År 2006 hittade jag av en slump boken Rika matematiska problem inspiration

Storlek: px
Starta visningen från sidan:

Download "År 2006 hittade jag av en slump boken Rika matematiska problem inspiration"

Transkript

1 Ulrihca Malmberg Att göra rika problem rika Att använda rika problem och utnyttja deras potential är inte helt lätt. Här behandlas några svårigheter och problem som visat sig och som varit utgångspunkt för ett examensarbete. Erfarenheter från detta och från klassrumsarbetet har lett till förändrade arbetsformer vid arbete med rika problem. År 2006 hittade jag av en slump boken Rika matematiska problem inspiration till variation av Hagland m fl i bokhandeln och insåg att jag nog höll i en godbit, forskningsresultat kondenserade till en sammanfattande teoretisk grund för att sedan följas av ett antal rika problem med elevlösningar och analys att använda i klassrummet. Här skulle jag kunna fånga upp många av kursplanens intentioner om lärande genom problemlösning, som t ex att utveckla elevernas matematiska kunskaper och lärande genom kommunikation. Det finns ingen entydig definition på vad som menas med ett rikt matematiskt problem, i rutan listar jag de sju kriterier som anges i boken. Taflin menar sammanfattningsvis att ett rikt problem är utvecklingsbart och metodiskt mångdimensionellt, men att man enbart kan avgöra om ett problem är rikt genom att pröva det i en elevgrupp (Taflin, 2007). Första tappra försöken Första överraskningen vid arbete i klassrummet var när jag insåg det omöjliga i att under en lektion hinna klämma in enskilt arbete med uppgiften och därefter framtagning av lösning i grupp, följt av gemensam diskussion i helklass där olika lösningsförslag från grupperna diskuterades. Nåja, jag fick stuva om i planeringen och avsätta 2 3 lektioner för kommande uppgifter. Nu gick det bättre, men sen kom åter ett bakslag. De goda råden från forskningen om att läraren ska inta en stödjande roll utan att styra när eleverna söker finna en lösning föll direkt på det praktiskt såväl som teoretiskt omöjliga i att en lärare ska hinna med detta i en klass om 26 elever på 45 min, den effektiva tiden är förstås avsevärt kortare. Även om man som lärare önskar att man kunde lita på att eleverna pratar om ämnet, är risken stor att pratet glider över i annat, och även om de håller sig till ämnet är inte alltid diskussionen så givande som den skulle kunna vara. Problemet ska introducera viktiga matematiska idéer vara lätt att förstå och alla ska ha en möjlighet att arbeta med det upplevas som en utmaning, kräva ansträngning och tillåtas ta tid kunna lösas på flera olika sätt, med olika matematiska idéer och representationer kunna initiera matematiska resonemang utifrån elevernas skilda lösningar, ett resonemang som visar på olika matematiska idéer kunna fungera som brobyggare mellan olika matematiska områden kunna leda till att elever och lärare formulerar nya intressanta problem. 61

2 Är det Anna som fullständigt har tagit över diskussionen eller är det Kalle som vägrar tänka på annat sätt än sitt eget för att lösa uppgiften? Vad vet jag, jag står ju i andra änden av klassrummet och försöker reda ut bråket mellan Lisa, Anton och John om vem som egentligen bröt av Johns penna. Ett examensarbete tar form Det är under sådana stunder som problemet med ett examensarbetes frågeställning plötsligt får en lösning jag ska undersöka hur jag ska få eländet att fungera! Syftet med studien blev att analysera vilken roll några betydelsefulla faktorer har på hur högstadieelever i gruppsamverkan kommer till konsensus om lösningen för ett rikt matematiskt problem (Malmberg, 2008). Det jag studerade var Utvecklas den eller de i någon mening bästa enskilda lösningsstrategierna ytterligare när de bearbetas i grupp och i så fall på vilket sätt? Har en av läraren påtvingad tidsram för gruppdiskussionen någon inverkan på den slutliga grupplösningen och i så fall på vilket sätt? Vilka för- och nackdelar för utarbetandet av en gemensam grupplösning kan iakttas vid en heterogen gruppsammansättning? Det blev en fallstudie över två åttondeklasser med kvantitativa (enkäter och skriftliga elevlösningar från alla elever) såväl som kvalitativa metoder (videooch audioinspelade observationer samt intervjuer med ett urval av eleverna), där eleverna under höstterminen 2008 arbetade med tre rika problem. Eleverna delades in i grupper med 3 4 elever i varje, låg- och medel- respektive medel- och högpresterande. För varje problem arbetade de under första lektionen enskilt efter en gemensam introduktion. Andra lektionen satt de med sin grupp och tog gemensamt fram en lösning som alla elever i gruppen kunde förstå, förklara och försvara. Sista lektionen hade vi gemensam genomgång i klassen där någon grupp presenterade sin lösning och utifrån denna och andra gruppers lösningar skedde en fördjupad diskussion. Stenplattorna Ett av de problem vi arbetade med var Stenplattorna ur Rika matematiska problem. figur 1 figur 2 figur 3 Ett mönster läggs med hjälp av kvadratiska stenplattor, mörka och ljusa. Så här ser mönstret ut: 1. Hur många plattor går det åt till figur 5? Hur många av dem är ljusa och hur många är mörka? 2. Hur många mörka respektive ljusa plattor går det åt till figur 15? 3. Hur många mörka respektive ljusa plattor går det åt till figur 100? 4. Hur många mörka respektive ljusa plattor går det åt till figur n? 5. Hitta på ett liknande problem. Lös det. 6. Kan du lösa den ursprungliga uppgiften på ett annat sätt? 62

3 För att kunna göra undersökningen på ett korrekt sätt gav jag eleverna tydliga instruktioner innan de satte igång att arbeta. Ingen fick lämna in någon lösning innan lektionen var slut. Vid gruppsamarbete skulle eleverna först i tur och ordning presentera sin enskilda lösning utan att övriga fick ha synpunkter, för att därefter gemensamt arbeta fram en lösning. Vidare var det jag som skulle välja ut både grupp och person som skulle ha huvudredovisning vid den tredje lektionen i helklass. Eleverna fick inte heller be mig om hjälp under arbetets gång. Mina resultat Det jag fann i min studie var bland annat att eleverna i gruppdiskussionerna inte angrep problemet på något nytt sätt, utan byggde vidare på de enskilda elevlösningar som hade flest lösta deluppgifter var mest lättbegripliga eller lättförklarade hade lösningsstrategier som fungerade på flest deluppgifter. Att i efterhand lyssna på ljudinspelningarna och betrakta videoinspelningarna av diskussionerna visade sig vara ett stort nöje med ett för mig överraskande resultat. De grupper som blev klara med sin gemensamma lösning före lektionens slut, började prata om andra saker, men efter en stund ledsnade de och återgick till uppgiften (som de ju inte hade fått lämna in) och började diskutera hur man kunde angripa problemet på annat sätt. Detta var inte något som syntes på den skriftliga lösning som de lämnade in, utan märktes enbart på inspelningen. Med denna erfarenhet låter jag numera inga grupper lämna in lösningar innan lektionens slut, utan i stället uppmanas de att fundera vidare. Från studieresultat till klassrum Utifrån mina erfarenheter har jag utvecklat ett koncept kring arbete med rika matematiska problem som jag nu arbetar efter och som jag tycker fungerar. För varje enskilt problem brukar jag avsätta min för gemensam introduktion följt av enskilt arbete med uppgiften. För gruppdiskussionen behövs minst samma tid, vilket även gäller för den avslutande diskussionen i helklass. Grundprincipen är att jag systematiskt undervisar i problemlösning, vilket även inkluderar olika metoder. Eleverna får lösa många problem, förmågan till problemlösning måste få utvecklas över en längre tid och jag som lärare måste tro på och förmedla betydelsen av problemlösning som en viktig del i matematiskt lärande. Jag tycker att det är viktigt att träna eleverna i olika metoder för problemlösning. Det gör att de har en bank att få inspiration ifrån och lättare kan växla från en metod till en annan. Det är bra att ha ett sådant referensbibliotek av metoder för att angripa matematikuppgifter där man kan känna igen mönster och strukturer från tidigare och återanvända dessa i modifierad form för att lösa ett givet problem. Att hitta rika matematiska problem är inte alltid så enkelt. Jag använder främst ovan nämnda bok (Hagland m fl, 2005) samt boken 32 rika problem i matematik (Larsson, 2007). Många av Känguruproblemen, se ncm.gu.se/kanguru, 63

4 är också lämpliga att arbeta med, men då ägnar vi som regel kortare tid åt respektive uppgift, alternativt har dem som läxa för att sedan diskutera i helklass. Jag har också sett att det är absolut nödvändigt att jag i förväg själv har arbetat igenom problemet och betraktat det från olika håll, inte bara när det gäller lösningsmetoder. Jag måste också fundera över vilket syfte jag har med att välja ett specifikt problem. Ofta har jag valt ut ett rikt problem som i sitt innehåll har någon form av relevans för det arbetsområde vi därefter kommer att börja arbeta med och ibland har jag också styrt in eleverna på att lösa problemet på minst två sätt, varav en metod (t ex att rita) är på förhand given av mig. Att eleverna har en modell för hur de ska genomföra gruppdiskussionen har visat sig fungera mycket bra, liksom kravet att alla ska vara beredda på att redovisa gruppens lösning inför klassen. Det har medfört att alla elever kommer till tals och blir involverade i grupparbetet. Det har också skapat ett naturligt arbetssätt för gruppdiskussioner som eleverna utnyttjat i andra sammanhang. När jag gjorde studien upptäckte jag att jag tidigare alltför snart gått in med stöttning till enskilda elever och grupper när de kört fast. Eftersom detta inte var möjligt under studien, tvingades eleverna lösa problemen på egen hand vilket de också klarade. Detta har medfört att jag numera inte lika snabbt går in i diskussionen, utan i stället uppmanar dem att fundera lite till. Tre till fyra elever i en grupp är lagom och i vissa fall kan även två elever fungera bra, särskilt om gruppen består av medel- och högpresterande elever. Beroende på hur gruppen sätts samman kan olika mål med undervisningen uppnås, därför alternerar jag mellan heterogena och homogena grupper. Jag har även i några fall haft homogena grupper av lågpresterande elever och då själv gått in och stöttat mer aktivt och det har fungerat mycket bra. Jag har också sett nyttan av att låta den enskilda eleven alternera mellan att vara den relativt sett mer hög- respektive lågpresterande i en heterogen grupp. Att vara stark i en grupp ger bra träning i att sätta ord på sitt matematiska tänkande och förklara så att det blir begripligt för andra och att få vara svag i en annan grupp gör att man kan få hjälp att se andra sätt att angripa ett problem. Jag försöker ändå hålla grupperna intakta vid flera problemlösningstillfällen eftersom det har visat sig att eleverna då känner sig tryggare och säkrare. Problem för läxor och bedömning Jag har även använt rika problem och liknande uppgifter som specialläxor vilka eleverna kan välja i stället för den ordinarie läxan. Där kan jag se en tydlig utveckling hos eleverna. Vid de första läxförsöken kanske eleven inte klarar att lösa hela uppgiften eller har svårt att skriftligt redovisa sina tankegångar med ett matematiskt språk. Med tiden utvecklas dock säkerheten när det gäller såväl lösningsfrekvens som förmågan att använda olika lösningsmetoder och redovisa med ett korrekt matematiskt språk. Dessutom upptäckte jag att uppgifterna är synnerligen användbara för elever som väger mellan två betyg där jag behöver ytterligare underlag för min bedömning. Eleven får först arbeta självständigt med problemet och sedan tillsammans med mig muntligt och skriftligt redogöra för hur han eller hon har löst problemet. Därefter kan jag ställa olika former av kompletterande frågor för att eleven ska få utveckla sina resonemang och visa upp sina förmågor. Många elever visar också upp sina styrkor bättre muntligt än skriftligt. 64

5 Reaktioner från eleverna Hur har det då låtit bland eleverna som jag följt från åk 7 till åk 9 när vi arbetat med rika problem i klassrummet? Åk 7: Snälla Ulrihca, måste vi hålla på med det här, kan vi inte räkna i boken i stället? Åk 8: Nu elever ska jag skriva mitt examensarbete och ni och föräldrar har skrivit under att ni är med på tåget, så nu baske mig gör vi det här ordentligt och seriöst. Då vankas det hembakad tårta när vi är klara! Plikttrogna (och tårtglada) elever gör givetvis som fröken säger. Åk 9: Ulrihca! Jag och Edvard är klara med det här arbetsmomentet, har du något rikt problem vi kan arbeta med? En klar attitydförändring över tid med andra ord, väl värd arbetet med att övervinna det initiala motståndet. I år har jag fått en ny sexa och arbetar med matematiken på ett annat sätt än tidigare, jag tar inte längre avstamp från läro boken på samma sätt som jag har gjort förut. Det har medfört att eleverna snabbt ställt om sig till att inte heller se läroboken som utgångspunkt för undervisningen. Därmed har det även varit avsevärt enklare att introducera bl a problemlösning i grupp som en naturlig del av undervisningen. Litteratur Hagland, K., Hedrén, R. & Taflin, E. (2005). Rika matematiska problem inspiration till variation. Stockholm: Liber. Hedrén, R., Taflin, E. & Hagland, K. (2004). Problem med stenplattor. Nämnaren 31(3), Hedrén, R., Taflin, E. & Hagland, K. (2005). Vad menar vi med rika problem och vad är de bra till? Nämnaren 32(1), Larsson, M. (2007). 32 rika problem i matematik. Stockholm: Libers förlag. Malmberg, U. (2008). Det var enklare att slå ihop 4 hjärnor än att tänka själv. En fallstudie om gruppdiskussionens betydelse för elevlösningar av rika matematiska problem hos elever i årskurs 8 (Examensarbete 10 p). Sociologiska institutionen, Göteborgs universitet. Taflin, E. (2007). Matematikproblem i skolan för att skapa tillfällen till lärande (Doktorsavhandling). Institutionen för matematik och matematisk statistik, Umeå universitet. Ulrihca Malmberg belönades med Göran Emanuelssonstipendiet 2009 för sitt examensarbete Det var enklare att slå ihop 4 hjärnor än att tänka själv. En fallstudie om gruppdiskussionens betydelse för elevlösningar av rika matematiska problem hos elever i årskurs 8. 65

Systematisk problemlösning enligt EPA-modellen

Systematisk problemlösning enligt EPA-modellen Systematisk problemlösning enligt EPA-modellen - MÖJLIGHETER OCH UTMANINGAR EPA-modellen Total tidsutgång 8o min och uppåt Enskilt Par Alla Planera och organisera. Kollegialt samarbete Välja ut ett lärandemål/centralt

Läs mer

Problemlösning Fk- åk 3 19/ Pia Eriksson

Problemlösning Fk- åk 3 19/ Pia Eriksson Problemlösning Fk- åk 3 19/12 2013 Pia Eriksson Fyra glaskulor och tre pappersstjärnor väger 63 gram. Tre glaskulor och två pappersstjärnor väger 46 gram. Alla glaskulor väger lika mycket och alla pappersstjärnor

Läs mer

LPP för årskurs 2, Matte V.46-51 HT12

LPP för årskurs 2, Matte V.46-51 HT12 LPP för årskurs 2, Matte V.46-51 HT12 Värdegrund och uppdrag Skolan ska vara öppen för skilda uppfattningar och uppmuntra att de förs fram. Den ska framhålla betydelsen av personliga ställningstaganden

Läs mer

Pedagogiskt café. Problemlösning

Pedagogiskt café. Problemlösning Pedagogiskt café Problemlösning Vad är ett matematiskt problem? Skillnad mellan uppgift och problem - Uppgift är något som eleven träffat på tidigare, kan lösa med vanliga standardmetoder - Matematiskt

Läs mer

NOKflex. Smartare matematikundervisning

NOKflex. Smartare matematikundervisning NOKflex Smartare matematikundervisning Med NOKflex får du tillgång till ett heltäckande interaktivt matematikläromedel som ger stöd både för elevens individuella lärande och för lärarledd undervisning.

Läs mer

Matematikundervisning genom problemlösning

Matematikundervisning genom problemlösning Matematikundervisning genom problemlösning En studie om lärares möjligheter att förändra sin undervisning Varför problemlösning i undervisningen? Matematikinlärning har setts traditionell som en successiv

Läs mer

Sandåkerskolans plan för elevernas utveckling av den metakognitiva förmågan

Sandåkerskolans plan för elevernas utveckling av den metakognitiva förmågan 1(7) 2011-08-29 s plan för elevernas utveckling av den metakognitiva förmågan 18 august-20 december Steg 1: Ämnesläraren dokumenterar Syfte synliggöra utvecklingsbehov Ämnesläraren dokumenterar elevens

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Prata matematik. Bengt Drath. Stöpenskolan i Skövde kommun

Prata matematik. Bengt Drath. Stöpenskolan i Skövde kommun Prata matematik Bengt Drath Högskolan i Skövde Stöpenskolan i Skövde kommun Matematikkunnande Vad ingår i begreppet matematikkunnande? eller som elever skulle tänka: Hur skall en duktig elev i matte vara?

Läs mer

Vad skall en matematiklärare kunna? Översikt. Styrdokument. Styrdokument. Problemlösning

Vad skall en matematiklärare kunna? Översikt. Styrdokument. Styrdokument. Problemlösning Vad skall en matematiklärare kunna? Andreas Ryve Stockholms universitet och Mälardalens Högskola. Översikt 1. Vad skall en elev kunna? 2. Matematik genom problemlösning ett exempel. 3. Skapa matematiska

Läs mer

Problem med stenplattor

Problem med stenplattor Rolf Hedrén, Eva Taflin & Kerstin Hagland Problem med stenplattor Författarna har under flera år bedrivit ett forskningsprojekt med syfte att ta reda på hur lärare och elever tänker om lektioner kring

Läs mer

C. Stöd för lärarlagets lägesbedömning av undervisningsprocessen

C. Stöd för lärarlagets lägesbedömning av undervisningsprocessen C. Stöd för lärarlagets lägesbedömning av undervisningsprocessen Det här materialet är riktat till lärare och lärarlag och är ett stöd för skolans nulägesbeskrivning av matematikundervisning. Målet är

Läs mer

SKOLUTVECKLIGSPROJEKT MED GEOGEBRA. Jaana Zimmerl Suneson (Älvkullegymnasiet) jaana.zimmerl.suneson@alvkullegymnasiet.se

SKOLUTVECKLIGSPROJEKT MED GEOGEBRA. Jaana Zimmerl Suneson (Älvkullegymnasiet) jaana.zimmerl.suneson@alvkullegymnasiet.se ERFARENHETER FRÅN SKOLUTVECKLIGSPROJEKT MED GEOGEBRA Jaana Zimmerl Suneson (Älvkullegymnasiet Karlstad) jaana.zimmerl.suneson@alvkullegymnasiet.se mirela.vinerean@kau.se GeoGebra i matematikundervisningen

Läs mer

En metod för aktiv redovisning av matematikuppgifter

En metod för aktiv redovisning av matematikuppgifter En metod för aktiv redovisning av matematikuppgifter Magnus Jacobsson och Inger Sigstam Matematiska institutionen 1. Introduktion Matematik på grundnivå är till stor del ett övningsämne, man lär sig matematik

Läs mer

Vad menar vi med rika problem och vad är de bra till?

Vad menar vi med rika problem och vad är de bra till? ROLF HEDRÉN, EVA TAFLIN & KERSTIN HAGLAND Vad menar vi med rika problem och vad är de bra till? Den här artikeln ansluter till Problem med stenplattor i Nämnaren nummer 3, 2004. Här diskuterar vi vad vi

Läs mer

Matematiklyftet 2013/2014

Matematiklyftet 2013/2014 Matematiklyftet 2013/2014 Didaktiskt kontrakt Ruc 140522 AnnaLena Åberg 79 Matematiklärare 9 skolor? Elever 10 Rektorer 1 Förvaltningschef 2 Skolområdschefer 5 Matematikhandledare Hur ser ni på det didaktiska

Läs mer

Per Berggren och Maria Lindroth 2014-11-19

Per Berggren och Maria Lindroth 2014-11-19 Varierad matematikundervisning Per Berggren och Maria Lindroth 2014-11-19 Luffarschack Med en utmaning! Sfinxen En rik laborativ matematikuppgift som tar sin början i de första skolåren och fortsätter

Läs mer

Träff 1 Introduktion till Laborativ Matematik

Träff 1 Introduktion till Laborativ Matematik Träff 1 Introduktion till Laborativ Matematik Tid: Onsdagen den 30 januari kl 17.30-20.00 Skolinspektionen (2009). Undervisningen i matematik utbildningens innehåll och ändamålsenlighet. (28 s) Skolinspektionens

Läs mer

M atematiska cirklar. Studiehandledning

M atematiska cirklar. Studiehandledning M atematiska cirklar Studiehandledning Innehåll Introduktion Vem är vi? Arbetsformer Arbetsinsatser Examination Teknik och utrustning Tidschema Teman för hösten Introduktion Denna studiehandledning innehåller

Läs mer

Lokal pedagogisk planering Läsåret 2014-2015

Lokal pedagogisk planering Läsåret 2014-2015 Lokal pedagogisk planering Läsåret 2014-2015 Kurs: Engelska årskurs 6 Tidsperiod: Vårterminen 2015 vecka 3-16 Skola: Nordalsskolan, Klass: 6A, 6B och 6C Lärare: Kickie Nilsson Teveborg Kursen kommer att

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 3

Enhet / skola: Lindens skola i Lanna Åk: 3 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,

Läs mer

Labora&v matema&k - för en varierad undervisning

Labora&v matema&k - för en varierad undervisning Labora&v matema&k - för en varierad undervisning Per Berggren & Maria Lindroth 2012-02- 23 Lgr11- Matema&ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar

Läs mer

Tummen upp! Matte ÅK 6

Tummen upp! Matte ÅK 6 Tummen upp! Matte ÅK 6 Tummen upp! är ett häfte som kartlägger elevernas kunskaper i förhållande till kunskapskraven i Lgr 11. PROVLEKTION: RESONERA OCH KOMMUNICERA Provlektion Följande provlektion är

Läs mer

Problemlösning som metod

Problemlösning som metod Problemlösning som metod - för att lära matematik Fuengirola november 2014 eva.taflin@gu.se evat@du.se Problemlösningsmodulens övergripande syfte Att initiera utveckling av lärares egen undervisning utifrån

Läs mer

Rika matematiska problem

Rika matematiska problem Rika matematiska problem Författare: Kerstin Hagland, Rolf Hedrén, Eva Taflin Här finner du ett antal matematiska problem hämtade ur boken. Du kan skriva ut sidorna och använda exempelvis i din undervisning.

Läs mer

Matematik 92MA41 (15hp) Vladimir Tkatjev

Matematik 92MA41 (15hp) Vladimir Tkatjev Matematik 92MA41 (15hp) Vladimir Tkatjev Planering Del 1: Redovisning av Uppgift till seminarium 6 Undervisning genom problemlösning Del 2: Grupparbete: rika matematiska problem (förberedelse till SRE2)

Läs mer

Lokal pedagogisk planering

Lokal pedagogisk planering Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet

Läs mer

Hanna Melin Nilstein. Lokal pedagogisk plan för verklighetsbaserad och praktisk matematik Årskurs 3 1+1=?

Hanna Melin Nilstein. Lokal pedagogisk plan för verklighetsbaserad och praktisk matematik Årskurs 3 1+1=? Hanna Melin Nilstein Lokal pedagogisk plan för verklighetsbaserad och praktisk matematik Årskurs 3 1+1=? Lpp (Lokal pedagogisk plan) för verklighetsbaserad och praktisk matematik Bakgrund och beskrivning

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 1

Enhet / skola: Lindens skola i Lanna Åk: 1 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 1 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,

Läs mer

Föra och följa matematiska resonemang, Berätta för andra hur du tänker och lyssna på andras matematiska tankegångar.

Föra och följa matematiska resonemang, Berätta för andra hur du tänker och lyssna på andras matematiska tankegångar. Sparsörskolan Lokal pedagogisk planering Klass: 6A Ansvarig lärare: Fanny Olausson och Linda Wahlberg Ämne/område: Ja mfo relse, uppskattning och ma tning av vikt och volym samt avrundning och o verslagsra

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 1. Procent och statistik Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Bengt Drath. Högskolan i Skövde Stöpenskolan i Skövde kommun

Bengt Drath. Högskolan i Skövde Stöpenskolan i Skövde kommun Prata matematik Bengt Drath Högskolan i Skövde Stöpenskolan i Skövde kommun Matematikkunnande tikk Vad ingår i begreppet matematikkunnande? eller som elever skulle tänka: Hur skall en duktig elev i matte

Läs mer

"Procent och sannolikhet 6D"

Procent och sannolikhet 6D "Procent och sannolikhet 6D" Grundskola 6 1 Procent och sannolikhet planering Skapad 216-11-2 av Daniel Spångberg i Björkvallsskolan, Uppsala Baserad på "Procent och sannolikhet åk 6" från Björkvallsskolan,

Läs mer

Lära matematik med datorn. Ulrika Ryan, projektledare för Matematik för den digitala generationen Byskolan, Södra Sandby

Lära matematik med datorn. Ulrika Ryan, projektledare för Matematik för den digitala generationen Byskolan, Södra Sandby Lära matematik med datorn Ulrika Ryan, projektledare för Matematik för den digitala generationen Byskolan, Södra Sandby Innehåll Varför undervisar jag som jag gör? Lärarens roll i det digitala klassrummet

Läs mer

Min egen matematikundervisning har genom åren varit väldigt styrd

Min egen matematikundervisning har genom åren varit väldigt styrd Ulrika Gunnarsson Problemlösning med olika representationsformer Här beskrivs undervisning med problemlösning, där inriktningen på arbetet var att eleverna skulle använda flera olika representationsformer.

Läs mer

Rapport av genomförd "Lesson study" av en lektion med temat ekvationer i gymnasiets B-kurs. Bultar, muttrar och brickor

Rapport av genomförd Lesson study av en lektion med temat ekvationer i gymnasiets B-kurs. Bultar, muttrar och brickor Rapport av genomförd "Lesson study" av en lektion med temat ekvationer i gymnasiets B-kurs Bultar, muttrar och brickor Vågad problemlösning Förberedelser Ekvationssystem i matematik B ger progression från

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Per Berggren och Maria Lindroth 2012-10-30

Per Berggren och Maria Lindroth 2012-10-30 Varierad undervisning Per Berggren och Maria Lindroth 2012-10-30 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga

Läs mer

Rapport av genomförd lesson study av en lektion med temat bråk i gymnasiets A-kurs

Rapport av genomförd lesson study av en lektion med temat bråk i gymnasiets A-kurs Rapport av genomförd lesson study av en lektion med temat bråk i gymnasiets A-kurs Klippa gräset Jenny klipper gräsmattan hos Bo på 2 timmar. Måns gör det på 4 timmar. Förberedelser Utifrån en diskussion

Läs mer

Concept cartoons - resonemangsuppgifter. Per Berggren och Maria Lindroth 2013-06-18

Concept cartoons - resonemangsuppgifter. Per Berggren och Maria Lindroth 2013-06-18 Concept cartoons - resonemangsuppgifter Per Berggren och Maria Lindroth 2013-06-18 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla

Läs mer

Uppsala Universitet Instutionen för pedagogik, didaktik och utbildningsstudier Matematik 2, Ht 2014 Tilde Henriksson, Hannah Kling, Linn Kristell

Uppsala Universitet Instutionen för pedagogik, didaktik och utbildningsstudier Matematik 2, Ht 2014 Tilde Henriksson, Hannah Kling, Linn Kristell Del 1: Pedagogisk planering a) Vi har gjort två lektionsplaneringar med fokus på tvådimensionella geometriska figurer för årskurs 1-3. Utifrån det centrala innehållet i Lgr11 för årskurs 1-3 ska eleverna

Läs mer

Exempel på ämnen för examensarbete inom kurserna UÖÄ007, HOA400, UÖÄ008: (Se också DIVA: http://mdh.diva-portal.org/smash/search.

Exempel på ämnen för examensarbete inom kurserna UÖÄ007, HOA400, UÖÄ008: (Se också DIVA: http://mdh.diva-portal.org/smash/search. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Exempel på ämnen för examensarbete inom kurserna UÖÄ007, HOA400, UÖÄ008: (Se också DIVA: http://mdh.diva-portal.org/smash/search.jsf)

Läs mer

Problemlösning, öppna frågor och formativ bedömning, hur? Margareta Bynke & Anna Gullberg Malmö Högskola, 2013

Problemlösning, öppna frågor och formativ bedömning, hur? Margareta Bynke & Anna Gullberg Malmö Högskola, 2013 Problemlösning, öppna frågor och formativ bedömning, hur? Margareta Bynke & Anna Gullberg Malmö Högskola, 2013 www.mentimeter.com 1.Skapa en fråga. 2.Låt klassen få rösta. Tag fram mobiltelefonen (det

Läs mer

Muntlig kommunikation på matematiklektioner

Muntlig kommunikation på matematiklektioner LÄRARPROGRAMMET Muntlig kommunikation på matematiklektioner Enkätundersökning med lärare som undervisar i årskurs 7-9 Margareta Olsson Examensarbete 15hp Höstterminen 2008 Handledare: Maria Bjerneby Häll

Läs mer

Studiesituationen för elever med särskilda matematiska förmågor

Studiesituationen för elever med särskilda matematiska förmågor Studiesituationen för elever med särskilda matematiska förmågor Eva Pettersson NCM konferens 2011 Övning 1 Hur många prickar finns på bilden? Övning 2 Vilket av talen är störst? Övning 1 6 gånger 6 punkter

Läs mer

Lärares tankar vid arbete med rika problem

Lärares tankar vid arbete med rika problem ROLF HEDRÉN, KERSTIN HAGLAND & EVA TAFLIN Lärares tankar vid arbete med rika problem Detta är den tredje artikeln i serien om arbete med rika problem. Övriga artiklar var införda i Nämnaren nummer 3, 2004

Läs mer

En begreppsbubbla är en bild med några tecknade personer som uttalar

En begreppsbubbla är en bild med några tecknade personer som uttalar Karin Andrén & Matilda Östman Begreppsbubblor Författarna har arbetat med en serie bilder som kallas begreppsbubblor och funnit att en genomtänkt undervisning med dessa kan synliggöra vanliga missförstånd.

Läs mer

Observationsprotokoll för lektionsbesök

Observationsprotokoll för lektionsbesök Observationsprotokoll för lektionsbesök Datum och tidpunkt för observationen: Observerad lärare: Skola: Antal närvarande elever i klassen/gruppen: Årskurs/årskurser: Lektionens ämne: Lektionens huvudsakliga

Läs mer

Vi har under drygt tio år arbetat tillsammans på Göteborgs folkhögskola.

Vi har under drygt tio år arbetat tillsammans på Göteborgs folkhögskola. Degerstedt, Lagberg, Reibring & Svensson Variation i folkhögskoleton Genom att främja samtal kring matematik och införa mer variation på lektionerna har ett arbetslag på Göteborgs folkhögskola utvecklat

Läs mer

Visible teaching visible learning. Formativ bedömning en väg till bättre lärande

Visible teaching visible learning. Formativ bedömning en väg till bättre lärande Bedömning Summativ Formativ bedömning en väg till bättre lärande Gunilla Olofsson Formativ ------------------------------------------------- Bedömning som en integrerad del av lärandet Allsidig bedömning

Läs mer

Lokal Pedagogisk Planering Läsåret 15-16

Lokal Pedagogisk Planering Läsåret 15-16 Kurs: Svenska- läsa, skriva, tala, lyssna Tidsperiod v.9-23 Skola Nordalsskolan Årskurs 5 Lärare Lena Gustavsson, Staffan Henning, Anne Sundqvist & Mia Fredriksson Kursen kommer att handla om: Vi kommer

Läs mer

Lära matematik med datorn

Lära matematik med datorn Lära matematik med datorn Ulrika Ryan Matematik för den digitala generationen Malmö högskola, Lunds Universitet, Göteborgs Universitet och NCM 3 gymnasieskolor och 2 grundskolor i Lunds kommun Matematik

Läs mer

Genom undervisning i ämnet engelska ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att:

Genom undervisning i ämnet engelska ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att: Pedagogisk planering Engelska årskurs 8, vecka 45-49 Television Broadcast och oregelbundna verb Varför: Genom undervisning i ämnet engelska ska eleverna sammanfattningsvis ges förutsättningar att utveckla

Läs mer

Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta

Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta LPP Matematik räknesätten År 2 Beskrivning av arbetet Addition och subtraktion 0 200 - med utelämnat tal - algebra - med omgruppering och tiotalsövergång Addition och subtraktion med hela 100-tal Se likheter

Läs mer

Digitala verktyg i matematik- och fysikundervisningen ett medel för lärande möten

Digitala verktyg i matematik- och fysikundervisningen ett medel för lärande möten Digitala verktyg i matematik- och fysikundervisningen ett medel för lärande möten Ulrika Ryan Hur bygger jag den vetenskapliga grunden för min undervisning? Styrdokument Forskning Beprövad erfarenhet Matematik

Läs mer

Klassrumshantering Av: Jonas Hall. Högstadiet. Material: TI-82/83/84

Klassrumshantering Av: Jonas Hall. Högstadiet. Material: TI-82/83/84 Inledning Det som är viktigt att förstå när det gäller grafräknare, och TI s grafräknare i synnerhet, är att de inte bara är räknare, dvs beräkningsmaskiner som underlättar beräkningar, utan att de framför

Läs mer

Algebra och Ekvationer År 7

Algebra och Ekvationer År 7 Undervisning Algebra och Ekvationer År 7 Lärandemål (konkretisering av syfte och centralt innehåll ur Lgr 11) Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och situationer och inom

Läs mer

LÄGGA GRUNDEN ATT BÖRJA PRATA OM SEXUALITET

LÄGGA GRUNDEN ATT BÖRJA PRATA OM SEXUALITET LÄGGA GRUNDEN Det är viktigt att avsätta tid för den startsträcka som ofta behövs för att sätta sexualundervisningen i ett sammanhang och skapa förtroende. I detta kapitel finns tips och metoder för att

Läs mer

Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik.

Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik. Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl

Läs mer

Matematik 92MA41 (15hp) Vladimir Tkatjev

Matematik 92MA41 (15hp) Vladimir Tkatjev Matematik 92MA41 (15hp) Vladimir Tkatjev Dagens program Introduktion och kursens översikt Varför problemlösning? Problemlösning ur historiskt perspektiv Information om kursen på hemsida Flervariabelanalysen

Läs mer

Att använda svenska 2

Att använda svenska 2 Att använda svenska 2 Att använda svenska 1-4 är ett undervisningsmaterial utformat för att hjälpa eleverna att nå gymnasiesärskolans mål i ämnet svenska. Uppgifterna är utformade för att läraren både

Läs mer

bedömning Per Berggren och Maria Lindroth 2014-05-23

bedömning Per Berggren och Maria Lindroth 2014-05-23 Varierad undervisning och bedömning Per Berggren och Maria Lindroth 2014-05-23 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla

Läs mer

Lokal pedagogisk planering i matematik för åk 8

Lokal pedagogisk planering i matematik för åk 8 Lokal pedagogisk planering i matematik för åk 8 Arbetsområde Geometri kap. 3 PRIO Syfte http://www.skolverket.se/laroplaner-amnen-ochkurser/grundskoleutbildning/sameskola/matematik#anchor2 formulera och

Läs mer

När vi läste Skolverkets rapport Svenska elevers matematikkunskaper

När vi läste Skolverkets rapport Svenska elevers matematikkunskaper Florenda Gallos Cronberg & Truls Cronberg Två perspektiv på att utveckla algebraiska uttryck Svenska elever påstås ha svårt med mönstertänkande. Eller är det så att de inte får lärarledd undervisning i

Läs mer

Genrepedagogik och matematik enligt Reading to Learn. Ett utvecklingsprojekt, Ht 2010

Genrepedagogik och matematik enligt Reading to Learn. Ett utvecklingsprojekt, Ht 2010 Genrepedagogik och matematik enligt Reading to Learn Ett utvecklingsprojekt, Ht 2 1 Teoretisk bakgrund Genrepedagogik och Reading to Learn Projektets vetenskapliga bas finns i den sociokulturella synen

Läs mer

Boken om SO 1-3. Boken om SO 1-3 är elevernas första grundbok i geografi, historia, religionskunskap och samhällskunskap. Syfte

Boken om SO 1-3. Boken om SO 1-3 är elevernas första grundbok i geografi, historia, religionskunskap och samhällskunskap. Syfte Boken om SO 1-3 Boken om SO 1-3 är elevernas första grundbok i geografi, historia, religionskunskap och samhällskunskap. Provlektion: Om grundläggande mänskliga rättigheter, alla människors lika värde

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 3

Enhet / skola: Lindens skola i Lanna Åk: 3 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,

Läs mer

Centralt innehåll. Tala och samtala. Lyssna och läsa. Skriva. Kultur och samhälle. Tala och samtala. Lyssna och läsa.

Centralt innehåll. Tala och samtala. Lyssna och läsa. Skriva. Kultur och samhälle. Tala och samtala. Lyssna och läsa. ENGELSKA Språk är människans främsta redskap för att tänka, kommunicera och lära. Att ha kunskaper i flera språk kan ge nya perspektiv på omvärlden, ökade möjligheter till kontakter och större förståelse

Läs mer

Att använda svenska 1

Att använda svenska 1 Att använda svenska 1 Att använda svenska 1-4 är ett undervisningsmaterial utformat för att hjälpa eleverna att nå gymnasiesärskolans mål i ämnet svenska. Uppgifterna är utformade för att läraren både

Läs mer

Matematikboken Z PROVLEKTION: RÄKNA OCH HÄPNA

Matematikboken Z PROVLEKTION: RÄKNA OCH HÄPNA Matematikboken Z Håll ihop klassen och låt alla lyckas på sin nivå. Det är vårt recept för ett bättre resultat i nästa PISA-undersökning. Den nya upplagan är granskad av didaktiker och baseras på senaste

Läs mer

Unos países hispanohablantes

Unos países hispanohablantes Grindenheten 2015-03-03 Ämne, årskurs och tidsperiod Spanska, åk 6, vecka 10-13. Unos países hispanohablantes LOKAL PEDAGOGISK PLANERING (LPP) Susanna Bertilsson Arbetsformer VAD? Vi ska lära oss mer om

Läs mer

Skolans uppdrag är att främja lärande där individen stimuleras att inhämta och utveckla kunskaper och värden.

Skolans uppdrag är att främja lärande där individen stimuleras att inhämta och utveckla kunskaper och värden. Författningsstöd Övergripande författningsstöd 1 kap. 4 skollagen Utbildningen inom skolväsendet syftar till att barn och elever ska inhämta och utveckla kunskaper och värden. Den ska främja alla barns

Läs mer

Bedömning för lärande

Bedömning för lärande Bedömning för lärande Aktivera eleverna som ägare av lärandeprocessen Andreia Balan Strategi 5 - eleverna som ägare av lärandeprocessen Grundtanke: att stödja lärandeprocessen genom ökad metakognition

Läs mer

Lokal pedagogisk planering för Kvinnebyskolans förskoleklass, läsår 2013/2014

Lokal pedagogisk planering för Kvinnebyskolans förskoleklass, läsår 2013/2014 Lokal pedagogisk planering för s förskoleklass, läsår 2013/2014 Syfte: Skolans uppdrag: Mål: Skolan ska stimulera elevernas kreativitet, nyfikenhet och självförtroende samt vilja till att pröva egna idéer

Läs mer

Sammanfattning Rapport 2010:13. Undervisningen i matematik i gymnasieskolan

Sammanfattning Rapport 2010:13. Undervisningen i matematik i gymnasieskolan Sammanfattning Rapport 2010:13 Undervisningen i matematik i gymnasieskolan 1 Sammanfattning Skolinspektionen har granskat kvaliteten i undervisningen i matematik på 55 gymnasieskolor spridda över landet.

Läs mer

Vad innebär det att undervisa i algebra i årskurs 1 3? Vart ska dessa

Vad innebär det att undervisa i algebra i årskurs 1 3? Vart ska dessa Åsa Brorsson Algebra för lågstadiet I denna artikel beskriver en lärare hur hon arbetar med algebra redan i de tidiga skolåren. Det är ett arbete som hjälper elever att förstå likhetstecknets betydelse,

Läs mer

Bedömning. Formativ bedömning - en väg till bättre lärande. Formativ bedömning. Formativ bedömning. Visible teaching - visible learning

Bedömning. Formativ bedömning - en väg till bättre lärande. Formativ bedömning. Formativ bedömning. Visible teaching - visible learning Formativ bedömning - en väg till bättre lärande Inger Ridderlind Stina Hallén www.prim-gruppen.se Bedömning Bedömning av kunskap - summativ Bedömning för kunskap - formativ Från att mäta kunskap till pedagogisk

Läs mer

Bedömning för lärande

Bedömning för lärande Bedömning för lärande Erfarenheter från arbetet med att aktivera eleverna som resurser för varandra Aktivera eleverna som ägare av lärandeprocessen Andreia Balan Uppföljning - diskussion Beskriv vilken

Läs mer

Pedagogisk dokumentation kring Matematikverkstaden på Bandhagens skola.

Pedagogisk dokumentation kring Matematikverkstaden på Bandhagens skola. Pedagogisk dokumentation kring Matematikverkstaden på Bandhagens skola. Åh, nu förstår jag verkligen sa en flicka på 10 år efter att ha arbetat med bråk i matematikverkstaden. Vår femåriga erfarenhet av

Läs mer

Bedömning av matematiska förmågor. Per Berggren och Maria Lindroth 2012-01-26

Bedömning av matematiska förmågor. Per Berggren och Maria Lindroth 2012-01-26 Bedömning av matematiska förmågor Per Berggren och Maria Lindroth 2012-01-26 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla

Läs mer

Sedan höstterminen 2010 har jag arbetat med fördjupningsgrupper i

Sedan höstterminen 2010 har jag arbetat med fördjupningsgrupper i Cecilia Eriksson Att tillvarata och utveckla elevers talang och matematikintresse Cecilia Eriksson, Alfaskola i Solna, tilldelas 2012 års Ingvar Lindqvistpris i matematik för sitt framgångsrika arbete

Läs mer

Skola och hemmet. Per Berggren och Maria Lindroth 2014-03-04

Skola och hemmet. Per Berggren och Maria Lindroth 2014-03-04 Skola och hemmet Per Berggren och Maria Lindroth 2014-03-04 Skolans uppdrag Att ge förutsättningar för: Goda medborgare Fortsatta studier Personlig utveckling Lgr11 - läroplan med kursplaner Första delen

Läs mer

Måste alla på skolan/förskolan börja arbeta med StegVis samtidigt?

Måste alla på skolan/förskolan börja arbeta med StegVis samtidigt? Frågor och svar on StegVis: Måste alla på skolan/förskolan börja arbeta med StegVis samtidigt? På sikt är det viktigt att alla som arbetar i förskolan/skolan känner väl till arbetssättet. Då talar till

Läs mer

matematiska förmågor Per Berggren och Maria Lindroth 2013-05-21

matematiska förmågor Per Berggren och Maria Lindroth 2013-05-21 Varierad undervisning och bedömning av matematiska förmågor Per Berggren och Maria Lindroth 2013-05-21 5x5-spel Vad är mönstret värt? Kul Matematik Per Berggren och Maria Lindroth Matematiska förmågor

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Problemlösning i matematikundervisningen

Problemlösning i matematikundervisningen Beteckning: Akademin för teknik och miljö Problemlösning i matematikundervisningen Mari-Lois Flygman Ht-2011 15hp grundläggande nivå Lärarprogrammet 210 hp Examinator: Iiris Attorps Handledare: Kjell Björk

Läs mer

VFU i matematik ht 2015 MÅL

VFU i matematik ht 2015 MÅL VFU i matematik ht 2015 MÅL Syftet med kursen är att studenten ska förvärva kunskaper om och utveckla förmågan att leda och undervisa i matematik utifrån ett vetenskapligt förhållningssätt i relation till

Läs mer

Matematikvandring på Millesgården

Matematikvandring på Millesgården Matematikvandring på Millesgården Kort beskrivning Detta är en matematikvandring på Millesgården där läraren går runt tillsammans med klassen och gör gemensamma stopp där eleverna löser olika matematikuppgifter

Läs mer

Observationsschema. Bakgrundsuppgifter. Skola: Observation nr: Årskurs/-er: Datum: Total lektionstid enligt schema (min):

Observationsschema. Bakgrundsuppgifter. Skola: Observation nr: Årskurs/-er: Datum: Total lektionstid enligt schema (min): 1 (7) akgrundsuppgifter Skola: Årskurs/-er: Observation nr: Datum: Total lektionstid enligt schema (min): Lärarens utbildning: ehörig lärare: J/N Lärarerfarenhet (antal år): ntal elever i klassen/gruppen:

Läs mer

LPP Matematik åk 4 Vt-14

LPP Matematik åk 4 Vt-14 LPP Matematik åk 4 Vt-14 Skolans värdegrund, uppdrag, mål och riktlinje Skolan ska vara öppen för skilda uppfattningar och uppmuntra att de förs fram. Den ska framhålla betydelsen av personliga ställningstaganden

Läs mer

Sveriges styrelseskick - demokrati, makt och politik Åk 7

Sveriges styrelseskick - demokrati, makt och politik Åk 7 Sveriges styrelseskick - demokrati, makt och politik Åk 7! " # $ % & ' ( ' ) '!*!*! + '! + ( " ) + " %!,! -' *! ' ! '! *!)!!!. / )+' 01 $ 2 Syfte Genom undervisningen i ämnet samhällskunskap ska eleverna

Läs mer

Verksamhetsrapport. Skolinspektionen. efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid Sunnerbogymnasiet i Ljungby kommun

Verksamhetsrapport. Skolinspektionen. efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid Sunnerbogymnasiet i Ljungby kommun r Bilaga Skolinspektionen 1 Verksam hetsrapport efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid Sunnerbogymnasiet i Ljungby kommun 1(11) Innehåll Inledning Bakgrundsuppgifter om Sunnerbogymnasiet

Läs mer

Spanska höstterminen 2014

Spanska höstterminen 2014 LOKAL PEDAGOGISK PLANERING (LPP) Susanna Bertilsson Grindenheten 2014-08-12 Ämne, årskurs och tidsperiod Spanska, åk 6, vecka 35-51. Spanska höstterminen 2014 Arbetsformer VAD? Vi kommer att ha genomgångar,

Läs mer

Textkompetenser, Genre och Literacitet

Textkompetenser, Genre och Literacitet Textkompetenser, Genre och Literacitet Interaktiva tavlor och IT i Svenska utvecklingsarbete i Uddevalla NORDIC SMART SCHOOL PROJECT SYLVANA SOFKOVA HASHEMI, FIL. DR. Institutionen för Individ och samhälle

Läs mer

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning

Läs mer

I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet, både utan och med digitala verktyg.

I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet, både utan och med digitala verktyg. Kunskapskrav Ma 2a Namn: Gy Betyg E D Betyg C B Betyg A 1. Begrepp Eleven kan översiktligt beskriva innebörden av centrala begrepp med hjälp av några representationer samt översiktligt beskriva sambanden

Läs mer

Hur såg elever i åk 9 på sig själva och sin skolsituation år 2003 och år 2008?

Hur såg elever i åk 9 på sig själva och sin skolsituation år 2003 och år 2008? Hur såg elever i åk 9 på sig själva och sin skolsituation år 2003 och år 2008? Inom projektet Utvärdering Genom Uppföljning (UGU) vid Göteborgs universitet genomförs med jämna mellanrum enkätundersökningar

Läs mer

Variation i undervisning och bedömning. Per Berggren och Maria Lindroth 2013-04-23

Variation i undervisning och bedömning. Per Berggren och Maria Lindroth 2013-04-23 Variation i undervisning och bedömning Per Berggren och Maria Lindroth 2013-04-23 Bedömning Att göra det viktigaste bedömbart och inte det enkelt bedömbara till det viktigaste. Astrid Pettersson, PRIM-gruppen

Läs mer

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska

Läs mer

Språk- och kunskapsutvecklande arbetssätt

Språk- och kunskapsutvecklande arbetssätt Språk- och kunskapsutvecklande arbetssätt Varför språk- och kunskapsutvecklande arbetssätt? Att bygga upp ett skolspråk för nyanlända tar 6-8 år. Alla lärare är språklärare! Firels resa från noll till

Läs mer