteter SANOM A UT B IL DNI NG

matematik Prov, Övningsblad och Aktiviteter SANOM A UT B IL DNI NG matematik b Prov, Övningsblad och Aktiviteter SANOM A UT B IL DNI NG Övningsblad Potenser Multiplikation och division av potenser samt potens av potens Potenslagar Multiplikation av potenser med samma

Läs mer

Intervjuguide. Att göra inför intervjun: Instruktioner för genomförandet av intervjun: Kontrollera att inspelningsutrustningen fungerar som den ska.

Intervjuguide. Att göra inför intervjun: Instruktioner för genomförandet av intervjun: Kontrollera att inspelningsutrustningen fungerar som den ska. Intervjuguide Att göra inför intervjun: Kontrollera att inspelningsutrustningen fungerar som den ska. Tänk igenom den besökta lektionen så att du kan beskriva den kort och neutralt. Titta på den använda

Läs mer

Lisbeth Kristoffersson & Annika Carlsson Tostarps skola VT 00 & HT 01

Lisbeth Kristoffersson & Annika Carlsson Tostarps skola VT 00 & HT 01 Lisbeth Kristoffersson & Annika Carlsson Tostarps skola VT 00 & HT 01 Sammanfattning Vi vill ha barnens egen verklighet och erfarenheter som utgångspunkt i matematikundervisningen. Som det är nu styr färdigproducerade

Läs mer

Rapport av genomförd lesson study av en lektion med temat bråk i gymnasiets A-kurs

Rapport av genomförd lesson study av en lektion med temat bråk i gymnasiets A-kurs Rapport av genomförd lesson study av en lektion med temat bråk i gymnasiets A-kurs Klippa gräset Jenny klipper gräsmattan hos Bo på 2 timmar. Måns gör det på 4 timmar. Förberedelser Utifrån en diskussion

Läs mer

Hjälpmedel: Miniräknare, skrivmateriel (ex. linjal, gradskiva, passare) och Lgr 11

Hjälpmedel: Miniräknare, skrivmateriel (ex. linjal, gradskiva, passare) och Lgr 11 Matematik och matematikdidaktik för 7,5 högskolepoäng grundlärare med inriktning mot arbete i förskoleklass och grundskolans årskurs 1-3, 7.5 hp VT17 Provmoment: Tentamen Matematik och matematikdidaktik,

Läs mer

Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt

Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt Bedömning för lärande i matematik Mullsjö 16 juni 2014 Katarina Kjellström Inger Ridderlind Anette Skytt PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbeta med materialet

Läs mer

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6 BEDÖMNINGSSTÖD till TUMMEN UPP! matte inför betygssättningen i årskurs 6 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper inför betygssättningen i årskurs

Läs mer

Vad kan vi i Sverige lära av Singapores matematikundervisning?

Vad kan vi i Sverige lära av Singapores matematikundervisning? Vad kan vi i Sverige lära av Singapores matematikundervisning? Singapore tillhör sedan länge toppnationerna i internationella undersökningar som Pisa och TIMSS. Deras framgångar har gjort att många andra

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

Vi har under drygt tio år arbetat tillsammans på Göteborgs folkhögskola.

Vi har under drygt tio år arbetat tillsammans på Göteborgs folkhögskola. Degerstedt, Lagberg, Reibring & Svensson Variation i folkhögskoleton Genom att främja samtal kring matematik och införa mer variation på lektionerna har ett arbetslag på Göteborgs folkhögskola utvecklat

Läs mer

När en Learning study planeras väljs ett område som upplevs som problematiskt

När en Learning study planeras väljs ett område som upplevs som problematiskt K. Drageryd, M. Erdtman, U. Persson & C. Kilhamn Tallinjen en bro mellan konkreta modeller och abstrakt matematik Fem matematiklärare från Transtenskolan i Hallsberg har under handledning av Cecilia Kilhamn

Läs mer

Spridningen är vanligtvis stor i en klass när det gäller vad elever tycker om,

Spridningen är vanligtvis stor i en klass när det gäller vad elever tycker om, Kerstin Johnsson & Jonas Bergman Ärlebäck Godissugen! En tankeavslöjade aktivitet för att introducera området funktioner I den här artikeln diskuteras en aktivitet som introducerar funktioner i åk 8 genom

Läs mer

Paper från lärgruppen i matematik S:t Olofsskolan

Paper från lärgruppen i matematik S:t Olofsskolan Paper från lärgruppen i matematik S:t Olofsskolan Agneta Sillman Karlsson Carolina Strömberg Christine Jangebrand Katrin Lingensjö Siw Nygren Ulla-Britt Sjöstedt Bakgrund: Våra lärdomar från lärgruppsarbetet

Läs mer