Bedömning för lärande i matematik
|
|
- Gunnel Ekström
- för 7 år sedan
- Visningar:
Transkript
1 HANDLEDNING TILL Bedömning för lärande i matematik FÖR ÅRSKURS 1 9 1
2 Handledning I denna handledning ges förslag på hur du kan komma igång med materialet Bedömning för lärande i matematik åk 1 9. Du börjar med att ladda ner materialet så att allt ligger i samma mapp i din dator: Om du har en Mac-dator dubbelklickar du på Zip-filen på Skolverkets hemsida för att öppna dators uppackningsprogram och filen packas upp. Om du har en PC klickar du på Zip-filen och väljer Spara eller Save och sparar hela filen på skrivbordet. Därefter högerklickar du på den sparade Zip-filen och väljer extrahera alla. Materialet är omfattande och för att skapa dig en överblick över materialet börjar du med att läsa de inledande texterna (s. 2 5) och titta på filmen som finns på Skolverkets hemsida. Nedan finns en förenklad bild av materialets fem olika komponenter. Centralt innehåll i tabellform Generell Bedömningsmatris Underlag för bedömning Lärardokumentation Bedömningsmatris Elevdokumentation Bedömningsmatris Vi beskriver i denna handledning tre olika modeller för hur du kan börja ditt arbete med materialet. Till varje modell finns ett förslag på arbetsgång och du väljer själv vilken modell du vill använda. Börja med en gemensam träff med arbetskamrater som också undervisar i matematik där ni utgår från en av modellerna. För att underlätta arbete läs Så här navigerar du. På navigationssidan finns olika mallar samt färgkodade länkar till de fem ämnesområdena. 2
3 Navigationssida INTRODUKTION ALGEBRA BEDÖMNINGSPROCESSEN GEOMETRI KURSPLANEN SAMBAND OCH FÖRÄNDRING UNDERLAG FÖR BEDÖMNING, MALL SANNOLIKHET OCH STATISTIK LÄRARDOKUMENTATION TALUPPFATTNING BEDÖMNINGSMATRIS, GENERELL LÄRARDOKUMENTATION, MALL ELEVDOKUMENTATION INSTRUKTION EXEMPEL PÅ PÅSTÅENDEN SJÄLVBEDÖMNING, MALL MITT LÄRANDE, MALL ÅK 1 ÅK 2 3 ÅK 4 9 3
4 Modell 1 Börja med att skapa er egen lärardokumentation Förslag på arbetsgång 1 Välj ett central innehåll i tabellform som passar med ett arbetsområde ni ska undervisa om till exempel Geometri. Ta fram och skriv ut ett pappersexemplar för att underlätta arbetet. Geometriska objekt och deras egenskaper Geometri Åk 1 3 Åk 4 6 Åk 7 9 Cemtralt innehåll ϐ Grundläggande geometriska objekt, däribland punkter, linjer, sträckor, fyrhörningar, trianglar, cirklar, klot, koner, cylindrar och rätblock samt deras inbördes relationer. Grundläggande geometriska egenskaper hos dessa objekt. ϐ Grundläggande geometriska objekt däribland polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock samt deras inbördes relationer. Grundläggande geometriska egenskaper hos dessa objekt. ϐ Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos dessa objekt. Bedömningen fokuserar i vilken grad eleven visar, använder och uttrycker kunskaper om: ρ relationer mellan olika geometriska objekt t.ex. mellan kvadrat och kub ρ att en kvadrat är en kvadrat även om den har vridits 45 grader ρ relationer mellan olika geometriska objekt t.ex. mellan kvadrat, rektangel och romb ρ kongruenta figurer t.ex. att en likbent triangel fortfarande är en likbent triangel med samma egenskaper även om den vridits 180 grader ρ att tredimensionella objekt består av tvådimensionella figurer t.ex. att kuben består av sex kvadrater ρ relationer mellan olika geometriska objekt t.ex. att arean av en triangel är hälften av arean av en rektangel om bas och höjd är lika eller att volymen av en pyramid är en tredjedel av volymen av motsvarande rätblock om basytans area och höjd är lika ningen fokuserar även hur väl eleven: ρ känner igen, namnger och beskriver några geometriska objekt t.ex. triangel, fyrhörning, kub ρ använder lämpliga ord som t.ex. hörn och sida vid beskrivningar av geometriska objekt ρ jämför och sorterar geometriska objekt efter storlek, form och andra egenskaper ρ sorterar geometriska objekt utifrån likheter och skillnader ρ beskriver geometriska objekt med olika uttrycksformer t.ex. i handling, med konkret material, bilder och/eller ord ρ känner igen, namnger och beskriver egenskaper hos både tvådimensionella och tredimensionella geometriska objekt t.ex. romb, kub, cylinder ρ använder lämpliga ord som t.ex. kant, hörn och höjd vid beskrivningar av geometriska objekt ρ jämför och sorterar geometriska objekt efter egenskaper som form, vinklar och dimensioner ρ skiljer på olika typer av fyrhörningar och trianglar t.ex. rätvinklig, likbent och liksidig triangel beskriver geometriska objekt med olika uttryckformer ρ känner igen, namnger och beskriver egenskaper hos både tvådimensionella och tredimensionella geometriska objekt t.ex. parallellogram, kon, pyramid ρ använder lämpliga ord som t.ex. parallell, diagonal, regelbunden vid beskrivningar av geometriska objekt ρ jämför och sorterar geometriska objekt efter egenskaper som form, regelbundenhet, vinklar och dimension ρ beskriver geometriska objekt med olika uttryckformer t.ex. med bilder, ord eller figurer och växlar mellan dessa följer framför och bemöter matematiska resonemang om 2 Diskutera tillsammans vad ni avser att undervisa om, analysera och bedöma i ert planerade arbetsområde. Ni kan ringa in punkter för att få en överblick. 4
5 3 Öppna worddokumentet centralt innehåll i tabellform samt en tom mall, underlag för bedömning. Underlag för bedömning Arbetsområde: Klass: Datum: Bedömningen fokuserar i vilken grad eleven visar, använder och uttrycker kunskaper om Bedömningen fokuserar även hur väl eleven 4 Döp den tomma mallen till arbetsområdet du/ni valt och spara dokumentet på din dator, till exempel Gemetriska begrepp årskurs 3. 5 Kopiera punkterna från worddokumentet centralt innehåll till ditt eget underlag för bedömning. 6 Diskutera om underlaget behöver revideras. Är det lagom många punkter i förhållande till avsatt tid? Ta bort eller lägg till. Behöver du/ni korta ner texten i punkterna? Ta bort delar som inte ska analyseras och bedömas i arbetsområdet. Glöm inte att spara ditt färdiga underlag. 5
6 Lärardokumentation Klass: Arbetsområde: Bedömningen avser På väg mot godtagbar nivå Godtagbar/E-nivå Högre nivå Problemlösning I vilken grad eleven kan tolka muntlig och skriftlig information med matematiskt innehåll I vilken grad eleven kan beskriva sitt tillvägagångsätt vid problemlösning med hjälp av matematikens uttrycksformer Kvaliteten på de strategier och metoder som eleven väljer Hur väl eleven tolkar resultat och drar slutsatser I vilken grad eleven bedömer rimligheten i ett resultat Hur väl eleven använder olika begrepp Begrepp Kvaliteten på elevens beskrivningar av olika matematiska begrepp och hur eleven då använder olika uttrycksformer I vilken grad eleven visar kunskap om relationer och samband mellan olika matematiska begrepp Hur väl metoden är anpassad till uppgiften/situationen Metoder Hur väl eleven genomför metoder och beräkningar Hur utvecklingsbara elevens metoder är Hur väl eleven hanterar olika hjälpmedel Resonemang 11 Diskutera och reflektera över era erfarenheter efter att ni har använt lärardokumentationen. Kommunikation I vilken grad eleven ställer och besvarar frågor med matematiskt innehåll I vilken grad eleven följer, framför och bemöter matematiska resonemang Kvaliteten på elevens matematiska resonemang (motiveringar och argumentationer) Kvaliteten på elevens beskrivningar och redogörelser både muntligt och skriftligt Hur väl eleven använder matematikens uttrycksformer 7 Ta fram en tom mall för lärardokumentation. Döp dokumentet och spara på din dator. 8 Nu är det dags att kopiera delar av Underlag för bedömning till en förmåga. Diskutera vilken huvudsaklig förmåga som matematikinnehållet fokuserar på. Du behöver delvis formulera om och använda verb för att konkretisera vad som ska analyseras och bedömas, till exempel använder, beskriver, löser, visar genom att. 9 Du kan använda ord som enkel, till viss del, godtagbar, någon, några och så vidare för att beskriva godtagbar/e-nivå. 10 Du kan också använda dokumentet Generell bedömningsmatris för beskrivning av den godtagbara nivån (E-nivån) och eller meningar från något/några av de färdiga exempel som finns i materialet. 6
7 Modell 2 Börja med att använda ett färdigt arbetsområde Förslag på arbetsgång 1 Nedan finns en översikt av arbetsområden i olika årskurser. Där finns det exempel på färdiga underlag för bedömning, lärardokumentation och elevens självbedömning. Materialet utgår från verksamma lärares arbete. Likhetstecknets innebörd åk 3 Algebra åk 6 Algebra och mönster åk 8 Geometriska objekt åk 2 3 Fyrhörningar, omkrets och area åk 5 Area och volym åk 8 Proportionella samband åk 3 Proportionella samband och koordinatsystem åk 6 Funktioner åk 9 Statistik åk 2 Statistik åk 4 Statistik åk 7 Taluppfattning åk 3 Stora tal och positionssystemet åk 5 Bråk åk 7 2 Välj ett område som stämmer med din/era årskurser och läs underlaget för bedömning, lärardokumentationen samt elevens självbedömning. Du hittar dokumenten på navigationssidan. 3 Bestäm vad du/ni vill pröva. Du kan använda både lärardokumentation och elevens självbedömning på någon av ovanstående arbetsområden. 4 Diskutera om ni behöver revidera något, ta bort eller lägga till så att det stämmer med din/era undervisningsgrupper. Vill ni ändra på något så gör ni det i worddokument. Där kan ni både ändra, skriva till och ta bort text. 5 Diskutera och reflektera över era erfarenheter efter att ni har använt delar av materialet. Gör de ändringar som ni anser behövs i worddokumenten och spara dessa till nästa gång ni kommer till samma arbetsområde. 7
8 Modell 3 Börja att arbeta med elevens självbedömning Förslag på arbetsgång 1 Välj ett arbetsområde som du ska undervisa om. Ta fram din planering och ditt undervisningsmaterial. Vilka förmågor fokuseras i arbetsområdet? Vilket centralt innehåll ska behandlas? 2 Ta fram en tom självbedömningsmall. Döp din mall och spara i datorn. Självbedömning Namn: Klass: Datum: Område: Säker Jag kan Ganska säker Jag behöver öva lite mer Osäker Jag behöver lära mig Bedöm dina kunskaper om Säker Ganska säker Osäker 3 Formulera påståenden till eleven och utgå från din planering. Titta på de färdiga exempel som finns i materialet för att få idéer om hur du kan formulera dig. 4 Du kan ha områdesspecifika påståenden till exempel Beräkna en rektangels omkrets och area. 5 Du kan också välja mer generella påståenden som finns under Exempel på generella påståenden till självbedömningen (s. 15), till exempel Berätta för en kamrat hur jag har löst en uppgift. 6 Du kan också välja att pröva en självbedömning av mer allmän karaktär, se dokumentet Mitt lärande i matematik. Den lämpar sig att använda oavsett centralt innehåll och någon gång per läsår. EXEMPEL PÅ PÅSTÅENDEN MITT LÄRANDE, MALL ÅK 1 ÅK 2 3 ÅK 4 9 8
9 7 För de tidiga skolåren finns ytterligare en mall Jag och matematik som du kan använda om du har yngre elever. Självbedömning årskurs 2 Sannolikhet & statistik Namn: Klass: Datum: Måla molnen med den färg som passar bäst med hur du känner dig när du ska... Säker Ganska säker Osäker sortera klossar efter storlek svara på frågor om mitt diagram förklara orden fler och färre sortera knappar efter färg ställa frågor om kamratens sortering Jag och matematik 8 Diskutera och reflektera över era erfarenheter efter att ni har använt elevernas självbedömning. 9
10 Hur går vi vidare? I denna handledning till Bedömning för lärande i matematik i årskurs 1 9 har vi presenterat tre olika modeller på hur du kan komma igång med materialet. Du väljer själv modell och beroende på vilken du väljer kan du ta fram olika underlag till kommande arbetsområde i matematik. Utnyttja det kollegiala lärandet och delge varandra erfarenheter utifrån det ni har skapat. För att utveckla och gå vidare kan ni välja att fortsätta att arbeta med materialet utifrån ett centralt innehåll, till exempel arbeta med geometri även nästa gång ni skapar en dokumentation. Då kan ni utnyttja era erfarenheter och mallar. Använd delar av materialet successivt i arbetet med ämnesplaneringar. Läs någon av artiklarna i inledningen eller färdiga arbetsområden och diskutera innehållet. Materialet kan användas i samband med kollegiala samtal inom ramen för Matematiklyftet. Det kan också användas tillsammans med Skolverkets Bedömningsstöd i taluppfattning i årskurs 1 3. Diskutera hur materialet kan användas i samspel med ert läromedel, dokumentation av elevers kunskaper samt analys och bedömning. 10
Dagens innehåll Bedömning för lärande i matematik. PRIM-gruppen. Inger Ridderlind och Anette Skytt. Vad är syftet med detta bedömningsstöd
Bedömning för lärande i matematik Seminarium 30 september Inger Ridderlind och Anette Skytt PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbetat med materialet Varför ser
Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt
Bedömning för lärande i matematik Mullsjö 16 juni 2014 Katarina Kjellström Inger Ridderlind Anette Skytt PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbeta med materialet
2015-03-11. Kunskapskrav. Materialet består av flera olika komponenter.
Bedömning för lärande i matematik Dagens innehåll Biennette i Malmö 15 mars 2015 Katarina Kjellström Olika bedömningsstöd i matematik Vad är syftet med bedömningsstödet för åk 1-9 Vilka har arbeta med
Bedömning för lärande i matematik. PRIM-gruppen. Inger Ridderlind. Inger Ridderlind, PRIM-gruppen
Bedömning för lärande i matematik Workshop 15 juni 16 juni Inger Ridderlind PRIM-gruppen Workshop Komma igång med materialet Avgränsa ett Tema- Kunskapsområde Algebra (Samband och förändring) Hela materialet
2014-09-26. Dagens innehåll. Syftet med materialet är att. Bedömning för lärande i matematik. Katarina Kjellström
Bedömning för lärande i matematik Växjö 18 september 2014 Katarina Kjellström PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbeta med materialet Varför ser det ut som det
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa
Terminsplanering årskurs 6 Matematik Ärentunaskolan
Inledning Terminsplanering årskurs 6 Matematik Ärentunaskolan På Ärentunaskolan arbetar vi med läromedlet MatteBorgen. Förutom uppgifter i boken arbetar vi med problemlösning och tränar olika strategier
PRIM-gruppen har på uppdrag av Skolverket utarbetat ett webbaserat
Katarina Kjellström Ett bedömningsstöd för grundskolans matematiklärare På Skolverkets webbplats finns nu ett fritt tillgängligt bedömnings stöd. Artikel författaren har deltagit i arbetet med att ta fram
8F Ma Planering v2-7 - Geometri
8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
Bedömning för lärande i matematik
Bedömning för lärande i matematik Vilka har arbeta med materialet Varför ser det ut som det gör När och hur kan du som lärare använda materialet Katarina Kjellström PRIM-gruppen Vilka har deltagit i arbetet
9E Ma Planering v2-7 - Geometri
9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar
7F Ma Planering v2-7: Geometri
7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
Del ur Lgr 11: kursplan i matematik i grundskolan
Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet
Centralt innehåll. I årskurs 1.3
3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
ESN lokala kursplan Lgr11 Ämne: Matematik
ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband
MATEMATIK 3.5 MATEMATIK
3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Kursplanen i matematik 2011 - grundskolan
Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:
SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på
Arbetsområde: Från pinnar till tal
Arbetsområde: Från pinnar till tal Huvudsakligt ämne: Matematik, åk 1-3 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas:
MATEMATIK 5.5 MATEMATIK
5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT ho gskolepoäng
Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT17 Provmoment: Tentamen Matematik, 4 hp, tillfälle 1 Ladokkod: TE01 Tentamen ges fo r: Studenter
Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik
Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs
kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt
Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda
Kursplan Grundläggande matematik
2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs
Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock
Geometri Matematik åk 4-6 - Centralt innehåll Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Konstruktion av geometriska objekt Skala Symmetri
Lokal studieplan matematik åk 1-3
Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen
Ma7-Per: Geometri. Det tredje arbetsområdet handlar om geometri.
Ma7-Per: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Gunnar Hyltegren. Ämnet matematik 2011 i grundskolan
Ämnet matematik 2011 i grundskolan Förmågor som skall utvecklas i matematik 2011 - gr Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
8A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
8A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Planering - Geometri i vardagen v.3-7
Planering - Geometri i vardagen v.3-7 Syfte Undervisningen i ämnet matematik ska syfta till att eleverna utvecklar kunskaper om matematik och matematikens användning i vardagen och inom olika ämnesområden.
Ladokkod: Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp 15 högskolepoäng Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4 TentamensKod: Tentamensdatum: 17-05-12 Tid:
Skolverkets förslag till kursplan i matematik i grundskolan. Matematik
Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet
Studenter i lärarprogrammet GF(11GF20) 46 p G: 28 p VG: 38 p
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 18-05-22 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Skriv inte på bladens baksidor. Helst en uppgift per blad.
Ma F-3 I Provmoment: Ladokkod: Tentamen ges för: Matematik 5 hp Studenter i lärarprogrammet Ma F-3 I (11F322) 15 högskolepoäng TentamensKod: Tentamensdatum: 15-04-29 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Delprov A Muntligt delprov
Delprov A Muntligt delprov Äp6Ma15 Delprov A 15 Beskrivning av delprov A, muntligt delprov Det muntliga delprovet kan genomföras fr.o.m. vecka 11 och resten av vårterminen. Det muntliga delprovet handlar
Ladokkod: TentamensKod: Tentamensdatum: Tid: Hjälpmedel: Inga hjälpmedel
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 16-05-13 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
15 högskolepoäng. Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17
Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17 Provmoment: Tentamen Matematik, 5 hp, tillfälle 1 Ladokkod: TE01 Tentamen ges
Förslag den 25 september Matematik
Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Lgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg
Grundläggande matematik II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Statistik, sannolikhet, algebra och funktioner, 3 hp Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg TentamensKod:
9A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
9A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP
Geometri Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp
Om Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
Studenter i lärarprogrammet Ma 4-6 I
Ma 4-6 I Provmoment: Ladokkod: Tentamen ges för: Matematik 4hp Studenter i lärarprogrammet Ma 4-6 I 15 högskolepoäng TentamensKod: Tentamensdatum: 12-08-16 Tid: 09.00-13.00 Hjälpmedel: Skrivmaterial och
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8
PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR
Matematikplanering 3 geometri HT-12 VT-13 7 a KON
Matematikplanering 3 geometri HT-12 VT-13 7 a KON MÅL Grundkurs Mäta (med gradskiva) och beräkna vinklar Känna till triangelns vinkelsumma och använda den för att räkna ut vinklar Kunna namnen på några
Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1
Matematik med didaktisk inriktning för grundlärare i förskoleklass och grundskolans a rskurs 1-3, III, VT18 7,5 högskolepoäng Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Ladokkod:
48 p G: 29 p VG: 38 p
11F322 MaI Provmoment: Matematik 5 hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet F-3 15 högskolepoäng TentamensKod: Tentamensdatum: 16-05-31 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel Totalt
Hjälpmedel: Miniräknare, skrivmateriel (ex. linjal, gradskiva, passare) och Lgr 11
Matematik och matematikdidaktik för 7,5 högskolepoäng grundlärare med inriktning mot arbete i förskoleklass och grundskolans årskurs 1-3, 7.5 hp VT17 Provmoment: Tentamen Matematik och matematikdidaktik,
MATEMATIK 3.5 MATEMATIK
TETIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
Geometri med fokus på nyanlända
Geometri med fokus på nyanlända Borås 17 januari 2017 Madeleine Löwing Tala matematik Bygga och Begripa Begrepp i Geometri Använda förklaringsmodeller som hjälper eleven att bygga upp långsiktigt hållbara
Om Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
Matematik i informellt lärande på fritidshem. Många möten med ord och begrepp i den dagliga verksamheten
Matematik i informellt lärande på fritidshem Många möten med ord och begrepp i den dagliga verksamheten Maria Jansson maria@mimer.org Grundskollärare åk.1-7 Ma/No Ingår i ett arbetslag: fritids, skola
Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP
Geometri Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp och samband
Lgr 11, miniräknare och skrivmaterial. 33 p 20 p. Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.
Matematik för alla 15 högskolepoäng Provmoment: Matematik 3hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet SMEN/GSME/MIG 2 TentamensKod: Tentamensdatum: 12-02-03 Tid: 09.00-13.00 Hjälpmedel:
Lokal pedagogisk planering i matematik för åk 8
Lokal pedagogisk planering i matematik för åk 8 Arbetsområde Geometri kap. 3 PRIO Syfte http://www.skolverket.se/laroplaner-amnen-ochkurser/grundskoleutbildning/sameskola/matematik#anchor2 formulera och
9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att:
9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera
"Läsårs-LPP med kunskapskraven för matematik"
"Läsårs-LPP med kunskapskraven för matematik" Grundskola 4 6 1 LPP för hela läsåret med tillhörande kunskapskrav i matrisform Skapad 2016-08-17 av Charlotte Steinwig i Lerbäckskolan 4-6, Lund Grundskolor
Elevers kunskaper i geometri. Madeleine Löwing
Elevers kunskaper i geometri Madeleine Löwing Elevers kunskaper i mätning och geometri Resultaten från interna=onella undersök- ningar, såsom TIMSS, visar ac svenska elever lyckas mindre bra i geometri.
Vilken kursplanskompetens behöver rektor?
Vilken kursplanskompetens behöver rektor? Vad ville ni rektorer att vi skulle ta upp? Ur utvärderingen Fördjupning av kursplanerna i matematik - bra om vi ligger steget före Kursplanens olika delar - förståelse
Vad är algoritmer? En digital lektion från Sida 1 av 6
Vad är algoritmer? Många val i vår vardag görs numera av algoritmer. I den här lektionen får eleverna en grundläggande förståelse för vad en algoritm är. Lektionsförfattaren Lotta Ohlin Andersson är lärare
Målet med undervisningen är att eleverna ges förutsättningar att:
Matematik Målet med undervisningen är att eleverna ges förutsättningar att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska
Lokal pedagogisk planering
Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet
Röda tråden. Skyttorps skola, Vattholmaskolan, Pluggparadiset, Storvretaskolan och Ärentunaskolan Reviderad:
Matematik Åk 1 Åk 2 Åk 3 Taluppfattning och tals användning. Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur det kan användas för att ange antal och ordning. Kunna läsa och skriva
Uppsala Universitet Instutionen för pedagogik, didaktik och utbildningsstudier Matematik 2, Ht 2014 Tilde Henriksson, Hannah Kling, Linn Kristell
Del 1: Pedagogisk planering a) Vi har gjort två lektionsplaneringar med fokus på tvådimensionella geometriska figurer för årskurs 1-3. Utifrån det centrala innehållet i Lgr11 för årskurs 1-3 ska eleverna
Inledning. Polydronmaterialet. Tio områden. Lgr11-koppling
Inledning Polydronmaterialet De färgglada bitarna i Polydronmaterialet har länge lockat till byggen av alla möjliga slag. Den geometriska funktionen är tydlig och möjligheterna till många matematiska upptäckter
Vad är algoritmer? Lektionen handlar om att få en grundläggande förståelse för vad en algoritm är. Vad är algoritmer?
Lektionen handlar om att få en grundläggande förståelse för vad en algoritm är. Lektionsförfattare: Lotta Ohlin Andersson Till läraren 1. Vad vet du om algoritmer? 2. Vad betyder ordet algoritm? En digital
En parallellogram har delats i två delar P och Q som figuren visar. Vilket av följande påståenden är säkert sant?
En parallellogram har delats i två delar P och Q som figuren visar. Vilket av följande påståenden är säkert sant? P har större omkrets än Q. P har mindre omkrets än Q. P har mindre area än Q Q och P har
RÖDA TRÅDEN MATEMATIK F-KLASS ÅK
RÖDA TRÅDEN MATEMATIK F-KLASS ÅK 5 F-KLASS TALUPPFATTNING ALGEBRA Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas Matematiska likheter och likhetstecknets
Uppgifter till Första-hjälpen-lådan
Uppgifter till Första-hjälpen-lådan Många Stockholmslärare har fått en första-hjälpen-låda i matematik då de deltagit i de kurser som letts av Karin Kairavuo, matematiklärare från Mattelandet i Helsingfors.
Kartläggningsmaterial för nyanlända elever SVENSKA. Geometri Matematik. 1 2 Steg 3
Kartläggningsmaterial för nyanlända elever Geometri Matematik 1 2 Steg 3 SVENSKA Kartläggningsmaterial för nyanlända elever Geometri åk 3 MA 1. Rita färdigt bilden så att mönstret blir symmetriskt. 2.
Om Lgr 11 och Favorit matematik 4 6
Om Lgr och Favorit matematik 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med undervisningen
Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal
Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. En uppgift per blad och inga svar på baksidan av bladen Lycka till!
Matematik 4-6 II Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 4 hp Studenter i lärarprogrammet LAG 4-6 T3 15 högskolepoäng Tentamensdatum: 15-01-15 Tid: 09.00 13.00 Hjälpmedel: Lgr 11,
FORMER, MÖNSTER OCH TESSELERINGAR
FORMER, MÖNSTER OCH TESSELERINGAR Text: Marie Andersson, Learncode AB Illustrationer: Li Rosén Foton: Shutterstock Golv, mattor och byggnader är fulla av geometriska former. Människan har upptäckt att
Extramaterial till Matematik X
LIBR PROGRMMRING OH DIGITL KOMPTNS xtramaterial till Matematik X NIVÅ TT NIVÅ TVÅ NIVÅ TR Geometri LÄRR I den här uppgiften får du och dina elever bekanta er med det digitala verktyget Geoboard. leverna
Undersökande arbetssätt i matematik 1 och 2
Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg Del 6: Undersökande arbetssätt med matematisk programvara Undersökande arbetssätt i matematik 1 och 2 I texten Undersökande arbetssätt
Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.
ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,
Delprov D: Geometriska figurer och deras egenskaper
Delprov D: Geometriska figurer och deras egenskaper Nedan finns instruktioner för genomförandet av Delprov D, vilket handlar om geometriska figurer och deras egenskaper. Eleverna ska arbeta individuellt
Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.
Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.
Södervångskolans mål i matematik
Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal
Utmanande uppgifter som utvecklar. Per Berggren och Maria Lindroth
Utmanande uppgifter som utvecklar Per Berggren och Maria Lindroth 2014-11-12 Vilka förmågor ska utvecklas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier när jag löser ett problem,
Arbetsområde: Jag får spel
Arbetsområde: Jag får spel Huvudsakligt ämne: Matematik, åk 7-9 Läsår: Tidsomfattning: 6-9 lektioner à 60 minuter Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för
Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte
Matematik Syfte Matematiken har en mångtusenårig historia med bidrag från många kulturer och har utvecklats ur människans praktiska behov och naturliga nyfikenhet. Matematiken är kreativ och problemlösande
Kursplanen i ämnet matematik
DISKUSSIONSUNDERLAG FÖR GRUNDSKOLAN Diskutera Kursplanen i ämnet matematik Läsåret 2011/12 införs en samlad läroplan för var och en av de obligatoriska skolformerna grundskolan, grundsärskolan, sameskolan
Lokala mål i matematik
Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal
Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera.
1 Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera. Bakgrund Den nya kursplanen i matematik för grundläggande vuxenutbildning börjar gälla
Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass
Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik
Ämnesplan i matematik för Häggenås, Bringåsen och Treälven
Ämnesplan i matematik för Häggenås, Bringåsen och Treälven (2009-05-14) Namn Utarbetad under läsåret 08/09 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik
Lathund, geometri, åk 9
Lathund, geometri, åk 9 I årskurs 7 och 8 räknade ni med sträckor och ytor i en dimension (1D) respektive två dimensioner (2D). Nu i årskurs 9 har ni istället börjat räkna volymer av geometriska kroppar
Även kvadraten är en rektangel
Åsa Brorsson Även kvadraten är en rektangel Vad innebär det att arbeta med geometriska objekt och deras egenskaper i årskurs 1 3? Hur kan vi använda det centrala innehållet i geometri för att utveckla
Matematik. Ämnesprov, läsår 2013/2014. Bedömningsanvisningar Delprov B, C, D, E. Årskurs
Ämnesprov, läsår 2013/2014 Matematik Bedömningsanvisningar Delprov B, C, D, E Årskurs 6 Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta
2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ
Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Enhet / skola: Lindens skola i Lanna Åk: 3
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,