Labora&v matema&k - för en varierad undervisning

Storlek: px
Starta visningen från sidan:

Download "Labora&v matema&k - för en varierad undervisning"

Transkript

1 Labora&v matema&k - för en varierad undervisning Per Berggren & Maria Lindroth

2 Lgr11- Matema&ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband mellan begrepp, välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter, föra och följa matematiska resonemang, och använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.

3 Lgr11- Centralt innehåll Taluppfattning och tals användning Algebra Geometri Sannolikhet och statistik Samband och förändring Problemlösning

4 Svampplockning Sex vänner är ute i skogen och plockar svamp i varsin korg. Tillsammans har de hittat 63 svampar. Plötsligt upptäcker en av vännerna något intressant. Genom att kombinera olika korgars antal svampar kan hon få vilket antal svampar som helst upp till 63. Hur många svampar fanns det i respektive korg?

5 Produktsumma Produkten av två summor är 60. Vilka kan de ingående termerna vara? Kan alla termer vara jämna? Kan alla termer vara udda? Kan alla termer vara samma? Hur många termer kan vara primtal?

6 Mul&plika&on utan förståelse! 5 x 13 = 5 x x 3 = x 17 = 10 x x 7 = 121!!!

7 Mul&plika&on med förståelse! 13 x

8 Mul&plika&on med förståelse! x10=100 10x7=70 3x10=30 3x7=21 17 x =221

9 Lgr11- Centralt innehåll Taluppfattning och tals användning Algebra Geometri Sannolikhet och statistik Samband och förändring Problemlösning

10 7:an A B - Alla (A, B, C och D) ska vara lika stora - A och B ska vara lika, C och D ska vara lika. A plus B ska vara större än C plus D. 7 - A plus B ska tillsammans vara dubbelt så stora som C plus D. - Skillnaden mellan varje ska vara lika stor. D C

11 - Skillnaden mellan A och B är dubblet så stor som skillnaden mellan B och C som i sin tur är dubbelt så stor som skillnaden mellan C och D. A 7:an 7 B - Finns det mer än en lösning? - Skillnaden mellan A och B är 2/7 större än den mellan B och C, som i sin tur är 2/7 större än skillnaden mellan C och D. D C

12 Fibonacci- serier

13 Lgr11- Centralt innehåll Taluppfattning och tals användning Algebra Geometri Sannolikhet och statistik Samband och förändring Problemlösning

14 Geometri och rumsuppfattning med känguruproblem

15 Geometri och rumsuppfattning med känguruproblem

16 Lgr11- Centralt innehåll Taluppfattning och tals användning Algebra Geometri Sannolikhet och statistik Samband och förändring Problemlösning

17 Vad finns i påsen?

18 Sannolikhetsspel Två lag spelar mot varandra. Varje lag gör en spelplan åt sina motståndare. Spelplanen görs av 25 kvadrater varav 5 är röda. Man turas om att flytta genom att slå en tärning och flytta så många steg som tärningen visar. Om man hamnar på en röd backar man 6 steg. v

19 Lgr11- Centralt innehåll Taluppfattning och tals användning Algebra Geometri Sannolikhet och statistik Samband och förändring Problemlösning

20 Blå &ll Gul Varje gång ska alla utom en vändas.

21 Lgr11- Centralt innehåll Taluppfattning och tals användning Algebra Geometri Sannolikhet och statistik Samband och förändring Problemlösning

22 AN arbeta som en matema&ker Först vill matema-ker ha e0 intressant problem. Matema&ker som hinar en intressant problem: Leker med problemet Samlar och organiserar data Letar eoer mönster och samband Formulerar och testar hypoteser Provar olika strategier som skulle kunna lösa problemet Letar i sin matema&ska verktygslåda eoer verktyg som behövs för an lösa problemet Kontrollerar sina svar och vad de kan lära sig av dem Publicerar sina resultat så an andra kan ta del av dem

23 AN arbeta som en matema&ker En matema&kers verktygslåda kan innehålla: Känner jag &ll något liknande problem? Gissa och prova Försök med en liknande men enklare problem Skriv en ekva&on Skriv en lista eller en tabell Arbeta baklänges Act it out Rita en bild eller en graf Gör en modellering Leta eoer en mönster Arbeta logiskt/metodiskt genom alla möjligheter Leta eoer undantag Bryt ner problemet i mindre delar...

24 AN arbeta som en matema&ker Frågor som kan hjälpa en matema&ker: Vet jag om lösningen är rän? Kan jag kontrollera dena på något annat sän? Hur många lösningar finns det? Hur vet jag när jag har hinat alla lösningar? Vad skulle hända om? Skriv en eget liknande problem och lös det.

25 Bild Ord/Text Tal/siffror

26 Labora&onsrapport Namn på uppgiften:. Datum: Vi som arbetat med uppgiften är:.. Beskriv problemet med egna ord: Vilken strategi använde ni för att lösa problemet: Visa med tabell, diagram, figur, uträkningar eller liknande hur ni löste problemet: Skriv lösningen/lösningarna på problemet: Vilka slutsatser kan ni dra: Hur kan uppgiften ändras för att bli ännu bättre? Skriv ett eget liknande problem och lös det.

27 Hör av dig Vi söker alltid efter nya kontakter och idéer så hör gärna av dig Geijersvägen Stockholm (Maria) (Per)

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Skola och hemmet. Per Berggren och Maria Lindroth 2014-03-04

Skola och hemmet. Per Berggren och Maria Lindroth 2014-03-04 Skola och hemmet Per Berggren och Maria Lindroth 2014-03-04 Skolans uppdrag Att ge förutsättningar för: Goda medborgare Fortsatta studier Personlig utveckling Lgr11 - läroplan med kursplaner Första delen

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska

Läs mer

Kursplan Grundläggande matematik

Kursplan Grundläggande matematik 2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR

Läs mer

Pedagogisk planering aritmetik (räkning)

Pedagogisk planering aritmetik (räkning) Pedagogisk planering aritmetik (räkning) Vi kommer att arbeta med de fyra räknesätten i matematik. Syfte (ur Skolverkets kursplan) Under det här arbetsområdet kommer vi att arbeta med att utveckla följande

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

Kursplanen i matematik 2011 - grundskolan

Kursplanen i matematik 2011 - grundskolan Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust

Läs mer

Kurskod: GRNMAT2 Verksamhetspoäng: 600

Kurskod: GRNMAT2 Verksamhetspoäng: 600 Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper

Läs mer

Centralt innehåll som vi arbetar med inom detta område:

Centralt innehåll som vi arbetar med inom detta område: BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp

Läs mer

Matematik. Arbetslag: Gamma Klass: 8 S Veckor: 34-39 HT 2015

Matematik. Arbetslag: Gamma Klass: 8 S Veckor: 34-39 HT 2015 Matematik Arbetslag: Gamma Klass: 8 S Veckor: 34-39 HT 2015 Tal Vad kan subtraktionen 4 7 innebära? Kan något vara mindre än noll? De här frågorna sysselsatte matematiker i många århundranden. Så länge

Läs mer

Tummen upp! Matte ÅK 6

Tummen upp! Matte ÅK 6 Tummen upp! Matte ÅK 6 Tummen upp! är ett häfte som kartlägger elevernas kunskaper i förhållande till kunskapskraven i Lgr 11. PROVLEKTION: RESONERA OCH KOMMUNICERA Provlektion Följande provlektion är

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 1. Procent och statistik Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Föra och följa matematiska resonemang, Berätta för andra hur du tänker och lyssna på andras matematiska tankegångar.

Föra och följa matematiska resonemang, Berätta för andra hur du tänker och lyssna på andras matematiska tankegångar. Sparsörskolan Lokal pedagogisk planering Klass: 6A Ansvarig lärare: Fanny Olausson och Linda Wahlberg Ämne/område: Ja mfo relse, uppskattning och ma tning av vikt och volym samt avrundning och o verslagsra

Läs mer

Digitala verktyg i matematik- och fysikundervisningen ett medel för lärande möten

Digitala verktyg i matematik- och fysikundervisningen ett medel för lärande möten Digitala verktyg i matematik- och fysikundervisningen ett medel för lärande möten Ulrika Ryan Hur bygger jag den vetenskapliga grunden för min undervisning? Styrdokument Forskning Beprövad erfarenhet Matematik

Läs mer

Metoder för beräkningar med potenser med rationella exponenter.

Metoder för beräkningar med potenser med rationella exponenter. Kurskod: MATMAT02a Kursen matematik 2a omfattar punkterna 1 7 under rubriken Ämnets syfte. Centralt innehåll Kommentar Begrepp i kursen matematik 2a Metoder för beräkningar vid budgetering. Budgetering

Läs mer

Lära matematik med datorn. Ulrika Ryan, projektledare för Matematik för den digitala generationen Byskolan, Södra Sandby

Lära matematik med datorn. Ulrika Ryan, projektledare för Matematik för den digitala generationen Byskolan, Södra Sandby Lära matematik med datorn Ulrika Ryan, projektledare för Matematik för den digitala generationen Byskolan, Södra Sandby Innehåll Varför undervisar jag som jag gör? Lärarens roll i det digitala klassrummet

Läs mer

Studiehandledning. kurs Matematik 1b

Studiehandledning. kurs Matematik 1b Studiehandledning kurs Matematik 1b Innehållsförteckning Inledning och Syfte... 1 Ämnesplan för ämnet matematik... 1 Ämnets syfte... 1 Centralt innehåll... 2 Problemlösning... 2 Taluppfattning, aritmetik

Läs mer

17 Hemliga tal 18 Kluriga diagram 19 Olika perspektiv 20 Tidslinje 21 Telefonlista med klass

17 Hemliga tal 18 Kluriga diagram 19 Olika perspektiv 20 Tidslinje 21 Telefonlista med klass Inledning Utdrag ur kursplanen i matematik LGR11 Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att ö formulera och lösa problem med

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

Målet med undervisningen är att eleverna ges förutsättningar att:

Målet med undervisningen är att eleverna ges förutsättningar att: Matematik Målet med undervisningen är att eleverna ges förutsättningar att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK KRAVNIVÅER Åtvidabergs kommuns grundskolor MATEMATIK Reviderade april 2009 Förord Välkommen att ta del av Åtvidabergs kommuns kravnivåer och bedömningskriterier för grundskolan. Materialet har tagits fram

Läs mer

Funktioner, Algebra och Ekvationer År 9

Funktioner, Algebra och Ekvationer År 9 Undervisning Funktioner, Algebra och Ekvationer År 9 Mål att uppnå i år 9, ur Lpo 94 Utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och

Läs mer

Rymdutmaningen koppling till Lgr11

Rymdutmaningen koppling till Lgr11 en koppling till Lgr11 När man arbetar med LEGO i undervisningen så är det bara lärarens och elevernas fantasi som sätter gränserna för vilka delar av kursplanerna man arbetar med. Vi listar de delar av

Läs mer

Matematiklyftet 2013/2014

Matematiklyftet 2013/2014 Matematiklyftet 2013/2014 Didaktiskt kontrakt Ruc 140522 AnnaLena Åberg 79 Matematiklärare 9 skolor? Elever 10 Rektorer 1 Förvaltningschef 2 Skolområdschefer 5 Matematikhandledare Hur ser ni på det didaktiska

Läs mer

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Matematik Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven

Läs mer

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper.

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Lokala mål Tala och lyssna: Jag kan lyssna och förstå

Läs mer

Kursen kommer att handla om: Mål med arbetet från Lgr 11. Lokal Pedagogisk Planering Läsåret 12-13

Kursen kommer att handla om: Mål med arbetet från Lgr 11. Lokal Pedagogisk Planering Läsåret 12-13 Kurs: Storyline Market place Tidsperiod: Vecka 46- Skola: Åsens Skola Klass: F-5 Lärare: Alla Kursen kommer att handla om: Du kommer att få arbeta med Storylinen Market place där du ska få lära dig hur

Läs mer

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder

Läs mer

NYA KURSPLANER FÖR GRUNDSKOLAN MATEMATIK GRUNDSKOLAN

NYA KURSPLANER FÖR GRUNDSKOLAN MATEMATIK GRUNDSKOLAN NYA KURSPLANER FÖR GRUNDSKOLAN Den 17 mars 1994 fastställde regeringen KURSPLANER FÖR GRUNDSKOLAN att gälla i årskurserna 1 7 från läsåret 1995/96, i årskurs 8 läsåret 1996/97 och i årskurs 9 läsåret 1997/98.

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Matematik Åk 3 Tal och räkning

Matematik Åk 3 Tal och räkning FA C I T Lgr 11 Matematik Åk 3 Tal och räkning Catherine Bergman Maria Österlund Kan du använda och beskriva tal? Hur långt kan du räkna framåt? Jag kan räkna till: Hur långt kan du räkna bakåt? Jag kan

Läs mer

Bedömning för lärande. Per Berggren och Maria Lindroth 2012-11-13

Bedömning för lärande. Per Berggren och Maria Lindroth 2012-11-13 Bedömning för lärande Per Berggren och Maria Lindroth 2012-11-13 Förmågor - Bild Genom undervisningen i ämnet bild ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att kommunicera

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

Prata matematik. Bengt Drath. Stöpenskolan i Skövde kommun

Prata matematik. Bengt Drath. Stöpenskolan i Skövde kommun Prata matematik Bengt Drath Högskolan i Skövde Stöpenskolan i Skövde kommun Matematikkunnande Vad ingår i begreppet matematikkunnande? eller som elever skulle tänka: Hur skall en duktig elev i matte vara?

Läs mer

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform. 1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd

Läs mer

Vad skall en matematiklärare kunna? Översikt. Styrdokument. Styrdokument. Problemlösning

Vad skall en matematiklärare kunna? Översikt. Styrdokument. Styrdokument. Problemlösning Vad skall en matematiklärare kunna? Andreas Ryve Stockholms universitet och Mälardalens Högskola. Översikt 1. Vad skall en elev kunna? 2. Matematik genom problemlösning ett exempel. 3. Skapa matematiska

Läs mer

räkna med vasa övningar att genomföra i vasamuseet

räkna med vasa övningar att genomföra i vasamuseet räkna med vasa övningar att genomföra i vasamuseet lärarhandledning 2 (av 2) övningar att genomföra i vasamuseet Denna handledning riktar sig till läraren som i sin tur muntligt instruerar sina elever.

Läs mer

MATEMATIK. Ämnets syfte. Kurser i ämnet

MATEMATIK. Ämnets syfte. Kurser i ämnet MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.

Läs mer

Bilaga till ansökan om bidrag för utveckling av undervisningen

Bilaga till ansökan om bidrag för utveckling av undervisningen 1 (7) Bilaga till ansökan om bidrag för utveckling av undervisningen i matematik Matematiksatsningen 2011 Ha riktlinjerna och blankettstödet tillhands då denna ansökningsbilaga fylls i. Bakgrundsinformation

Läs mer

Kunskapsmål och betygskriterier för matematik

Kunskapsmål och betygskriterier för matematik 1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under

Läs mer

Riktlinjer för användandet av Diamantdiagnoser som en del i den strukturerade arbetsmodellen DigiLys. Räkna med flyt

Riktlinjer för användandet av Diamantdiagnoser som en del i den strukturerade arbetsmodellen DigiLys. Räkna med flyt Räkna med flyt Som ett led i att höja elevernas resultat införs ett kommunövergripande arbetssätt med diagnoser och tillhörande analysarbete. Diamants aritmetikdel ska vara ett redskap för lärarna i deras

Läs mer

Aktiviteter förskolan

Aktiviteter förskolan Aktiviteter förskolan Äggkartongsuppdrag Du behöver: Äggkartonger Typ av aktivitet: par Tränar följande: - att bilda par - hälften och dubbelt - geometriska former och talföljder - jämförelseord - antal

Läs mer

Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del

Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del prövning matematik 1a Malmö stad Komvux Malmö Södervärn PRÖVNING PRÖVNINGSANVISNINGAR Prövningen avser Kurskod Matematik 1a MATMAT01a Gymnasiepoäng 100 Läromedel Prövningsutformning Bifogas Matematik 5000

Läs mer

Studiehandledning för Matematik 1a

Studiehandledning för Matematik 1a Studiehandledning för Matematik 1a Innehåll Studiehandledning för Matematik 1a... 1 Inledning och Syfte... 2 Ämne - Matematik... 3 Ämnets syfte... 3 Matematik 1a... 4 Centralt innehåll... 4 Kunskapskrav...

Läs mer

Hanna Melin Nilstein. Lokal pedagogisk plan för verklighetsbaserad och praktisk matematik Årskurs 3 1+1=?

Hanna Melin Nilstein. Lokal pedagogisk plan för verklighetsbaserad och praktisk matematik Årskurs 3 1+1=? Hanna Melin Nilstein Lokal pedagogisk plan för verklighetsbaserad och praktisk matematik Årskurs 3 1+1=? Lpp (Lokal pedagogisk plan) för verklighetsbaserad och praktisk matematik Bakgrund och beskrivning

Läs mer

Bedömningsexempel. Matematik kurs 1c

Bedömningsexempel. Matematik kurs 1c Bedömningsexempel Matematik kurs 1c Innehåll Inledning... 3 Bedömning... 3 Exempeluppgifter som är representativa för Del I... 5 Exempeluppgifter som är representativa för Del II och Del III... 9 Exempel

Läs mer

Matematik i Skolverket

Matematik i Skolverket SMaLs sommarkurs 2013 Matematik i Skolverket Helena Karis Margareta Oscarsson Reformer - vuxenutbildning 1 juli 2012 - Kursplaner - vuxenutbildning, grundläggande nivå - särskild utbildning för vuxna på

Läs mer

Lutande torn och kluriga konster!

Lutande torn och kluriga konster! Lutande torn och kluriga konster! Aktiviteter för barn under Vetenskapsfestivalens skolprogram 2001 Innehåll 1 Bygga lutande torn som inte faller 2 2 Om konsten att vinna betingat godis i spel 5 3 Den

Läs mer

Kap 1: Aritmetik - Positiva tal - " - " - " - " - - " - " - " - " -

Kap 1: Aritmetik - Positiva tal -  -  -  -  - -  -  -  -  - År Startvecka Antal veckor 2013 34 18 Planering för ma 1b/c - ma 5000- boken OBS: För de i distansgruppen, meddela lärare innan prov. (justeringar för 1c ännu ej genomförda) Vecka Lektio n (2h) Datum Kapitel

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Storyline och matematik

Storyline och matematik Storyline och matematik Av Eva Marsh och Ylva Lundin I ett storylinearbete om energi fick eleverna i årskurs åtta vid många tillfällen diskutera och lösa matematiska problem som karaktärerna ställdes inför.

Läs mer

Mål Likformighet, Funktioner och Algebra år 9

Mål Likformighet, Funktioner och Algebra år 9 Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter

Läs mer

Kommentarmaterial till kunskapskraven i matematik

Kommentarmaterial till kunskapskraven i matematik Kommentarmaterial till kunskapskraven i matematik Skolverket Stockholm 2012 www.skolverket.se ISBN: 978-91-87115-68-4 Innehåll 1. Inledning... 4 Vad materialet är och inte är...4 Materialets disposition...5

Läs mer

Veckomatte åk 4 med 10 moment

Veckomatte åk 4 med 10 moment Veckomatte åk 4 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen i matematik 3 Grundläggande struktur i Veckomatte - Åk 4 4 Veckomatte och det centrala innehållet i

Läs mer

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK RÖDA TRÅDEN MATEMATIK F-KLASS ÅK 5 F-KLASS TALUPPFATTNING ALGEBRA Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas Matematiska likheter och likhetstecknets

Läs mer

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att

Läs mer

Bilaga till ansökan om bidrag för utveckling av undervisningen

Bilaga till ansökan om bidrag för utveckling av undervisningen 1 (7) Bilaga till ansökan om bidrag för utveckling av undervisningen i matematik Matematiksatsningen 2011 Ha riktlinjerna och blankettstödet tillhands då denna ansökningsbilaga fylls i. Bakgrundsinformation

Läs mer

Pedagogisk planering för förskoleklassen på Enskede byskola

Pedagogisk planering för förskoleklassen på Enskede byskola Pedagogisk planering för förskoleklassen på Enskede byskola SKOLANS UPPDRAG Skolans uppdrag är att främja lärande där individen stimuleras att inhämta och utveckla kunskaper och värden (LGR11 s9) Syftet

Läs mer

Graärgning och kromatiska formler

Graärgning och kromatiska formler Graärgning och kromatiska formler Henrik Bäärnhielm, d98-hba 2 mars 2000 Sammanfattning I denna uppsats beskrivs, för en ickematematiker, färgning av grafer samt kromatiska formler för grafer. Det hela

Läs mer

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal.

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. MATEMATIK ÅR1 MÅL Begrepps- och taluppfattning Kunna talbildsuppfattning, 0-10 EXEMPEL Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. Kunna

Läs mer

En metod för aktiv redovisning av matematikuppgifter

En metod för aktiv redovisning av matematikuppgifter En metod för aktiv redovisning av matematikuppgifter Magnus Jacobsson och Inger Sigstam Matematiska institutionen 1. Introduktion Matematik på grundnivå är till stor del ett övningsämne, man lär sig matematik

Läs mer

Under en forskningscirkel, som vi matematikutvecklare i Göteborg har

Under en forskningscirkel, som vi matematikutvecklare i Göteborg har Britt Holmberg Analysera mera i geometri Inom undervisningen i geometri behöver vi utmana elevernas nyfikenhet med frågeställningar och ge dem tid att undersöka geometriska objekt. Praktiskt arbete där

Läs mer

En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden.

En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden. En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden. Man ser en jämn ström av uppseendeväckande scenarier. Man undviker nog

Läs mer

Bild Åk 1 2012-08-20. Bildanalys Informativa bilder, till exempel läroboksbilder och hur de är utformade och fungerar.

Bild Åk 1 2012-08-20. Bildanalys Informativa bilder, till exempel läroboksbilder och hur de är utformade och fungerar. Vallaskolan Bild Åk 1 2012-08-20 Genom undervisningen i ämnet bild ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att kommunicera med bilder för att uttrycka budskap, skapa

Läs mer

Matteklubbar. Matteklubbar

Matteklubbar. Matteklubbar Matteklubbar Projektets mål och syfte Stockholms stad har under 2009-2010 erbjudit ett antal skolor stöd att starta ämnesinriktade matteklubbar på eftermiddagstid. Syftet har framför allt varit att öka

Läs mer

Svar och lösningar Benjamin

Svar och lösningar Benjamin Kängurutävlingen 2014 Svar och lösningar Benjamin 1: A 0 Summerar vi entalen ger de 9, hundratalen ger 3 så det är inga minnessiffror att beakta. Summan av tiotalen är 0. 2: A 1 9999 + 1= 10 000. Talet

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. Ägna inte för lång

Läs mer

År 2006 hittade jag av en slump boken Rika matematiska problem inspiration

År 2006 hittade jag av en slump boken Rika matematiska problem inspiration Ulrihca Malmberg Att göra rika problem rika Att använda rika problem och utnyttja deras potential är inte helt lätt. Här behandlas några svårigheter och problem som visat sig och som varit utgångspunkt

Läs mer

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning

Läs mer

Bedömningsexempel. Matematik kurs 1b

Bedömningsexempel. Matematik kurs 1b Bedömningsexempel Matematik kurs 1b Innehåll Inledning... 3 Bedömning... 3 Exempeluppgifter som är representativa för Del I... 5 Exempeluppgifter som är representativa för Del II och Del III... 9 Exempel

Läs mer

Fira Pi-dagen med Liber!

Fira Pi-dagen med Liber! Fira Pi-dagen med Liber! Specialuppdrag från Uppdrag: Matte o Kul-diagram o Geometri med färg UPPDRAG: MATTE Mattedetektiverna Mattespanarna Hej! Den 14 mars är det Pi-dagen (3.14). Det är värt att uppmärksammas

Läs mer

Om ämnet Matematik. Bakgrund och motiv

Om ämnet Matematik. Bakgrund och motiv Om ämnet Matematik Bakgrund och motiv Skolämnet matematik handlar inte enbart om att räkna och lära sig en samling regler utantill. En del i matematiken är just att hantera procedurer och räkna, men enligt

Läs mer

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng Miniräknare ej tillåten Del B1 Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng (0/1). Provtid: 80 minuter för Del B1 och Del B2 tillsammans.

Läs mer

Öppna frågor (ur Good questions for math teaching)

Öppna frågor (ur Good questions for math teaching) Här är öppna frågor som jag hämtat från boken Good questions for math teaching som jag läste i våras när jag gick Lärarlyftet. Frågorna är sorterade efter ämne/tema och förhoppningsvis kan fler ha nytta

Läs mer

1014 Att lyckas få ointresserade elever att förstå och uppskatta ämnet matematik

1014 Att lyckas få ointresserade elever att förstå och uppskatta ämnet matematik 1014 Att lyckas få ointresserade elever att förstå och uppskatta ämnet matematik Beskriver några projekt, laborationer och alternativa arbetsformer som gett goda resultat. Diskussion om tillvägagångssätt

Läs mer

Matematikvandring på Millesgården

Matematikvandring på Millesgården Matematikvandring på Millesgården Kort beskrivning Detta är en matematikvandring på Millesgården där läraren går runt tillsammans med klassen och gör gemensamma stopp där eleverna löser olika matematikuppgifter

Läs mer

Kommentarmaterial till kursplanen i matematik

Kommentarmaterial till kursplanen i matematik Kommentarmaterial till kursplanen i matematik Kommentarmaterial till kursplanen i matematik Beställningsadress: Fritzes kundservice 106 47 Stockholm Tel: 08-598 191 90 Fax: 08-598 191 91 E-post: order.fritzes@nj.se

Läs mer

Talmönster och algebra. TA

Talmönster och algebra. TA Talmönster och algebra. TA Diagnoserna i området avser att kartlägga om eleverna kan upptäcka talmönster samt på olika sätt bearbeta algebraiska uttryck och ekvationer. Förståelse av koordinatsystem och

Läs mer

Lära och utvecklas tillsammans!

Lära och utvecklas tillsammans! Lära och utvecklas tillsammans! Studiematerial Att sätta ord på sin matematik Solveig Eriksson Kompetensutveckling för sfi lärare Lärarhögskolan i Stockholm Myndigheten för skolutveckling www.lhs.se/ruc/sfi

Läs mer

På en dataskärm går det inte att rita

På en dataskärm går det inte att rita gunilla borgefors Räta linjer på dataskärmen En illustration av rekursivitet På en dataskärm är alla linjer prickade eftersom bilden byggs upp av små lysande punkter. Artikeln beskriver problematiken med

Läs mer

Steg-Vis. Innehållsförteckning

Steg-Vis. Innehållsförteckning Innehållsförteckning SIDAN Förord 6 Inledning 7 Målgrupp och arbetssätt 8 Dåligt minne? 9 Nyckelfakta 10 Råd till pedagog 11 Tre matematiska lagar 12 10-komplement 14 Från subtraktion till addition 15

Läs mer

PEDAGOGISKA SÄTT ATT SYNLIGGÖRA MATEMATIKEN FÖR BARNEN PÅ FÖRSKOLAN. Gläntans förskola Den lilla förskolan med stort hjärta

PEDAGOGISKA SÄTT ATT SYNLIGGÖRA MATEMATIKEN FÖR BARNEN PÅ FÖRSKOLAN. Gläntans förskola Den lilla förskolan med stort hjärta PEDAGOGISKA SÄTT ATT SYNLIGGÖRA MATEMATIKEN FÖR BARNEN PÅ FÖRSKOLAN Gläntans förskola Den lilla förskolan med stort hjärta Om barn tidigt får utmaningar i matematik så påverkar det deras intresse och lust

Läs mer

IKT i fokus. Kopierat och klistrat från LGR11, Eva-Lotta Persson, eva-lotta.persson@utb.kristianstad.se

IKT i fokus. Kopierat och klistrat från LGR11, Eva-Lotta Persson, eva-lotta.persson@utb.kristianstad.se IKT i fokus Kopierat och klistrat från LGR11, Eva-Lotta Kap 1: Skolans värdegrund och uppdrag Skolans uppdrag: Eleverna ska kunna orientera sig i en komplex verklighet, med ett stort informationsflöde

Läs mer

Den saknade kamelen. 308 Äventyr med problemlösning

Den saknade kamelen. 308 Äventyr med problemlösning Matematikbiennett i Malmö, 12 mars 2011 308 Äventyr med problemlösning goran.emanuelsson@ncm.gu.se lars.mouwitz@ncm.gu.se http://ncm.gu.se/problem Vad är ett problem? Varför ska vi lösa problem? Vem behöver

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

Reell kompetens - grundläggande behörighet för utbildning till grundnivå Behörig på annat sätt!

Reell kompetens - grundläggande behörighet för utbildning till grundnivå Behörig på annat sätt! Reell kompetens - grundläggande behörighet för utbildning till grundnivå Behörig på annat sätt! 1 (5) Vad är det? Om du saknar den formella grundläggande behörigheten, dvs. du har t.ex. inte ett slutbetyg

Läs mer

Matematik Uppnående mål för år 6

Matematik Uppnående mål för år 6 Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och

Läs mer

Bengt Drath. Högskolan i Skövde Stöpenskolan i Skövde kommun

Bengt Drath. Högskolan i Skövde Stöpenskolan i Skövde kommun Prata matematik Bengt Drath Högskolan i Skövde Stöpenskolan i Skövde kommun Matematikkunnande tikk Vad ingår i begreppet matematikkunnande? eller som elever skulle tänka: Hur skall en duktig elev i matte

Läs mer

Matematik 1A 4 Potenser

Matematik 1A 4 Potenser Matematik 1A 4 Potenser förklara begrepp t ex. potens, bas, exponent och grundpotensform (Nivå E C) tolka, skriva och räkna med tal i grundpotensform (Nivå E A) helst kunna redogöra för räkneregler för

Läs mer