Kaos i klassrummet. = a(1 x n. )x n Formeln x n+1. Itereringsformeln x n+1
|
|
- Oskar Sundberg
- för 8 år sedan
- Visningar:
Transkript
1 Kaos i klassrummet Följande artikel sändes till Nämnarens redaktion redan under vt 91. Gunilla Ljung, Västerhaninge, började sedan samma höst ny anställning vid Skolverket, men GON-projektet med grafritande räknare har fortsatt och utvidgats vid Fredrika Bremergymnasiet och även fått efterföljare vid flera andra gymnasieskolor. Kaos i vardag och matematik Kaos i klassrummet och vid det egna skrivbordet är förmodligen inte någon nyhet. Förvirring och oordnad massa, som kaos förklaras med i NORDISK FAMILJE- BOK, förefaller snarare tillhöra vardagens avigsidor än ett tillstånd att eftersträva för en matematiklärare och hennes elever. Men kaosmatematik innebär också ett nytt spännande fält inom ämnet. Det unika är att, trots att det handlar om förhållandevis nyupptäckt matematik, så är den inte svårare än att man kan behandla området inom NT-linjens matematikkurs. Merparten av gymnasiets matematikkurs har ju annars minst 300 år på nacken. För att man i en klass ska kunna arbeta med kaosmatematik fordras dock tillgång till dator. Inom GON-projektet på Fredrika Bremergymnasiet i Haninge (Se Nämnaren nr 1, 1991) har varje elev i de deltagande T-klasserna tillgång till en egen grafräknare av typ CASIO fx-7000 G. Programförslagen i denna artikel är tänkta för den räknaren, men kan naturligtvis modifieras för andra modeller och fabrikat av grafräknare. Figurerna, som illustrerar artikeln, är gjorda på Casio fx-8500 G, kopplad till en skrivare. Enklare exempel på iterering tas upp redan i årskurs 1 på NT-linjen och avsnittet om Feigenbaumsystemen kan följdaktligen behandlas redan i slutet av det första gymnasieåret. Eftersom Mandelbrotmängden är en utvidgning av Feigenbaumsystemen i det komplexa talplanet lämpar sig detta avsnitt bäst som fortsättning på fördjupningsavsnittet "Komplexa tal" i årskurs 3. Utgående från vad denna artikel innehåller kan intresserade elever också arbeta vidare inom området "kaos och fraktaler" i sina specialarbeten. Sist i artikeln rekommenderas lämplig referenslitteratur. Itereringsformeln x n+1 Formeln x n+1 kan ses som en modifierad formel för exponentiell tillväxt. För x-värden mycket nära noll får formeln utseendet x n+1 ax n. a kan identifieras som förändringsfaktorn 1+p/100, där p anger den procentuella tillväxten. Parentesfaktorn (1-x n ) är en modifierande faktor, som innebär att tillväxten minskar då värdet på x ökar. För a<3 utgör formeln x n+1 en matematisk modell för ett system, som för ett litet begynnelsevärde i början tillväxer i det närmaste exponentiellt, men där tillväxtkurvan så småningom planar ut. För att räknearbetet inte ska bli alltför betungande är det lämpligt att göra ett enkelt program, som för valfria värden på a och på begynnelsevärdet x 0 stegvis itererar fram nya x-värden. Följande program undersökninger x-värdets tillväxt då 1<a<3 och 0 x 0 1. Programmet stegas fram genom att man trycker på EXE. Programmet avbyts genom att man trycker på AC. 36 Nämnaren nr 3, 1992
2 Prgm 1 "ANGE A"? A "ANGE X0"? X AX(1 X) X / Välj först x 0 0 och därefter x 0 närmare 1 och jämför förloppet. Pröva även med 3 a 4. Feigenbaum-system Ett iterativt system som uppfyller villkoren: x n+1 där 1<a 4 och 0 x 0 1 kallas för ett Feigenbaum-system. Genom att använda räknarens plot-funktion kan man grafiskt visa x n -värdena som funktion av n (antalet iterationer). Liksom program 1 stegas detta program fram med EXE och avbryts med AC. Prgm 2 Range 1, 30, 5, 5, 1.5, 1 "ANGE A"? A "ANGE X0"? B 0 N Plot N, B AB(1-B) B N+1 N Plot N, B Line / a<3 ger 1-cykel 3 a<3,4495 ger 2-cykel 3,5541 ger 4-cykel 3,5644 ger 8-cykel 3,5688 ger 16-cykel 3,5697 ger 32-cykel a 3,57 ger kaos För 1<a<3 kommer x n att gå mot ett bestämt gränsvärde, s k fixpunkt. Lösning Nämnaren nr 3, 1992 av ekvationen x = a(1 x)x ger gränsvärdet x = 1 1/a. En 1-cykel uppkommer. a = 2 x 0 För 3 a<3,4495 kommer x n efter ett antal iterationer att pendla mellan två gränsvärden och man får en 2-cykel. a = 3,2 x 0 För 3,4495 a<3,5541 får man en 4-cykel. a = 3,5 x 0 För a 3,57 utbryter kaos, dvs x n saknar gränsvärden. a = 3,8 x 0 37
3 Undantag finns dock. För vissa bestämda a-värden uppkommer cykler inom kaosområdena. a = 3,741 x 0 Det finns fler a-värden större än 3,6 som ger upphov till cykler av olika ordning. Pröva! Gränsvärdenas beroende av a Programmet ändras för att grafiskt visa gränsvärdet/värdena som funktion av a. Genom att först låta programmet iterera 20 gånger och sedan rita in x n i grafen, kommer grafen att visa eventuella fixpunkter för givet a-värdet. Programmet 3 stegas fram med EXE och avbryts med AC på samma sätt som program 1 och 2. Prgm 3 Range 0.5, 4, 1, 0.5, 1.5, 1 20 R "ANGE A"? A "ANGE X0"? B AB(1-B) B Dsz R Lbl 2 Plot A,B / AB(1 B) B Goto 2 Feigenbaum-träd Om programmet görs om så att a-värdena automatiskt stegas fram i intervallet 1<a 4 kommer grafen att visa det sk Feigenbaumträdet. Programmet är gjort så att Prgm 4 är huvudprogrammet, som i sin tur använder sig av Prgm 5 på samma sätt som programspråket Pascal m fl utnyttjar procedurer. Programmet itererar först 20 gånger för att nå fixpunkterna och sedan ytterligare 20 gånger för att plotta x n. På så sätt visar grafen om en eller flera fixpunkter existerar eller om tillståndet är kaotiskt. Prgm 4 Range 0.5, 4, 1, 0.5, 1.5, 1 1 A 0.2 B A A Prog 5 A < 4 => Prgm 5 20 R AB(1 B) B Dsz R 20 L Lbl 2 AB(1 B) B Plot A,B Dsz L Goto 2 Då programmet upprepas för olika a-värden mellan 1 och 4 ser man hur x n för vissa a-värden går mot en eller flera fixpunkter medan för andra a-värden på ett kaosartat sätt antar olika värden. 38 Nämnaren nr 3, 1992
4 För att se det stora fönstret i förstoring görs ändringen Range samt små ändringar i programmet: Range 3, 4, 0.2, 0.5, 1.5, 1 3 A A A för program 4 respektive för program R 50 L Förstoring av det 6-cykliska fönstret fås med följande ändringar: Range 3.6, 3.8, 0.002, 0.5, 1.5, A A A Den markerade punktmängden kallas för Mandelbrotmängden. Program för CASIO fx-7000 G: Programkörningen tar ca en och en halv timme. Prgm 6 Range 0, 4.7, 0.5, 1.65, 1.65, A A A A 4 => Goto B Lbl 2 B B A 2 + B 2 16 => 0.5 U 0 V 20 N Lbl 3 U U 2 + V 2 S 2UV V T AS + BT U BS AT V U 2 + V 2 > 100 => Goto 2 Dsz N Goto 3 Plot A, B B < 1.3 => Goto 2 Lbl 4 Mandelbrotmängden Om man utvidgar till de komplexa talen och sätter a = A +ib och (i stället för x) z = U + iv där 1<A 4 och 0 U 0 1 blir formeln x n+1 transformerad till: U n+1 = A(U n U 2 + n V2 ) + B(2U V V ) n n n n V n+1 = A(V n 2U n V n ) + B(U n U 2 n +V2 ) n För vissa värden a kommer z att cykliskt anta bestämda värden, för andra a-värden kommer z inte att följa någon cykel. De a- värden, som ger upphov till cykliska förlopp markeras i det komplexa talplanet. Nämnaren nr 3,
5 Att fortsätta med Både Feigenbaumträdet och Mandelbrotmängden har en fraktal karaktär. Det innebär att man genom att förstora vissa partier i den ursprungliga bilden får en ny bild med större upplösning, som är mycket snarlik den föregående. Mönstret tycks upprepa sig på samma sätt som blomkålshuvudets små buketter ser ut som miniatyrkålhuvuden. En tänkbar fortsättning på arbetet med kaos och fraktaler vore att förstora några partier av Mandelbrotnängden genom enkla förändringar i programmet. Det finns flera itereringsfunktioner, som ger upphov till Feigenbaumträd, t ex x n+1 = asin(πx n ) 0.85 a 1. Se Kurt Jacbsens bok "Fra Lineær Vækst til Kaos". Vill man fortsätta med andra mängder i det komplexa talplanet finns bl a Juliamängderna. Se t ex Hans Wallins "Matematiska bilder av fraktaler och kaos". Juliamängderna gör sig bäst i färggrafik, men de elever, som vill fortsätta så långt inom området, får väl lämna klassrummet och bege sig till datasalen. Själv tycker jag det är fascinerande att det går att skapa så mycket matematisk kaos i klassrummet med så enkla medel som en programmerbar grafritande räknare. Räknare TI-81 För de skolor som använder Texas räknare kompletterar jag artikeln med program till Texas räknare TI-81. Program 1 Prgm 1:ITER :Disp "ANGE A" :Input A :Disp "ANGE XØ" :Input X :Disp X :Pause Programmet stegas fram genom att man trycker på ENTER. Programmet avbryts genom 2nd OFF. Program 2 Prgm 2:GRAF :ClrDraw :Disp "ANGE A" :Input A :Disp "Ange XØ" :Input X :Ø N :AX(1 X) Y :N + 1 N :Line (N 1, X, N, Y) :Y X :Pause RANGE -Ø.1, 3Ø, 5, -Ø.5, 1.5, 1 Programmet stegas fram med ENTER. Programkörningen bryts med 2nd OFF. Program 3 Innan första körningen bör skärmen rensas: 2nd DRAW 1 ENTER. :Prgm 3:ITERGRAF :Disp "ANGE A" :Input A :Disp "ANGE XØ" :Input X :2Ø R :AX(1-X) X :DS<(R,1) :Lbl 2 : PT On(A,X) :Pause Programmet stegas fram med ENTER 40 Nämnaren nr 3, 1992
6 och avbryts med 2nd OFF precis som program 1 och 2. Program 4 RANGE Ø.5, 4, 1, Ø.5, 1.5, 1 :Prgm 4: Feigen A :ClrDraw :1 A :Ø.2 X :A + Ø.Ø2 A :Prgm 5 :If A < 4 :End Program 5 Prgm 5: Feigen B :2Ø R :DS < (R,1) :2Ø L :Lbl 2 :PT On(A,X) :DS < (L,1) Program 6 Ställ in RANGE Ø, 4.5, Ø.5, 1.5, 1.5, Ø.2 Prgm 6:MANDEL :1 A :A+Ø.Ø5 A :If A 4 :Goto 4 : 1.3 B :Lbl 2 :B+Ø.Ø5 B :If A 2 + B 2 16 :Ø.5 U :Ø V :2Ø N :Lbl 3 :U U 2 + V 2 S :2UV V T :AS + BT U :BS AT V :If U 2 + V 2 > 1ØØ :DS < (N,1) :Goto 3 :PT On(A,B) :If B < 1.3 :Lbl 4 Itererar först 20 ggr för att nå fixpunkterna. Itererar sedan ytterligare 20 ggr ochplottar x-värdena. x 0 sätts till 0,2. Referenslitteratur Carleson, L. (1989). Iteration av kvadratiska polynom. Välj specialarbete i matematik. Djursholm. Institut Mittag-Leffler. Frantz, M. & Lazarnick, S. (1991). The Mandelbrot Set in the Classroom. Matematics Teacher. March Gleick, J. (1988). Chaos.Londan. Sphere Books Ltd. Jakobsen, K. (1989). Fra Lineær vækst til Kaos. Köpemhamn. Lademann Læremidler. Ohlén, G. (1989).Kaos. Malmö. Liber. Wallin, H. (1989). Kaotiska mängder. Elementa 69, nr 4, sid Wallin, H. (1989). Matematiska bilder av fraktaler och kaos. Matematiska institutionen. Umeå universitet. Winge, S. (1991). Vetenskap eller bara vackra bilder? (Sammandrag av NoK:s Ma-redaktion). MatematikNytt mars Stockholm. Natur och Kultur. Nämnaren nr 3,
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Iterationer på ett intervall av Fredrik Bratt 2011 - No 3 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM
Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS
Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en
Kapitel 16: Programmering
Kapitel 16: mering Innehåll Komma igång: Volymen av en cylinder...2 Skapa och ta bort program...4 Skriva instruktioner och köra program...5 Redigera program...6 Kopiera och byta namn på program...7 PRGM
LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M
TANA21+22/ 5 juli 2016 LAB 1. FELANALYS 1 Inledning I laborationerna används matrishanteringsprogrammet MATLAB. som genomgående använder dubbel precision vid beräkningarna. 1.1 Innehåll Du ska 1. bestämma
Provuppgifter i Norge för programmen 2P och 2P-Y våren 2012
Provuppgifter i Norge för programmen 2P och 2P-Y våren 2012 Av: Bjørn Bjørneng och Tor Andersen Nationella matematikprovet våren 2012 blev en katastrof för många elever som skrev provet för 2P eller 2P-Y.
Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 5 GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Introduktion till MATLAB
29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna
Förkortning och förlängning av rationella uttryck (s. 29 Origo 3b)
1 Print 1 Algebraiska 2 Variabler 1 Algebraiska 3 Input 1 Algebraiska 4 For 1 Algebraiska uttryck, Rationella uttryck Förkortning och förlängning av rationella uttryck (s. 29 Origo 3b) Eleverna kan träna
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 13:e januari klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 13:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 4 GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 26 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 26 november 2015 Sida 1 / 28 Föreläsning 6 Minsta kvadrat problem. Polynom. Interpolation. Rötter. Tillämpningar:
3137 Bestäm ekvationen för den räta linje som går genom punkterna med koordinaterna a) (5, 3) och (3, 5)
vux Lektion Kapitel Uppgift Lösning med programmering 3 Input Räta linjens ekvation 4 For 1 Algebra, Rita grafen till en andragradsfunktion 3137 Bestäm ekvationen för den räta linje som går genom punkterna
Symmetri är ett begrepp, som kan berika matematikstudierna i alla åldrar.
Thomas Martinsson Symmetri skön matematik för många sinnen Symmetri förekommer inom bilder och att skapa symmetriska bilder kan berika undervisningen i matematik. Med hjälp av bilderna kan förståelsen
Kort introduktion till Casio fx-9750 GII. Knappsats
Kort introduktion till Casio fx-9750 GII Knappsats För ytterligare information kontakta Viweka Palm Viweka.palm@casio.se Tel 08-442 70 25 1 De vanligaste programmen: RUN- MAT Vanliga beräkningar och matrisberäkning
14 min 60 s min 42 s 49m 2 =18 s m 2, alltså samma tid. Vi kan säga att den tid som mamman behövde åt dammsugning var beroende av husets storlek.
PASS 10. FUNKTIONER 10.1 Grundbegrepp om funktioner Mamman i den finländska modellfamiljen från pass fyra brukade dammsuga det 100 m 2 stora huset varje lördag. Det tog 30 minuter. Efter att pappan hade
MMA132: Laboration 2 Matriser i MATLAB
MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen
Uppsala Universitet Matematiska Institutionen Bo Styf. Lösningar till kryssproblemen 1-5. Uppgifter till lektion 1: = 10 x. = x 10.
Uppsala Universitet Matematiska Institutionen Bo Styf Envariabelanalys, 10 hp STS, X 2010-10-27 Uppgifter till lektion 1: 1. Lös olikheten 2x + 1 > 3. Lösningar till kryssproblemen 1-5. Lösning. Olikheten
5 Blandade problem. b(t) = t. b t ln b(t) = e
5 Blandade problem 5.1 Dagens Teori Ett person sätter in 10000 kr på banken vid nyår 2000 till 4% ränta. Teckna en funktion, b(t) för beloppets utveckling. b(t) = 10000 1.04 t Skriv om funktionen med basen
Sekantmetoden Beräkningsmatematik TANA21 Linköpings universitet Caroline Cornelius, Anja Hellander Ht 2018
Sekantmetoden Beräkningsmatematik TANA21 Linköpings universitet Caroline Cornelius, Anja Hellander Ht 2018 1. Inledning Inom matematiken är det ofta intressant att finna nollställen till en ekvation f(x),
Ickelinjära ekvationer
Löpsedel: Icke-linjära ekvationer Ickelinjära ekvationer Beräkningsvetenskap I Varför är det svårt att lösa icke-linjära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod
Precis som var fallet med förra artikeln, Geogebra för de yngre i Nämnaren
Publicerad med tillstånd av Nämnaren Thomas Lingefjärd Geogebra i gymnasieskolan En tilltalande egenskap med Geogebra är att programmet kan användas tvärs över stora delar av utbildningssystemets matematikkurser.
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:
SKOLUTVECKLIGSPROJEKT MED GEOGEBRA. Jaana Zimmerl Suneson (Älvkullegymnasiet) jaana.zimmerl.suneson@alvkullegymnasiet.se
ERFARENHETER FRÅN SKOLUTVECKLIGSPROJEKT MED GEOGEBRA Jaana Zimmerl Suneson (Älvkullegymnasiet Karlstad) jaana.zimmerl.suneson@alvkullegymnasiet.se mirela.vinerean@kau.se GeoGebra i matematikundervisningen
1 Föreläsning 12, Taylors formel, och att approximera en funktion med ett polynom
red Föreläsning, Taylors formel, och att approximera en funktion med ett polynom. Taylorpolynom. Fakultet 0! =, läses noll-fakultet.! =. Vidare är! = = och 3! = 3 =. Allmänt fˆr n =,,,..., n! =... n n.
Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.
1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer
16 Programmering TI -86 F1 F2 F3 F4 F5 M1 M2 M3 M4 M5
16 Programmering Skriva program till TI-86... 214 Köra program... 221 Arbeta med program... 223 Hämta och köra assemblerprogram... 226 Arbeta med strängar... 227 TI -86 M1 M2 M3 M4 M5 F1 F2 F3 F4 F5 214
Räknare och datorer i funktion
Räknare och datorer i funktion Gunnar Gjone Datorer och grafiska räknare är användbara hjälpmedel i undervisningen. Här ges exempel på de möjligheter som enkla räknare och kalkylprogram kan erbjuda vid
Interpolation Modellfunktioner som satisfierar givna punkter
Interpolation Modellfunktioner som satisfierar givna punkter Några tillämpningar Animering rörelser, t.ex. i tecknad film Bilder färger resizing Grafik Diskret representation -> kontinuerlig 2 Interpolation
GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april
GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare Karlstads universitet 19-0 april Exempel på elevaktiviteter framtagna i skolutvecklingsprojektet IKT och lärande i matematik 1
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 19:e Mars, 2019 Provkod: TEN1 Hjälpmedel:
NATIONELLT PROV I MATEMATIK KURS D VÅREN 1997. Tidsbunden del
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT
Envariabelanalys 5B1147 MATLAB-laboration Derivator
Envariabelanalys 5B1147 MATLAB-laboration Derivator Sanna Eskelinen eskelinen.sanna@gmail.com Sonja Hiltunen sonya@gmail.com Handledare: Karim Dao Uppgift 15 Problem: Beräkna numeriskt derivatan till arctan
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 13:e Mars, 2018 Provkod: TEN1 Hjälpmedel:
Från förra gången: Newton-Raphsons metod
Från förra gången: Newton-Raphsons metod Idé: För att hitta en rot till f(x)=0 utgår man från en första Approximation x 0 och använder derivatan för att dra en tangent som skär x-axeln närmare roten och
Fler uppgifter på andragradsfunktioner
Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har
Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:
Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse
Kontrollskrivning KS1T
Kontrollskrivning KS1T Matematik 2 Kurskod HF100 Skrivtid 8:15-11:15 måndagen 9 februari 2009 Tentamen består av 4 sidor Hjälpmedel: Utdelat formelblad. Räknedosa. Formelsamling Korrekt löst uppgift ger
Introduktion till Matlab
Introduktion till Matlab Inledande matematik, I1, ht10 1 Inledning Detta är en koncis beskrivning av de viktigaste delarna av Matlab. Till en början är det enkla beräkningar och grafik som intresserar
Kapitel Ekvationsräkning
Kapitel Ekvationsräkning Din grafiska räknare kan lösa följande tre typer av beräkningar: Linjära ekvationer med två till sex okända variabler Högregradsekvationer (kvadratiska, tredjegrads) Lösningsräkning
NATIONELLT PROV I MATEMATIK KURS E HÖSTEN 1996
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av mars 1997. NATIONELLT PROV
Funktioner Exempel på uppgifter från nationella prov, Kurs A E
Funktioner Exempel på uppgifter från nationella prov, Kurs A E Uppgifter ur Nationella prov Kurs A Ur del II utan räknare: När en frysbox stängs av stiger temperaturen. Följande formel kan användas för
DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604 för D, den 5 juni 2010 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF164 för D, den 5 juni 21 kl 9.- 14.. Examinator: Olof Heden. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen.
Fri programvara i skolan datoralgebraprogrammet Maxima
Per Jönsson & Thomas Lingefjärd Fri programvara i skolan datoralgebraprogrammet Maxima I takt med att priserna sjunker utrustar allt fler skolor sina elever med små bärbara datorer. Detta innebär nya och
Förkortning och förlängning av rationella uttryck (s. 27 Origo 3c)
1 Print 1 Algebraiska 2 Variabler 1 Algebraiska 3 Input 1 Algebraiska 4 For 1 Algebraiska uttryck, Rationella uttryck 1 Algebraiska uttryck, Gränsvärden Förkortning och förlängning av rationella uttryck
Lathund, samband & stora tal, åk 8
Lathund, samband & stora tal, åk 8 Den vågräta tallinjen kallas x-axeln och den lodräta tallinjen kallas y-axeln. Punkten där tallinjerna skär varandra kallas origo (0,0). När man beskriver en punkt i
Räknarinstruktioner för CASIO FX-9750GII till Matematik Origo 2c
Räknarinstruktioner för CASIO FX-9750GII till Matematik Origo 2c Sidan 17 Lös ekvationen med hjälp av den grafritande räknaren Vi löser uppgiften med hjälp av grafprogrammet GRAPH. Skriv först om ekvationen
Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet
FACIT: Numeriska metoder Man måste lösa tre problem. Problemen 1 och är obligatoriska, och man kan välja Problemet 3 eller 4 som den tredje. Hjälp medel: Miniräknare (med Guidebook för miniräknare) och
Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration
10 februari 2017 Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration Syfte med övningen: Introduktion till ett par numeriska metoder för lösning av ekvationer respektive
Kartläggningsmaterial för nyanlända elever SVENSKA. Algebra Matematik. 1 2 Steg 3
Kartläggningsmaterial för nyanlända elever Algebra Matematik 1 2 Steg 3 SVENSKA Kartläggningsmaterial för nyanlända elever Algebra åk 3 MA 1. Fortsätt att rita mönstret a) b) 2. Figurerna blir större och
M0038M Differentialkalkyl, Lekt 15, H15
M0038M Differentialkalkyl, Lekt 15, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 15 Repetition Lekt 14 Bestäm följande gränsvärden cos x tan x lim x 0 x x + ln ( e 2x
Del I: Lösningsförslag till Numerisk analys,
Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan
1, 2, 3, 4, 5, 6,...
Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte
Vetenskapsdagen 2016 SciLab för laborativa inslag i matematik eller fysik
Vetenskapsdagen 2016 SciLab för laborativa inslag i matematik eller fysik Fredrik Berntsson (fredrik.berntsson@liu.se) 5 oktober 2016 Frame 1 / 23 Bakgrund och Syfte Inom kursen Fysik3 finns material som
Lektion 1, Envariabelanalys den 8 september ε < 1 < ε för alla x > N. ( ) I vårt exempel är f(x) = 1/x, så vi ska alltså ta fram ett N så att
Lektion, Envariabelanals den 8 september 999 = 0 Låt oss rita ut alla punkter i talplanet som har -koordinat nära det förmodade gränsvärdet 0 Vi får då en mängd som i figuren till höger Med nära 0 menar
En vanlig uppgift är att bestämma max resp min för en trigonometrisk funktion och de x- värden för vilka dessa antas.
Max och min för trigonometriska funktioner En vanlig uppgift är att bestämma max resp min för en trigonometrisk funktion och de x- värden för vilka dessa antas. Ta t.ex y = 12 sin(3x-90) När man ska studera
Per Holm Inlämningsuppgift 2, PTDC 2014/15 2 / 19. Med c = i konvergerar inte talföljden:
Inlämningsuppgift 2, Mandelbrot Mandelbrots talföljd Beräkna och rita bild av Mandelbrotmängden. Färdigskrivet användargränssnitt. Ganska mycket och ganska komplext börja i tid! 0, k = 0 z k = + c, k =
Newtons metod och arsenik på lekplatser
Newtons metod och arsenik på lekplatser Karin Kraft och Stig Larsson Beräkningsmatematik Chalmers tekniska högskola 1 november 2004 Introduktion Denna övning ingår i Lärardag på Chalmers för kemilärare
Laboration: Brinntid hos ett stearinljus
Laboration: Brinntid hos ett stearinljus Syftet med experimentet är att undersöka hur snabbt ett stearinljus brinner. Dessutom ska du använda dina mätdata till att uppskatta hur länge ljuset kommer att
Preliminärt lösningsförslag till del I, v1.0
Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel
Lektion Kapitel Uppgift Lösning med programmering
1 Print 1 Tal, Prioriteringsregler 3 Procent, Procentuella förändringar 2 Variabler Teckna och tolka uttryck Ekvationslösningens grunder 1236 Beräkna utan räknare. a) 6 + 4 3 b) 9 4 12 3 c) 7 (3 + 12)
2 Tillämpad Matematik I, Övning 1 HH/ITE/BN. De objekt som finns G men inte i H.
HH/ITE/BN Tillämpad Matematik I, Övning 0 3 Tillämpad Matematik I Övning Allmänt 0 Övningsuppgifterna, speciellt Typuppgifter i första hand, är exempel på uppgifter du kommer att möta på tentamen. På denna
Funktioner. Räta linjen
Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter
Absolut möjligt. Problemet. per-eskil persson
per-eskil persson Absolut möjligt Absolutbelopp nämns inte i kursplanerna för gymnasiet, samtidigt som förkunskaper kring dem efterfrågas av högskolan. Med utgångspunkt i en kurs för lärarstudenter konstruerades
Funktionsstudier med derivata
Funktionsstudier med derivata Derivatan ett kraftfullt verktyg för att studera och tolka funktioner Det här avsnittet handlar om att man kan använda derivatan till att bestämma en funktions egenskaper
Om datorns användning matematikundervisningen
i Om datorns användning matematikundervisningen Syftet med denna artikel är att diskutera, och ge några exempel på, hur datorn med fördel kan användas i matematikundervisningen. Karl Greger och Thomas
Den räta linjens ekvation
Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är
MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt
MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5
Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.
Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer
Klassrumshantering Av: Jonas Hall. Högstadiet. Material: TI-82/83/84
Inledning Det som är viktigt att förstå när det gäller grafräknare, och TI s grafräknare i synnerhet, är att de inte bara är räknare, dvs beräkningsmaskiner som underlättar beräkningar, utan att de framför
Räknarinstruktioner för CASIO FX-9750GII till Matematik Origo 1c
Räknarinstruktioner för CASIO FX-9750GII till Matematik Origo 1c Sidan 10 Beräkna uttrycket Uppgiften beräknas i programmet RUN-MAT. Gå först in i huvudmenyn genom att trycka p. Markera RUN-MAT. Tryck
Aktiviteter Del 4. h succesivt anta mindre värden, som till exempel π. , och låta programmet summera sekanternas längder från x = a till x = b.
Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg II Del 4: Programmering i matematik Aktiviteter Del 4 Här finns ett antal aktiviteter att välja mellan. Det ena handlar om att
Låt eleverna lösa uppgifterna med huvudräkning och sedan jämföra med resultatet av ett program, t.ex. print(6 + 4 * 3)
1 Print 1 Tal, Prioriteringsregler 3 Procent, Procentuella förändringar 2 Variabler Teckna och tolka uttryck Ekvationslösningens grunder 1236 Beräkna utan räknare. a) 6 + 4 3 b) 9 4 12 3 c) 7 (3 + 12)
6 Derivata och grafer
6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000
Bedömningsanvisningar
Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet
Föreläsning 3: Ekvationer och olikheter
Föreläsning 3: Ekvationer och olikheter En ekvation är en likhet som innehåller en flera obekanta storheter. Exempel: x = 9, x är okänd. t + t + 1 = 7, t är okänd. Vi säger att ett värde på den obekanta
Fråga 3: Räknaren är på men min skärm är blank. Allmänt Fråga 1: Jag vill avsluta/rensa/komma ut från det jag håller på med
Allmänt Fråga 1: Jag vill avsluta/rensa/komma ut från det jag håller på med Fråga 3: Räknaren är på men min skärm är blank. Svar 1: Pröva följande alternativ: Tryck C Tryck yî Tryck o eventuellt följt
Konvergens för iterativa metoder
Konvergens för iterativa metoder 1 Terminologi Iterativa metoder används för att lösa olinjära (och ibland linjära) ekvationssystem numeriskt. De utgår från en startgissning x 0 och ger sedan en följd
Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,
Mat-. Grundkurs i matematik Tentamen och mellanförhörsomtagning,..23 Skriv ditt namn, nummer och övriga uppgifter på varje papper! Räknare eller tabeller får inte användas i detta prov! Gripenberg. Skriv
Newtons metod. 1 Inledning. CTH/GU LABORATION 3 MVE /2014 Matematiska vetenskaper
CTH/GU LABORATION 3 MVE270-2013/2014 Matematiska vetenskaper Newtons metod 1 Inledning Vi skall lösa system av icke-linjära ekvationer. Som exempel kan vi ta, { x1 (1 + x 2 2) 1 = 0 x 2 (1 + x 2 1 ) 2
ALA-a Innehåll RÄKNEÖVNING VECKA 7. 1 Lite teori Kapitel Kapitel Kapitel Kapitel 14...
ALA-a 2005 Innehåll 1 Lite teori 3 RÄKNEÖVNING VECKA 7 1.1 Kapitel 7....................................... 3 1.2 Kapitel 12....................................... 3 1.3 Kapitel 13.......................................
Gymnasiets nationella prov och KTHs förkunskapskrav en matematisk kulturklyfta?
Gymnasiets nationella prov och KTHs förkunskapskrav en matematisk kulturklyfta? Hans Thunberg, KTH Matematik thunberg@mathkthse Sammanfattning Det nationella provsystemet har bl a som uppgift att tydliggöra
Logaritmer. Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos
Logaritmer Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos 24 september 2003 Innehåll 1 Introduktion 2 2 Naturliga logaritmer 3 2.1 Talet e................................. 3 2.2 Den naturliga
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).
Integraler undersökande arbetssätt med GeoGebra. S. Mehanovic och P. Jönsson
Integraler undersökande arbetssätt med GeoGebra S. Mehanovic och P. Jönsson GeoGebra är ett matematikprogram utvecklat för att användas i matematikundervisningen från grundskola till universitetsnivå.
Extramaterial till Matematik Y
LIBER PROGRAMMERING OCH DIGITAL KOMPETENS Extramaterial till Matematik Y NIVÅ ETT Samband och förändring ELEV Olika kalkylprogram, till exempel Google Kalkylark och Microsoft Excel, kan användas till en
F3 PP kap 3, ekvationslösning och iteration, forts.
F3 BE300 & 3 Page 1 of 6 F3 PP kap 3, ekvationslösning och iteration, forts. Övning från förra gången: Visa, att o f (x) > 0 i (a,b) så ligger sekanten geno (a,f(a)) och (b,f(b)) över kurvan. Tips: Låt
Sidor i boken f(x) = a x 2 +b x+c
Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +
Just nu pågår flera satsningar för att förbättra svenska elevers måluppfyllelse
Andersson, Losand & Bergman Ärlebäck Att uppleva räta linjer och grafer erfarenheter från ett forskningsprojekt Författarna beskriver en undervisningsform där diskussioner och undersökande arbetssätt utgör
SF1625 Envariabelanalys
Modul 4: Tillämpningar av derivata Institutionen för matematik KTH 22-23 september 2015 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel
Fixpunktsiteration. Kapitel Fixpunktsekvation. 1. f(x) = x = g(x).
Kapitel 5 Fixpunktsiteration 5.1 Fixpunktsekvation En algebraisk ekvation kan skrivas på följande två ekvivalenta sätt (vilket innebär att lösningarna är desamma). 1. f(x) = 0. En lösning x kallas en rot
Tentamen i Beräkningsvetenskap I/KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I/KF, 5. hp, 215-3-17 Skrivtid: 14 17 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Räknarinstruktioner för CASIO FX-9750GII till Matematik Origo 1b
Räknarinstruktioner för CASIO FX-9750GII till Matematik Origo 1b Sidan 30 Beräkna uttrycket Uppgiften beräknas i programmet RUN-MAT. Gör så här: Gå först in i huvudmenyn genom att trycka p. Markera RUN-MAT.
För teknologer inskrivna H06 eller tidigare. Skriv GAMMAL på omslaget till din anomyna tentamen så att jag kan sortera ut de gamla teknologerna.
Matematik Chalmers Tentamen i TMV225 Inledande matematik M, 2009 01 17, f V Telefon: Christoffer Cromvik, 0762 721860 Inga hjälpmedel. Kalkylator ej tillåten. Varje uppgift är värd 10 poäng, totalt 50
Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna
Betygskriterier Matematik E MA105 50p Respektive programmål gäller över kurskriterierna MA105 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är
Talmängder. Målet med första föreläsningen:
Moment 1..1, 1.., 1..4, 1..5, 1.. 1..5, 1..6 Viktiga exempel 1.7, 1.8, 1.8,1.19,1. Handräkning 1.7, 1.9, 1.19, 1.4, 1.9 b,e 1.0 a,b Datorräkning 1.6-1.1 Målet med första föreläsningen: 1 En första kontakt
III. Analys av rationella funktioner
Analys 360 En webbaserad analyskurs Grundbok III. Analys av rationella funktioner Anders Källén MatematikCentrum LTH anderskallen@gmail.com III. Analys av rationella funktioner () Introduktion Vi ska nu
Lösningar och kommentarer till uppgifter i 3.1
Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man