Transformationer, Angel
|
|
- Niklas Abrahamsson
- för 7 år sedan
- Visningar:
Transkript
1 GrIP vt9: Föreläsning - D-grafik Yngve Sundblad 9-- D-grafik Yngve Rum 46, Lindstedtsv.5, plan 6 (vid Torget) DH64 Grafik och Interaktionsprogrammering VT 9 Transformationer, Angel Inom datorgrafik är transformationer den kanske viktigaste formen av operation. De vanligaste transformationerna är linjära och kan skrivas som matriser. Dessa är affina, d.v.s. alla punkter på en linje fortsätter att ligga på linjen efter transformationen, parallella linjer bevaras, och förhållandet mellan avstånd bevaras. Sida
2 GrIP vt9: Föreläsning - D-grafik Yngve Sundblad 9-- Sida Translation T P P d d T P P d d + + +,,, (d, d) (3, -4) Skalning s s Skalningen sker kring origo. (s, s) (/, /4)
3 GrIP vt9: Föreläsning - D-grafik Yngve Sundblad 9-- Rotation θ π/4 (45 grader) / * 5 - / *. / * 5 + / * 4.9 cosθ sinθ sinθ cosθ Rotationen sker kring origo. Homogena koordinater Det vore bra om vi kunde skriva alla dessa transformationer på ett konsekvent sätt. Det funkar om vi inför en tredje koordinat w. Vi säger att (/w, /w) är de kartesiska koordinaterna (cartesian coordinates). Definition: två punkter är lika om den enas homogena koordinater är en multipel av den andra (har samma kartesiska koordinater). Åtminstone en av de tre koordinaterna måste vara skild från. När w ligger punkten i oändligheten och vi definierar att (, ) då representerar en riktning/vektor. Sida 3
4 GrIP vt9: Föreläsning - D-grafik Yngve Sundblad 9-- Sida 4 Punkter och riktningar Riktningar (vektorer) och punkter är olika geometriska entiteter och eisterar oberoende av referenskoordinatsstem! Men de kan definieras i förhållande till ett sådant. Och vi behöver ett för att kunna specificera dem med siffror. Bastransformationsmatriser cos sin sin cos s s d d θ θ θ θ Translation Skalning Rotation I affina transformationer ändras aldrig w-koordinaten.
5 GrIP vt9: Föreläsning - D-grafik Yngve Sundblad 9-- Kombination av transformationer Vi kan nu kombinera transformationer genom att multiplicera ihop matriserna! Men resultatet kan bli olika om man vänder på ordningen! T.5 S.5 ( ST ) P.5 ( T ) S P.5 (,) (,) (.5,.5) Eempel Rotera kring en annan punkt än origo: P (, 5), P (4,5), θ π/6 (3 grader) Translation : Rotation: Translation : Totalt: U T R T ( - ) ( 3/ -/ ) ( ) ( 3/ -/ 9/- 3 ) ( -5 ) (/ 3/ ) ( 5 ) (/ 3/ 4-5 3/) ( ) ( ) ( ) ( ) U * (, 5, ) (, 5, ); U * (4, 5, ) (+ 3, 6, ) (,5,) + *( 3/, /, ) Observera att man multiplicerar på matriserna från vänster! Sida 5
6 GrIP vt9: Föreläsning - D-grafik Yngve Sundblad 9-- Mer om rotationsmatriser I en rotationsmatris är översta -delmatrisen ortogonal, enhetsvektorer med skalärprodukt. Riktningsvektorerna (r,r,) och (r,r,) är de två vektorer som - resp. -aeln är roterade till! Rotationsvinkeln θ, r r cosθ, r -r sinθ Två rotationer: θ η ger rotationen θ+η, lätt att visa, multiplicera ihop, använd cosηcosθ sinηsinθ cos(θ+η) cosηsinθ + sinηcosθ sin(θ+η) r R r r r Skevning (shear) SH SH b a Sida 6
7 GrIP vt9: Föreläsning - D-grafik Yngve Sundblad 9-- Sida 7 Spegling (reflection) u u u u u u RE Där (u, u ) är riktningsvektorn (med längd ) man speglar igenom. (u, u ) Ickelinjära transformationer Förekommer inte lika ofta som linjära, men är inte alls ovanliga. Eempel: Environment mapping. ) ( ) ( z z R R R R t R R R R s
8 GrIP vt9: Föreläsning - D-grafik Yngve Sundblad 9-- Transformationer av hörn Det vore i praktiken omöjligt i grafik att transformera varje piel för sig. Om vi använder linjära transformationer räcker det dock att transformera hörnen och binda samman dem med linjer! Man interpolerar sedan data definierad i hörnen linjärt över primitiverna. Om det är färg man interpolerar brukar det kallas Goraud shading. Framebuffer, Angel. Datorminne som lagrar information för pilarna som ska visas på skärmen Grafikkortet hämtar värdena för mängden rött, grönt, och blått för varje piel Strkan hos elektronkanonen anpassas efter värdena R G B R G B 3 R G B R G B 4 5 R G B R G B Sida 8
9 GrIP vt9: Föreläsning - D-grafik Yngve Sundblad 9-- Pilar Med pielvärde menar man oftast RGBvärdena i framebuffern Antalet bitar för R, G resp. B-värdena bestämmer hur många färger som kan representeras Pilar: 8 bitar 8 bitar R G B Man tilldelar färre bitar till den blå kanalen eftersom människan har svårare att se skillnader mellan blå nanser. Ger färgnanser. Detta är en mcket ovanlig färgkodning idag. Sida 9
10 GrIP vt9: Föreläsning - D-grafik Yngve Sundblad 9-- Pilar: 8 bitar palett Palett: 4 bitar per post 8 bitar inde Ger 56 samtidiga färger ur möjliga. Pilar: Color ccling Shifta färgerna i paletten (oftast med hjälp av ett offsetvärde) Klassisk 8-talseffekt i spel! Sida
11 GrIP vt9: Föreläsning - D-grafik Yngve Sundblad 9-- Pilar: 6 bitar 6 bitar R G B 5 bitar till R och B, 6 bitar till G eftersom människan uppfattar skillnader i gröna nanser bäst. Ger olika färgnanser. Kallas ibland hi-color. Pilar: 4 bitar 4 bitar R G B bte (8 bitar) till R, G, och B. Ger olika färgnanser. Kallas ibland true-color, eftersom människan kan uppfatta ungefär så många nanskillnader. Sida
12 GrIP vt9: Föreläsning - D-grafik Yngve Sundblad 9-- Pilar: 3 bitar 8 röd + 8 grön + 8 blå + 8 alpha färgnanser + 56 genomskinlighetsnivåer Pilar: mer än 8 bitar per kanal Konverterar du en 4-bitars bild till svartvitt är du tillbaka i 56 färgnanser! Manipulation av bilder kan minska antalet signifikanta siffror eller ge avrundningsfel så att du tappar information Idag används ofta eller 6 bitar per kanal (64 64 bit) Ibland t.o.m. 3 bitar per kanal (8 bit) Sida
13 GrIP vt9: Föreläsning - D-grafik Yngve Sundblad 9-- Fönstersstem Compositing Sida 3
14 GrIP vt9: Föreläsning - D-grafik Yngve Sundblad 9-- Compositing Georges Méliès, 98 Lager Bildbuffrar som kombineras ihop piel för piel nedifrån och upp. För varje ntt lager definierar man en funktion som beskriver hur informationen från föregående lager ska kombineras ihop med aktuellt lager. Sida 4
15 GrIP vt9: Föreläsning - D-grafik Yngve Sundblad 9-- Eempel Eempel Sida 5
16 GrIP vt9: Föreläsning - D-grafik Yngve Sundblad 9-- I ett spel som "94" används inte linjer. Vilka element består grafiken av? Hur funkar det? Sprite är en term från 8-talet I färgpaletten för en 8- bitarsbild bestämmer man att en av färgerna ska vara genomskinlig Idag använder man alpha-kanalen istället Sprites Sida 6
17 GrIP vt9: Föreläsning - D-grafik Yngve Sundblad 9-- Sprites + Bilden bggs upp i lager, nerifrån och upp. I många äldre datorer fanns en operation för att snabbt "sprite"-kopiera från minne till framebuffer, s.k. bitblt. Vissa maskiner kunde skala och rotera sprites vid utritningen. Ibland fanns stöd för kollisionsdetektion sprites emellan. BitBlt och RasterOp För att kunna fltta objekt i realtid på tidiga rastergrafiska arbetsstationer, t.e. Xero Alto (974) resp CMU Perq (98) hade processorn snabba rasteroperationer, Bit Block Transfer resp RasterOp. Finns även i Java/Swing. De kunde fltta en rektangel i framebufferten till annat läge i logisk samverkan med det som låg där: AND, OR, XOR, REPLACE XOR upprepat användbar vid flttningar, t.e. markör z XOR ; z XOR -> or or Sida 7
18 GrIP vt9: Föreläsning - D-grafik Yngve Sundblad 9-- Sprites Det blir MÅNGA sprites, ibland en för varje animationsruta! (Donke Kong Countr för SNES hade över tusen, t.e.) Duktiga spritetecknare återanvände bildrutor. Om bitblt-operationen kunde spegla bilderna sparade man mcket minne. Isometriska spel Q*Bert (Arkad) Knight Lore (ZX Spectrum) SimCit (PC) Sida 8
19 GrIP vt9: Föreläsning - D-grafik Yngve Sundblad 9--.5D Doom En billboard är en polgon som alltid vänder "framsidan" åt kameran. D-grafik i Java AWT - Abstract Windowing Toolkit - with Sunʼs Java 995 Swing - Model-View-Controller GUI Tool released b Netscape 996, Sun 997 import java.awt.*; import java.swing.*; ger tillgång till klasserna Graphics med metoder för att rita geometriska objekt med attribut som färg, XOR mode mm GraphicsD med metoder för att göra affin transformation, klippa, komponera, mm mm Sida 9
20 GrIP vt9: Föreläsning - D-grafik Yngve Sundblad 9-- D-grafik i Java Transformationer i JavaD GeneralPath p new GeneralPath(); p.moveto(5, 5); p.lineto(5, 5); p.lineto(, ); p.closepath(); g.draw(p); AffineTransform t AffineTransform.getTranslateInstance(, 5); t.rotate(-math.pi/3.); AffineTransform old g.gettransform(); g.transform(t); g.draw(p); g.settransform(old); Sida
21 GrIP vt9: Föreläsning - D-grafik Yngve Sundblad 9-- Det finns möjlighet att använda lager och maskning i JavaD. Man kan också kombinera ihop primitiver automatiskt med boolska operationer. Stöd för att ladda och rita bitmaps/bilder finns också. Mer om JavaD Registrering res checkin grip9 course join grip9 Sida
22 GrIP vt9: Föreläsning - D-grafik Yngve Sundblad 9-- Inlämningsuppgift D-grafik med transformationer Flertalet uppgifter matematiskt betonade kring transformationer Finns på kurswebben under fliken Inl.uppg., senast 6 februari p- Sida
Transformationer. Translation. Skalning. Homogena koordinater. Rotation. 2D-grafik. x y. Inom datorgrafik är transformationer den. Många. bevaras.
Transformationer D-grafik Gustav Taén gustavt@nada.kth.se Inom datorgrafik är transformationer den kanske viktigaste formen av operation. De vanligaste transformationerna är linjära och kan skrivas som
Läs mer2D-grafik. Gustav Taxén
2D-grafik Gustav Taxén gustavt@csc.kth.se 2D164 Grafik och Interaktionsprogrammering VT 27 Framebuffer Datorminne som lagrar information för pixlarna som ska visas på skärmen Grafikkortet hämtar värdena
Läs merTransformationer i 3D. Gustav Taxén
Transformationer i 3D Gustav Taén gustavt@csc.kth.se 2D64 Grafik och Interaktionsprogrammering VT 27 Bakgrund Ett smidigt sätt att arbeta med 3D-grafik är att tänka sig att man har en virtuell kamera som
Läs mer5 Linjär algebra. 5.1 Addition av matriser 5 LINJÄR ALGEBRA
5 LINJÄR ALGEBRA 5 Linjär algebra En kul gren av matematiken som inte fått speciellt mycket utrymme i gymnasiet men som har många tillämpningsområden inom t.ex. fysik, logistik, ekonomi, samhällsplanering
Läs merLinjära avbildningar. Låt R n vara mängden av alla vektorer med n komponenter, d.v.s. x 1 x 2. x = R n = x n
Linjära avbildningar Låt R n vara mängden av alla vektorer med n komponenter, d.v.s. R n = { x = x x. x n } x, x,..., x n R. Vi räknar med vektorer x, y likandant som i planet och i rymden. vektorsumma:
Läs merGeometriska vektorer
Föreläsning 1, Linjär algebra IT VT2008 1 Geometriska vektorer De begrepp som linjär algebra kretsar kring är vektorer och matriser Dessa svarar mot datorernas fält (`arra') av dimension ett respektive
Läs merax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning.
UPPSALA UNIVERSITET Matematiska institutionen Anders Johansson Prov i matematik ES, Frist, KandMa LINJÄR ALGEBRA och GEOMETRI I 2010 10 21 Skrivtid: 8.00 13.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna
Läs merGeometriska transformationer
CTH/GU LABORATION 5 TMV6/MMGD - 7/8 Matematiska vetenskaper Inledning Geometriska transformationer Vi skall se på några geometriska transformationer; rotation, skalning, translation, spegling och projektion.
Läs merVeckoblad 1, Linjär algebra IT, VT2010
Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet
Läs merFöreläsning 13 Linjär Algebra och Geometri I
Föreläsning 13 Linjär Algebra och Geometri I Se slide 1: det är i rymden oftast lättast att jobba med parametrar för linjer och ekvationer för plan. Exempel: Låt l : (x, y, z) = (1 t, 3 + t, 4t), t R och
Läs mer{ 1, om i = j, e i e j = 0, om i j.
34 3 SKALÄPRODUKT 3. Skaläprodukt Definition 3.. Skalärprodukten mellan två vektorer u och v definieras där θ är vinkeln mellan u och v. u v = u v cos θ, Anmärkning 3.. Andra beteckningar för skalärprodukt
Läs merExplorativ övning Vektorer
Eplorativ övning Vektorer Syftet med denna övning är att ge grundläggande kunskaper om vektorräkning och dess användning i geometrin Liksom många matematiska begrepp kommer vektorbegreppet från fysiken
Läs merUPG5 och UPG8 Miniprojekt 1: 2D datorgrafik
UPG5 och UPG8 Miniprojekt 1: 2D datorgrafik I den här uppgiften studerar vi hur man kan använda sig av linjära avbildningar för att modifiera bilder i två dimensioner Mycket är repetition av vissa grundbegrepp
Läs merLinjär Algebra, Föreläsning 2
Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Geometriska vektorer, rummen R n och M n 1 En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.
Läs merExempel :: Spegling i godtycklig linje.
c Mikael Forsberg oktober 009 Exempel :: Spegling i godtycklig linje. abstract:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som går genom origo.
Läs merVektorgeometri. En vektor v kan representeras genom pilar från en fotpunkt A till en spets B.
Vektorgeometri En vektor v kan representeras genom pilar från en fotpunkt A till en spets B. Två pilar AB, A B tilllhör samma vektor om de har samma riktning och samma längd. Vi skriver v = AB = B A B
Läs merExempel :: Spegling i godtycklig linje.
INNEHÅLL Exempel :: Spegling i godtycklig linje. c Mikael Forsberg :: 6 augusti 05 Sammanfattning:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som
Läs merHomogena koordinater och datorgrafik
Linjär algebra, AT3 2011/2012 Matematiska vetenskaper Inledning Homogena koordinater och datorgrafik Vi såg tidigare på några geometriska transformationer; rotation, skalning, translation och projektion.
Läs merLYCKA TILL! kl 8 13
LUNDS TEKNISK HÖGSKOL MTEMTIK TENTMENSSKRIVNING Linjär algebra 0 0 kl 8 3 ING HJÄLPMEDEL Förklara dina beteckningar och motivera lösningarna väl Om inget annat anges är koordinatsystemen ortonormerade
Läs merVeckoblad 3, Linjär algebra IT, VT2010
Veckoblad 3, Linjär algebra IT, VT Vi inleder den tredje veckan med att gå igenom begreppen determinant och invers matris som vi inte hann med i vecka, se veckoblad för övningar etc på dessa avsnitt. Därefter
Läs mer1 som går genom punkten (1, 3) och är parallell med vektorn.
KTH Matematik Extra uppgifter på linjär algebra SF1621 Analytiska metoder och linjär algebra 2 för OPEN och T Förkunskaper Obs en del av detta är repetition från förra kursen Men innan ni ens börjar med
Läs merVektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://w3.msi.vxu.se/users/pa/vektorgeometri/gymnasiet.html Institutionen för datavetenskap, fysik och matematik Linnéuniversitetet Vektorer i planet
Läs mer17. Övningar ÖVNINGAR Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av. x 1 x 2 2x 2 + 3x 3 2x 1 x 3
192 17 ÖVNINGAR 17. Övningar 17.1. Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av F(eX) = ey = e x 1 x 2 2x 2 + 3x 3 2x 1 x 3, G(eX) = e x 1 x 2 x 2 2 x 2 + x 3 Undersök
Läs merEgenvärden och egenvektorer
Föreläsning 10, Linjär algebra IT VT2008 1 Egenvärden och egenvektorer Denition 1 Antag att A är en n n-matris. En n-vektor v 0 som är sådan att A verkar som multiplikation med ett tal λ på v, d v s Av
Läs merModul 1: Komplexa tal och Polynomekvationer
Modul : Komplexa tal och Polynomekvationer. Skriv på formen a + bi, där a och b är reella, a. (2 + i)( 2i) 2. b. + 2i + 3i 3 4i + 2i 2. Lös ekvationerna a. (2 i)z = 3 + i. b. (2 + i) z = + 3i c. ( 2 +
Läs merTentamen i Linjär algebra (TATA31/TEN1) ,
Linköpings universitet Matematiska institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra (TATA/TEN) 7 9, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst
Läs merGrafiska pipelinen. Edvin Fischer
Grafiska pipelinen Edvin Fischer Sammanfattning Rapporten behandlar den grafiska pipelinen och dess steg, vilka stegen är och hur de funkar. Inledning Rapporten har till syfte att beskriva hur den grafiska
Läs merTANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall
Läs merLinjär Algebra, Föreläsning 9
Linjär Algebra, Föreläsning 9 Tomas Sjödin Linköpings Universitet Euklidiska rum Vi ska nu införa en extra struktur på vektorrum, en så kallad skalärprodukt, vilken vi kan använda för att definiera längd
Läs merM = c c M = 1 3 1
N-institutionen Mikael Forsberg Prov i matematik Matematik med datalogi, mfl. Linjär algebra ma4a Deadline :: 8 9 4 Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny
Läs merKOKBOKEN 1. Håkan Strömberg KTH STH
KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................
Läs merTANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:
Läs merTAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade
Läs merAnalys o Linjär algebra. Lektion 7.. p.1/65
Analys o Lektion 7 p1/65 Har redan (i matlab bla) stött på tal-listor eller vektorer av typen etc Vad kan sådana tänkas representera/modellera? Hur kan man räkna med sådana? Skall närmast fokusera på ordnade
Läs merSF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016
SF624 Algebra och geometri Tentamen Torsdag, 9 juni 26 Skrivtid: 8: 3: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på
Läs merOctober 9, Innehållsregister
October 9, 017 Innehållsregister 1 Vektorer 1 1.1 Geometrisk vektor............................... 1 1. Vektor och koordinatsystem.......................... 1 1.3 Skalär produkt (dot eller inner product)...................
Läs mer3D: transformationer:
3D: transformationer: ramar, matriser, kvaternioner perspektiv: ortografisk, perspektiv kurvor, ytor: parametriska, kubiska - interpolerande, Bézier, spline Inlämningsuppgift 3 Yngve Sundblad y@kth.se
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna
Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna 3-7 Föreläsningarna 3 7, 8/ 5/ : Det viktigaste är här att du lär dig att reducera
Läs merInledning. CTH/GU LABORATION 4 MVE /2017 Matematiska vetenskaper
CTH/GU LABORATION 4 MVE3-6/7 Matematiska vetenskaper Inledning I denna laboration skall vi se på några geometriska transformationer i R och R 3 som ges av linjära eller affina avbildningar. En avbildning
Läs merLinjär algebra och geometri 1
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Ryszard Rubinsztein Oswald Fogelklou Linjär algebra och geometri 1 för K1, W1, KandKe1 Höstterminen 2008 Kurslitteratur H.Anton, C.Rorres, Elementary Linear
Läs merMer om geometriska transformationer
CTH/GU LABORATION 4 TMV141-1/13 Matematiska vetenskaper 1 Inledning Mer om geometriska transformationer Vi fortsätter med geometriska transformationer och ser på ortogonal (vinkelrät) projektion samt spegling.
Läs merBanach-Tarskis paradox
Banach-Tarskis paradox Tony Johansson 1MA239: Specialkurs i Matematik II Uppsala Universitet VT 2018 Banach-Tarskis paradox, bevisad 1924 och döpt efter Stefan Banach och Alfred Tarski, är en sats inom
Läs merMer om analytisk geometri
1 Onsdag v 5 Mer om analytisk geometri Determinanter: Då man har en -matris kan man till den associera ett tal determinanten av som också skrivs Determinanter kommer att repeteras och studeras närmare
Läs merLinjär algebra och geometri I
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Jörgen Östensson Vårterminen 2010 Kurslitteratur Linjär algebra och geometri I för X, geo, frist, lärare H. Anton, C. Rorres, Elementary Linear Algebra (Application
Läs merSF1624 Algebra och geometri Tentamen med lösningsförslag onsdag, 11 januari 2017
SF64 Algebra och geometri Tentamen med lösningsförslag onsdag, januari 7. (a) För vilka värden på k har ekvationssystemet (med avseende på x, y och z) kx + ky + z 3 x + ky + z 4x + 3y + 3z 8 en entydig
Läs merTransformationer i R 2 och R 3
Linjär algebra, I / Matematiska vetenskaper Inledning Transformationer i R och R 3 Vi skall se på några geometriska transformationer; rotation, skalning, translation och projektion. Rotation och skalning
Läs merAvalanche Studios. OpenGL. Vår teknik. Våra spel. Lite inspiration... Stora, öppna spelvärldar. Sandbox-gameplay. Hög audiovisuell standard
OpenGL Avalanche Studios Sveriges ledande oberoende spelutvecklare Fokus på egenutvecklade IPn Finns på Söder i Stockholm ~6 anställda Just Cause för PS2, PC, XBox, och XBox 36 släpptes 26 Gustav Taxén
Läs mer1 Linjära ekvationssystem. 2 Vektorer
För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant
Läs merLinjär algebra och geometri I
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Anders Johansson Linjär algebra och geometri I för Energi, Ma-kand., Frist. Höstterminen 2010 Kurslitteratur H. Anton, C. Rorres, Elementary Linear Algebra
Läs merLinjär algebra och geometri 1
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Ryszard Rubinsztein Oswald Fogelklou Linjär algebra och geometri 1 för K1, W1, KandKe1 Höstterminen 2009 Kurslitteratur H.Anton, C.Rorres, Elementary Linear
Läs merLinjär Algebra, Föreläsning 2
Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.
Läs merVektoranalys I. Anders Karlsson. Institutionen för elektro- och informationsteknik
Vektoranalys I Anders Karlsson Institutionen för elektro- och informationsteknik 2 september 2015 Översikt över de tre föreläsningarna 1. Grundläggande begrepp inom vektoranalysen, nablaoperatorn samt
Läs merLinjär algebra på några minuter
Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen
Läs merSF1624 Algebra och geometri
SF1624 Algebra och geometri Föreläsning 2 David Rydh Institutionen för matematik KTH 28 augusti 2018 Detta gjorde vi igår Punkter Vektorer och skalärer, multiplikation med skalär Linjärkombinationer, spannet
Läs merInstitutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning
Karlstads GeoGebrainstitut Institutionen för matematik och datavetenskap Karlstads universitet Mats Brunström Maria Fahlgren GeoGebra ett digitalt verktyg för framtidens matematikundervisning Invigning
Läs merKort introduktion till POV-Ray, del 1
Kort introduktion till POV-Ray, del 1 Kjell Y Svensson, 2004-02-02,2007-03-13 Denna serie av artiklar ger en grundläggande introduktion och förhoppningsvis en förståelse för hur man skapar realistiska
Läs mer19. Spektralsatsen Spektralsatsen SPEKTRALSATSEN
9 SPEKTRALSATSEN 9. Spektralsatsen 9.. Spektralsatsen Symmetriska avbildningar är en viktig klass av linjära avbildningar. Vi kommer nedan att formulera ett antal viktiga resultat för dessa avbildningar
Läs mer2s + 3t + 5u = 1 5s + 3t + 2u = 1 3s 3u = 1
ATM-Matematik Mikael Forsberg 074-4 För studenter på distans och campus Linjär algebra ma04a 04 0 5 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja
Läs merLinjära ekvationssystem
CTH/GU LABORATION MVE0-0/0 Matematiska vetenskaper Inledning Linjära ekvationssystem Redan i första läsperioden löste vi linjära ekvationssystem Ax = b med Matlab. Vi satte ihop koefficentmatrisen A med
Läs merSF1624 Algebra och geometri
Föreläsning 8 Institutionen för matematik KTH 16 november 2016 Matriser och linjära avbildningar Dagens ämnen (kap 3.3 och 3.4): Exempel på linjära avbildningar Nollrum och Bildrum Dimensionssatsen / Rangsatsen
Läs mere = (e 1, e 2, e 3 ), kan en godtycklig linjär
Linjära avbildningar II Förra gången visade vi att givet en bas i rummet, e = (e 1, e 2, e 3 ), kan en godtycklig linjär avbildning F : R 3 R 3 representeras av en matris: Om vi betecknar en vektor u:s
Läs mer1. Inledning. x y z. u = xe 1 + ye 2 + ze 3 = e
. Inledning I Linjär algebra kommer vi att stdera olika objekt samt deras egenskaper. Dessa objekt kan ha geometrisk tolkning såsom geometriska vektorer men också inte som t.e. matriser. Vi har tidigare
Läs merProgrammeringsteknik II - HT18. Föreläsning 6: Grafik och händelsestyrda program med användargränssnitt (och Java-interface) Johan Öfverstedt
Programmeringsteknik II - HT18 Föreläsning 6: Grafik och händelsestyrda program med användargränssnitt (och Java-interface) Johan Öfverstedt 18-09-28 1 Förra gången: Arv och klasshierarkier Vi såg hur
Läs mer2x + y + 3z = 1 x 2y z = 2 x + y + 2z = 1
ATM-Matematik Sören Hector 7 46686 Mikael Forsberg 734 433 Matematik med datalogi, mfl. Linjär algebra ma4a 3 5 Skrivtid: :-5:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa.
Läs merKurvor och ytor. Gustav Taxén
Kurvor och ytor Gustav Taxén gustavt@csc.kth.se 2D1640 Grafik och Interaktionsprogrammering VT 2007 Kurvor och ytor Explicit form Implicit form Parametrisk form Procedurbaserade Polynom Catmull-Clark Kubiska
Läs merVektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar II Innehåll Repetition:
Läs merKarta över Jorden - viktigt exempel. Sfär i (x, y, z) koordinater Funktionen som beskriver detta ser ut till att vara
Föreläsning 1 Jag hettar Thomas Kragh och detta är kursen: Flervariabelanalys 1MA016/1MA183. E-post: thomas.kragh@math.uu.se Kursplan finns i studentportalens hemsida för denna kurs. Där är två spår: Spår
Läs merMATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt
MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5
Läs merMatematik med Matlab för I Inledning. 1 Programmering i MATLAB
Matematiska Vetenskaper 21 april 2010 Matematik med Matlab för I 2010. Programmering i Matlab. 2- och 3-dimensionell grafik. LAB 2: Några geometriska uppgifter och plottning av figurer. Inledning 1 Programmering
Läs merc d Z = och W = b a d c för några reella tal a, b, c och d. Vi har att a + c (b + d) b + d a + c ac bd ( ad bc)
1 Komplexa tal 11 De reella talen De reella talen skriver betecknas ofta med symbolen R Vi vill inte definiera de reella talen här, men vi noterar att för varje tal a och b har vi att a + b och att ab
Läs mer1 Vektorer i koordinatsystem
1 Vektorer i koordinatsystem Ex 11 Givet ett koordinatsystem i R y a 4 b x Punkten A = (3, ) och ortsvektorn a = (3, ) och punkten B = (5, 1) och ortsvsektorn b = (5, 1) uttrycks på samma sätt, som en
Läs mer8 Minsta kvadratmetoden
Nr, april -, Amelia Minsta kvadratmetoden. Ekvationssystem med en lösning, -fallet Ett linjärt ekvationssystem, som ½ +7y = y = har en entydig lösning om koefficientdeterminanten, här 7, är skild från
Läs merLäsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö
Läsanvisningar och övningsuppgifter i MAA150, period vt1 2015 Erik Darpö ii 0. Förberedelser Nedanstående uppgifter är avsedda att användas som ett självdiagnostiskt test. Om du har problem med att lösa
Läs merVektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter
Läs merFFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Sep 11, 2017 12. Tensorer Introduktion till tensorbegreppet Fysikaliska
Läs merLaboration 3 GUI-programmering
Laboration 3 GUI-programmering Syfte Erbjuder studenterna en möjlighet att lära sig grunderna i gränssnittsprogrammering i Java. Genomförande Genomförs individuellt eller i grupp om 2 personer. Uppskattad
Läs merSpelutveckling 3d-grafik och modellering. Grunder för 3d-grafik Blender Animering
Spelutveckling 3d-grafik och modellering Grunder för 3d-grafik Blender Animering Grunderna för 3d-grafik Positionering, transformationer Projektion, kameran Objekt i en 3d-värld Ljusmodeller för 3d-grafik
Läs merAffina avbildningar och vektorgrafik
och vektorgrafik 2010-02-04 och vektorgrafik Affin avbildning som matriser Definition En affin avbildning f är en sammansättning av en linjär avbildning x Bx och en translation x x + c och är alltid på
Läs merI rastergrafikens barndom...gjorde man grafik genom att skriva i ett videominne. Operationer på buffert och pixlar. Idag... Varför grafikkort?
Operationer på buffert och pixlar I rastergrafikens barndom......gjorde man grafik genom att skriva i ett videominne. Lapped textures Emil Praun et al., SIGGRAPH 2000. Gustav Taxén CID gustavt@nada.kth.se
Läs merVi definierar addition av två vektorer och multiplikation med en reell skalär (tal) λλ enligt nedan
ORTOGONALA VEKTORER OCH ORTONORMERADE (ORTONORMALA) BASER I R n INLEDNING ( repetition om R n ) Låt RR nn vara mängden av alla reella n-tipplar (ordnade listor med n reella tal) dvs RR nn {(aa, aa,, aa
Läs merFrågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor.
TM-Matematik Mikael Forsberg 74-4 Matematik med datalogi, mfl. Linjär algebra ma4a 6 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på
Läs merRäta linjens ekvation & Ekvationssystem
Räta linjens ekvation & Ekvationssstem Uppgift nr 1 Lös ekvationssstemet eakt = 3 + = 28 Uppgift nr 2 Lös ekvationssstemet eakt = 5-15 + = 3 Uppgift nr 8 Lös ekvationssstemet eakt 9-6 = -69 5 + 11 = -35
Läs merFör ingenjörs- och distansstudenter Linjär Algebra ma014a 2015 02 26. ATM-Matematik Mikael Forsberg 0734-41 23 31
ATM-Matematik Mikael Forsberg 074-4 För ingenjörs- och distansstudenter Linjär Algebra ma04a 0 0 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje
Läs merLösningar till utvalda uppgifter i kapitel 1
Lösningar till utvalda uppgifter i kapitel. Vi utnyttjar definitionen av skalärprodukt som ger att u v u v, där α är (minsta) vinkeln mellan u v. I vårt fall så får vi 7 =. Alltså är den sökta vinkeln
Läs merMA2004 Tillämpad Matematik II, 7.5hp,
MA00 Tillämpad Matematik II, 7.5hp, 09-0-6 Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 0 frågor! Endast Svarsblanketten ska lämnas
Läs merDEL I 15 poäng totalt inklusive bonus poäng.
Matematiska Institutionen KTH TENTAMEN i Linjär algebra, SF604, den 5 december, 2009. Kursexaminator: Sandra Di Rocco Svaret skall motiveras och lösningen skrivas ordentligt och klart. Inga hjälpmedel
Läs mer2x + y + 3z = 4 x + y = 1 x 2y z = 3
ATM-Matematik Pär Hemström 7 6572 Sören Hector 7 4686 Mikael Forsberg 74 42 För studerande i linjär algebra Linjär algebra ma4a 225 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga
Läs merVektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:
Läs mer3 Man kan derivera i Matlab genom att approximera derivator med differenskvoter. Funktionen cosinus deriveras för x-värdena på följande sätt.
Kontrolluppgifter 1 Gör en funktion som anropas med där är den siffra i som står på plats 10 k Funktionen skall fungera även för negativa Glöm inte dokumentationen! Kontrollera genom att skriva!"#$ &%
Läs merITK:P1 Föreläsning 4. Grafiska gränssnitt i Java. AWT-komponenter
ITK:P1 Föreläsning 4 Grafiska gränssnitt och händelsehantering 1 DSV Peter Mozelius Grafiska gränssnitt i Java Efterfrågan på program med grafiskt gränssnitt har ökat avsevärt de senaste åren I Java finns
Läs mer. Bestäm Rez och Imz. i. 1. a) Låt z = 1+i ( b) Bestäm inversen av matrisen A = (3p) x + 3y + 4z = 5, 3x + 2y + 7z = 3, 2x y + z = 4.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA150 Vektoralgebra TEN1 Datum: 3 oktober 2014 Skrivtid:
Läs merkth/dh2640/grip09 res checkin grip09 course join grip09
Kursinnehåll Välkomna! Yngve Sundblad y@kth.se 08-7907147 Rum 4621, Lindstedtsv.5, plan 6 (vid Torget) Period 3: Historia, 2D grafik, Photoshop, Aliasing, InterakBonsprogrammering, Teknisk människa datorinterakbon,
Läs merStöd inför omtentamen i Linjär algebra TNA002.
LINKÖPINGS UNIVERSITET ITN, Campus Norrköping Univ lekt George Baravdish Stöd inför omtentamen i Linjär algebra TNA002. Läsråd: Detta är ett stöd för dig som vill repetera inför en omtentamen. 1. Börja
Läs merLinjär algebra på 2 45 minuter
Linjär algebra på 2 45 minuter π n x F(x) Förberedelser inför skrivningen Den här genomgången täcker förstås inte hela kursen. Bra sätt att lära sig kursen: läs boken, diskutera med kompisar, gå igenom
Läs merMatematiska tillämpningar i 3Dgrafik
LITH-ITN-EX 4/37--SE Matematiska tillämpningar i 3Dgrafik Eamensarbete utfört i Matematik och grafik vid Linköpings Tekniska Högskola, Campus Norrköping Patrik Totero Julian Shabo Handledare: George Basta
Läs mer6. Samband mellan derivata och monotonitet
34 6 SAMBAND MELLAN DERIVATA OCH MONOTONITET 6. Samband mellan derivata och monotonitet Antag att funktionen f är deriverbar på ]a,b[. Vi vet att derivatan f ( 0 ) i 0 ]a,b[ är riktningskoefficienten för
Läs mertal. Mängden av alla trippel av reella tal betecknas med R 3 och x 1 x 2 En sekvens av n reella tal betecknas med (x 1, x 2,, x n ) eller
Augusti, 5 Föreläsning Tillämpad linjär algebra Innehållet: linjen R, planet R, rummet R, oh vektor rummet R n Matriser punkter oh vektorer i planet, rummet, oh R n Linjen, planet, rummet, oh vektor rummet
Läs merKonvexa höljet Laboration 6 GruDat, DD1344
Konvexa höljet Laboration 6 GruDat, DD1344 Örjan Ekeberg 10 december 2008 Målsättning Denna laboration ska ge dig övning i att implementera en algoritm utgående från en beskrivning av algoritmen. Du ska
Läs mer1 Ortogonalitet. 1.1 Skalär produkt. Man kan tala om vinkel mellan vektorer.
Ortogonalitet Man kan tala om vinkel mellan vektorer.. Skalär produkt Vi definierar längden (eller normen) av en vektor som ett reellt tal 0 (Se boken avsnitt.). Vi definierar skalär produkt (Inner product),
Läs merLINJÄRA AVBILDNINGAR
LINJÄRA AVBILDNINGAR Xantcha november 05 Linjära avbildningar Definition Definition En avbildning T : R Ñ R (eller R Ñ R ) är linjär om T pau ` bvq at puq ` bt pvq för alla vektorer u, v P R (eller u,
Läs mer