Lösningsförslag till finaltävlingen den 19 november 2005

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Lösningsförslag till finaltävlingen den 19 november 2005"

Transkript

1 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Lösningsförslg till finltävlingen den 19 novemer Vi utvecklr de åd leden och får ekvtionen vilken efter förenkling kn skrivs x 3 + xy + x 2 y 2 + y 3 = x 3 + 3x 2 y + 3xy 2 + y 3, xy(xy 3x 3y + 1) = 0 Vi ser tt ll heltlspr (x, y) där x = 0 och/eller y = 0 löser ekvtionen Ytterligre lösningr får vi genom tt etrkt ekvtionen xy 3x 3y + 1 = 0 Vänsterledet kn skrivs som (x 3)(y 3) 8, vilket ger ekvtionen (x 3)(y 3) = 8 Eftersom 8 = 1 8 = ( 1) ( 8) = 2 4 = ( 2) ( 4), kn tlpret (x 3, y 3) nt värdepren (1, 8), (8, 1), ( 1, 8), ( 8, 1), (2, 4), (4, 2), ( 2, 4), ( 4, 2) Vi får därför ytterligre ått lösningr, nämligen de tlpr (x, y) som är lik med (4, 11), (11, 4), (2, 5), ( 5, 2), (5, 7), (7, 5), (1, 1), ( 1, 1) Svr: All heltlspr (x, y) där x = 0, y = 0 smt pren (4, 11), (11, 4), (2, 5), ( 5, 2), (5, 7), (7, 5), (1, 1), ( 1, 1) 2 Låt oss studer det llmänn prolemet med n könde personer, n 1 Vi etecknr kundern med K 1, K 2,, K n i den ordning de stod i den ursprunglig kön Vi söker S n = ntlet möjlig plceringr i den ny kön För n = 1 är r en plcering möjlig; för n = 2 hr vi två möjligheter, dvs vi hr S 1 = 1 och S 2 = 2 Låt oss nu nt tt n 3 I den ny kön kn K 1 ntingen ställ sig på plts nr 1 eller plts nr 2 Om K 1 ställer sig först, kn de övrig n 1 kundern sedn plcer sig över pltsern 2, 3,, n enligt givn regler, dvs på S n 1 olik sätt Om K 1 ställer sig på ndr plts, är det r K 2 som hr rätt tt ställ sig främst De n 2 övrig kundern K 3, K 4,, K n sk därefter fördel sig över pltsern 3, 4,, n, vilket kn ske på S n 2 olik sätt Vi finner således tt S n = S n 1 +S n 2 för n 3 I uppgiften gällde det tt estämm S 12 Vi nvänder den funn rekursionsformeln och får i tur och ordning: S 3 = S 2 + S 1 = 3, S 4 = = 5, S 5 = 8, S 6 = 13, S 7 = 21, S 8 = 34, S 9 = 55, S 10 = 89, S 11 = 144 och slutligen S 12 = 233 Svr: 233 plceringr 3 Låt tringeln h sidlängdern, och c som figuren visr Enligt isektrisstsen gäller tt isektrisen till vinkeln A delr sidn BC så tt BD Det etyder tt sträckn CD hr längden +c CD = c Motsvrnde gäller för isektrisen till vinkeln C

2 Den delr sidn AB så tt AE + c BE =, vilket inneär tt sträckn AE hr längden A B c E D C Vi sk sålund vis tt vilket är ekvivlent med tt eller (1) + c + c + <, + c + c + < 1, c + c c + c < 1 Men enligt cosinusstsen är 2 = 2 + c 2 2c cos B > 2 + c 2 c, eftersom vinkeln B är > 60 (och < 180 ), dvs cos B < 1 2 Men dett inneär tt vänsterledet i (1) ökr om vi i dess nämnre ersätter 2 med 2 + c 2 c, dvs c + c c + c < c + c c 2 + c, men det senre ledet är ju är lik med 1 Följktligen måste vänsterledet i (1) vr < 1 och olikheten är visd 4 Nollställen ligger symmetriskt kring + 3d 2 = m, säg Låt g(x) = f(x + m) Då hr polynomet g nollställen 3d 2, d 2, d 2, 3d 2, och kn enligt fktorstsen skrivs för något tl c 0 Nu är g(x) = c(x + 3d 2 )(x + d 2 )(x d 2 )(x 3d 2 ) g( x) = c( x + 3d 2 )( x + d 2 )( x d 2 )( x 3d 2 ) = c(x 3d 2 )(x d 2 )(x + d 2 )(x + 3d 2 ) = g(x),

3 dvs g är en jämn funktion Då följer tt dess derivt, g, är en udd funktion Eftersom g är ett tredjegrdspolynom, är dess nollställen därför, 0,, för något tl Men då f (x) = g (x m), följer tt nollställen till f också ildr en ritmetisk följd Låt oss som tillägg t red på hur nollställen till f förhåller sig till nollställen till f Vi multiplicerr fktorern i g(x) och får enligt konjugtregeln Polynomets derivt är g(x) = c(x 2 ( d 2 )2 )(x 2 ( 3d 2 )2 ) = c(x 4 5d2 2 x2 + 9d4 16 ) g (x) = c(4x 3 2 5d2 5d 5d x) = 4cx(x 2 2 )(x + 2 ), vilket etyder tt röttern till g är 5d 2, 0, 5d 2, medn röttern till f är m 5d 2, m, m + 5d 2 5 Låt oss i rutnätet etrkt ll möjlig delkvdrter estående v fyr rutor Vi noterr då tt vrje hörnrut ingår i exkt en delkvdrt (i figuren ingår rut i den heldrgn kvdrten), vrje kntrut som inte är en hörnrut ingår i exkt två delkvdrter (rut ingår i såväl den heldrgn som i den streckde kvdrten), och vrje inre rut, dvs som inte ligger längs en knt, ingår i exkt fyr delkvdrter Rutorn i figuren nedn är mrkerde med ntlet delkvdrter som de ingår i Vi hr totlt M = olik delkvdrter, dvs M är ett jämnt tl Låt oss nu räkn ntlet svrt rutor i vr och en v de M delkvdrtern Svrt inre rutor lir därvid räknde 4 gånger, svrt kntrutor lir räknde 2 gånger och svrt hörnrutor lir räknde 1 gång Eftersom vrje delkvdrt innehåller ett udd ntl svrt rutor, smtidigt som M är ett jämnt tl, måste totl ntlet räknde svrt rutor vr jämnt Låt nu H vr ntlet svrt hörnrutor, K ntlet svrt kntrutor och I ntlet svrt inre rutor Totl ntlet räknde svrt rutor är då H + 2K + 4I Men eftersom 2K + 4I är ett jämnt tl, följer tt H måste vr ett jämnt tl Det måste lltså finns ett jämnt ntl svrt hörnrutor För eräkning v ntlet möjlig färgläggningr inser vi tt mönstret entydigt estäms v hur rutorn i den först rden och den först kolumnen är målde Om exempelvis två v rutorn, och d i figuren nedn är svrt, följer tt rutn e måste vr svrt, eftersom ntlet svrt i den heldrgn delkvdrten sk vr ett udd tl Om ll tre rutorn är svrt följer v smm skäl tt rutn e måste vr vit Färgfördelningen

4 i den heldrgn delkvdrten är lltså entydigt estämd v färgern hos rutorn, och d Vi kn fortsätt resonemnget på smm sätt med den streckde delkvdrten och konstter tt färgen i rut f är entydigt estämd v färgern hos rutorn, c och e Vi inser tt färgen på vr och en v rutorn i den ndr rden kn estämms stegvis från vänster till höger Om vi fortsätter på dett sätt rd för rd kommer smtlig rutor h färgestämts entydigt v målningen i rd 1 och kolumn 1 Hur vi än färgsätter den först rden och den först kolumnen är det lltid möjligt tt ordn så tt vrje delkvdrt i rutnätet innehåller ett udd ntl svrt rutor Då vrje rut kn måls på två sätt och då smmnlgd ntlet rutor i den först rden och den först kolumnen är = 4009, finns det följktligen sätt tt färglägg rutnätet c d e f Svr: Rutnätet kn måls på sätt 6 Låt oss först estämm den störst möjlig ren Vi inser tt ilden v tetrdedern ntingen är en tringel eller en fyrhörning När ilden är en tringel, måste denn vr en projektion v en v tetrederns sidor Den mximl ren v ilden är lik med ren v tetrederns sid, eller 3/4 (höjden mot vrje tringelsid är 3/2) Om ilden är en fyrhörning är fyrhörningens digonler projektioner v två v tetrederns knter Vrje digonl kn därför mximlt h högst längden 1, vilket gör tt fyrhörningens re är högst lik med 1/2 Denn re nts om och endst om åd digonlern hr längden 1 och ildr rät vinkel med vrndr Men dett kn åstdkomms om vi låter de ktuell kntern hos tetredern vr prllell med projektionsplnet Vi får då en re som är större än den mximl tringelren, nämligen 1/2 Låt oss nu estämm den minst möjlig ren Låt hörnen i tetredern vr A, B, C, D och ntg tt ders projektioner i plnet är resp A, B, C, D

5 A D B C I figuren är punkten D en inre punkt i tringeln A B C, men den kn eventuellt smmnfll med något v tringelhörnen eller ligg på någon v tringelsidorn Låt linjesegmentet P Q vr den invers ilden v D Det inneär tt om P utgör hörnet D i tetredern så är Q den punkt på tetredersidn ABC som är sådn tt vrje punkt på P Q projicers i D Tetredern ABCD kn då dels upp i tre deltetredrr, P QAB, P QAC och P QBC Volymen v P QAB hr smm volym som en tetreder med sytn A B D och höjden P Q Motsvrnde gäller för de åd övrig deltetredrrn, dvs volymen v tetredern ABCD är lik med volymen hos en tetreder med sytn A B C och höjden P Q Eftersom P Q 1 (vståndet melln två punkter på tetrederns yt kn högst vr en kntlängd) och då tetrederns volym är given, lir ren v ilden som minst när P Q är som störst Dett inträffr när P Q smmnfller med en v kntern, t ex när punkten D smmnfller med A Linjesegmentet P Q smmnfller då med knten DA som är ortogonl mot projektionsplnet Volymen v en regelunden tetreder med kntlängden är h, där är sytns re och h höjden mot 3 = densmm Med kntlängden 1 lir, dvs den miniml ildren, lik med 2 4 Resonemnget när ilden är en fyrhörning är likrtt Vi etecknr digonlerns skärningspunkt med P och låter linjesegmentet P Q vr den invers ilden v P Här ligger P och Q på vr sin knt Tetredern ABCD kn denn gång dels upp i fyr deltetredrr, P QAB, P QBC, P QCD och P QDA Den förstnämnd hr smm volym som en pyrmid med sytn A B C D och höjden P Q Det gäller tt P Q 1 med likhet om och endst om P Q smmnfller med en v kntern, vilket inneär tt den projicerde fyrhörningen övergår i en tringel Vi hr därmed kommit tillk till föregående fll Svr: Störst möjlig re är 1/2, minst möjlig re är 2/4

Föreläsning 7b. 3329 Längdskalan är L = 2 3

Föreläsning 7b. 3329 Längdskalan är L = 2 3 Föreläsning 7b 3329 Längdskln är L = 2 3 eller 2 : 3 som det oft skrivs i smbnd med krtor. Från teorin får vi tt A, reskln är längdskln i kvdrt det vill säg A = L 2. I denn uppgift ger det A = ( ) 2 2

Läs mer

Addition och subtraktion

Addition och subtraktion Sidor i boken 35-39 Addition och subtrktion Vi börjr med lite ritmetik. Heltlsddition innebär ing som helst problem. Här tr vi lämpligen räknedosn till hjälp. Eempel. 3+00+5 = 7 Så länge ll nämnre är lik

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b 2 a b

konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b 2 a b Tentamen i Inledande matematik för V och AT, (TMV25), 20-0-26. Till denna uppgift skulle endast lämnas svar, men här ges kortfattade lösningar. a) Bestäm { konstanterna a och b så att ekvationssystemet

Läs mer

TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING.

TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING. Armin lilovic: EXTA ÖNINGA olmeräkning TILLÄMPNINGA A INTEGALE. OLYMEÄNING. uvud verktg för volmeräkning är duelintegrl som tillör kursen i flervrielnls, men någr volmeräkningr kn vi gör med jälp v enkelintegrl.

Läs mer

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen... Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................

Läs mer

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför? Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde

Läs mer

Kängurun Matematikens hopp Benjamin 2006 A: B: C: D: E:

Kängurun Matematikens hopp Benjamin 2006 A: B: C: D: E: 3-poängsproblem : = + + Vilket tal ska frågetecknet ersättas med A: B: C: D: E: : Sex tal står skrivna på korten här intill. Vilket är det minsta tal man kan bilda genom att lägga korten efter varandra

Läs mer

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00 Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,

Läs mer

4-6 Trianglar Namn:..

4-6 Trianglar Namn:.. 4-6 Trianglar Namn:.. Inledning Hittills har du arbetat med parallellogrammer. En sådan har fyra hörn och motstående sidor är parallella. Vad händer om vi har en geometrisk figur som bara har tre hörn?

Läs mer

Finaltävling i Uppsala den 24 november 2007

Finaltävling i Uppsala den 24 november 2007 SKOLORNS MTMTIKTÄVLING Svenska Matematikersamfundet inaltävling i Uppsala den 4 november 007 örslag till lösningar Problem 1 Lös ekvationssystemet { xyzu x 3 = 9 x + yz = 3 u i positiva heltal x, y, z

Läs mer

Lathund, procent med bråk, åk 8

Lathund, procent med bråk, åk 8 Lathund, procent med bråk, åk 8 Procent betyder hundradel, men man kan också säga en av hundra. Ni ska kunna omvandla mellan bråkform, decimalform och procentform. Nedan kan ni se några omvandlingar. Bråkform

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

9. Vektorrum (linjära rum)

9. Vektorrum (linjära rum) 9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,

Läs mer

Föreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik

Föreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik Föreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik Summaregeln Om och B är disjunkta mängder så B = + B, ty innehåller inga upprepningar Produktregeln Om och B är disjunkta mängder så är B = B Exempel:

Läs mer

23 mars 2006, kl.9.00-13.00 Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 22p. för Väl Godkänd av max. 35p.

23 mars 2006, kl.9.00-13.00 Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 22p. för Väl Godkänd av max. 35p. HH / Georgi Tchilikov GEOMETRI och LINJÄR ALGEBRA, 5p. 3 mrs 6, kl.9.-3. Ing hjälpmedel, förutom skrivmteriel. Betygsgränser: 5p. för Godkänd, p. för Väl Godkänd v mx. 35p. Om ej nnt säges, gäller tt ll

Läs mer

Föreläsning 7: Trigonometri

Föreläsning 7: Trigonometri ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument

Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument Distributiva lagen a(b + c) = ab + ac 3(x + 4) = 3 x + 3 4 = 3x + 12 3(2x + 4) = 3 2x + 3 4 = 6x + 12

Läs mer

Räkneövning 1 atomstruktur

Räkneövning 1 atomstruktur Räkneövning 1 tomstruktur 1. Atomerns lägen i grfen (ett mteril som består v endst ett end tomlger v koltomer och vrs upptäckt gv Nobelpriset i fysik, 010) ligger i de gitterpunkter som viss i figuren

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

Konstruktioner. 1 Att dela en sträcka i två lika delar. I Euklidisk geometri. Johan Wild 2010-01-18. Sträcka AB skall delas i två lika delar.

Konstruktioner. 1 Att dela en sträcka i två lika delar. I Euklidisk geometri. Johan Wild 2010-01-18. Sträcka AB skall delas i två lika delar. Konstruktioner I uklidisk geometri Johan Wild 2010-01-18 c Johan Wild johan.wild@europaskolan.se Får gärna användas i undervisning, kontakta i så fall författaren. 1 tt dela en sträcka i två lika delar

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

MA002X Bastermin - matematik VT16

MA002X Bastermin - matematik VT16 MA00X Bstermin - mtemtik VT6 Något om trigonometri Mikel Hindgren februri 06 Cirkelns ekvtion Exempel Beräkn vståndet melln punktern (4, 6) och (, ). 7 6 5 4 d (, ) 4 = (4, 6) 6 = 4 4 5 6 Pythgors sts:

Läs mer

Kapitel 6. f(x) = sin x. Figur 6.1: Funktionen sin x. 1 Oinas-Kukkonen m.fl. Kurs 6 kapitel 1

Kapitel 6. f(x) = sin x. Figur 6.1: Funktionen sin x. 1 Oinas-Kukkonen m.fl. Kurs 6 kapitel 1 Kapitel 6 Gränsvärde 6. Definition av gränsvärde När vi undersöker gränsvärdet av en funktion undersöker vi vad som händer med funktionsvärdet då variabeln, x, går mot ett visst värde. Frågeställningen

Läs mer

Träning i bevisföring

Träning i bevisföring KTHs Matematiska Cirkel Träning i bevisföring Andreas Enblom Institutionen för matematik, 2005 Finansierat av Marianne och Marcus Wallenbergs Stiftelse 1 Mängdlära Här kommer fyra tips på hur man visar

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del III

Mat-1.1510 Grundkurs i matematik 1, del III Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))

Läs mer

Slutrapport Jordbruksverket Dnr. 25-12105/10 Kontroll av sniglar i ekologisk produktion av grönsaker och bär

Slutrapport Jordbruksverket Dnr. 25-12105/10 Kontroll av sniglar i ekologisk produktion av grönsaker och bär Slutrpport Jordruksverket Dnr. 25-125/ Kontroll v sniglr i ekologisk produktion v grönsker och är Projektledre: Birgitt Svensson, Område Hortikultur, SLU Innehåll sid Smmnfttning 3 Bkgrund / Motivering

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

Det som står på högersidan i en funktion brukar ibland kallas för uttryck. Vi har tidigare haft exemplet med höjdkurvan där:

Det som står på högersidan i en funktion brukar ibland kallas för uttryck. Vi har tidigare haft exemplet med höjdkurvan där: STUDIEAVSNITT 2 MATEMATISKA FORMLER Vi hr tidigre vrit inne på tt när vi retr med formler så kn en och smm formel skrivs om på fler olik sätt. Ju duktigre mn är i mtemtik desto fler olik sätt tt säg smm

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

Snabbslumpade uppgifter från flera moment.

Snabbslumpade uppgifter från flera moment. Snabbslumpade uppgifter från flera moment. Uppgift nr Ställ upp och dividera utan hjälp av miniräknare talet 48 med 2 Uppgift nr 2 Skriv talet 3 8 00 med hjälp av decimalkomma. Uppgift nr 3 Uppgift nr

Läs mer

Byt till den tjocka linsen och bestäm dess brännvidd.

Byt till den tjocka linsen och bestäm dess brännvidd. LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,

Läs mer

D A B A D B B D. Trepoängsproblem. Kängurutävlingen 2012 Benjamin

D A B A D B B D. Trepoängsproblem. Kängurutävlingen 2012 Benjamin Kängurutävlingen enjamin Trepoängsproblem. Skrivtavlan i klassrummet är 6 meter bred. Mittdelen är m bred. De båda yttre delarna är lika breda. Hur bred är den högra delen? A: m :,5 m C:,5 m D:,75 m E:

Läs mer

FRÅN A TILL Ö LäraMera Ab / www.laramera.se och Allemansdata Ab / www.allemansdata.se FRÅN A TILL Ö

FRÅN A TILL Ö LäraMera Ab / www.laramera.se och Allemansdata Ab / www.allemansdata.se FRÅN A TILL Ö I programmet finns 11 olika aktiviteter för att träna varje bokstav och på att känna igen ord. För varje bokstav kan olika övningsblad skrivas ut: Inledningsvis väljer du vilken bokstav du vill öva på.

Läs mer

4-3 Vinklar Namn: Inledning. Vad är en vinkel?

4-3 Vinklar Namn: Inledning. Vad är en vinkel? 4-3 Vinklar Namn: Inledning I det här kapitlet skall du lära dig allt om vinklar: spetsiga, trubbiga och räta vinklar. Och inte minst hur man mäter vinklar. Att mäta vinklar och sträckor är grundläggande

Läs mer

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,

Läs mer

SF1620 Matematik och modeller

SF1620 Matematik och modeller KTH Teknikvetenskap, Institutionen för matematik 1 SF160 Matematik och modeller 007-09-10 Andra veckan Trigonometri De trigonometriska funktionerna och enhetscirkeln Redan vid förra veckans avsnitt var

Läs mer

1. Frekvensfunktionen nedan är given. (3p)

1. Frekvensfunktionen nedan är given. (3p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF14 TEN 11 kl 1.15-.15 Hjälpmedel: Formler och tabeller i statistik, räknedosa Fullständiga lösningar erfordras till samtliga uppgifter. Lösningarna skall

Läs mer

I den här delen används inte räknare. Motivera alltid din slutsats med matematiska uttryck, figurer, förklaring el.dyl.

I den här delen används inte räknare. Motivera alltid din slutsats med matematiska uttryck, figurer, förklaring el.dyl. DEL 1 Tid 30 min Poängantal 20 I den här delen används inte räknare. Motivera alltid din slutsats med matematiska uttryck, figurer, förklaring el.dyl. 1. Vilket är det största heltalet, som uppfyller följande

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010:

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010: Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning, 7/ 00: Genomgånget på föreläsningrn - 5. Generliserde integrler. Vi hr vist tt den bestämd integrlen I b f

Läs mer

[ÖVNINGSBANK] Sollentuna FK. Expressbollen

[ÖVNINGSBANK] Sollentuna FK. Expressbollen Expressbollen Övning nr. 1 Två lag på varje långlinje i en rektangel på 15x25 meter. o T.ex. Halv gympasal o Viktigt att vara tydlig med mitten, d.v.s. markera mitten med koner Varje spelare har en boll.

Läs mer

Ekvationssystem, Matriser och Eliminationsmetoden

Ekvationssystem, Matriser och Eliminationsmetoden Matematiska institutionen Göteborgs universitet och Chalmers tekniska högskola Version 359 Ekvationssystem, Matriser och Eliminationsmetoden - En inledning Ekvationssystem - matrisformulering Vi såg att

Läs mer

Ett förspel till Z -transformen Fibonaccitalen

Ett förspel till Z -transformen Fibonaccitalen Ett förspel till Z -trnsformen Fibonccitlen Leonrdo Pisno vnligen klld Leonrdo Fiboncci, den knske störste mtemtiker som Europ frmburit före renässnsen skrev år 10 en bok (Liber bci) i räknelär. J, fktiskt.

Läs mer

1,2C 4,6C 1A. X-kuber. strävorna

1,2C 4,6C 1A. X-kuber. strävorna 1,2C 4,6C 1A X-kuber problemlösning begrepp resonemang geometri skala strävorna Avsikt och matematikinnehåll X-kuber är en aktivitet som får olika avsikt och matematikinnehåll beroende på hur och i vilket

Läs mer

Appendix. De plana triangelsatserna. D c

Appendix. De plana triangelsatserna. D c ppendix e pln tringelstsern Pythgors sts: I en rätvinklig tringel gäller, med figurens etekningr: 2 = 2 + 2 1 2 evis: Vi utnyttjr likformigheten melln tringlrn, oh. v denn får vi, med figurens etekningr:

Läs mer

ATT KUNNA TILL. MA1050 Matte Grund. 2011-06-14 Vuxenutbildningen Dennis Jonsson

ATT KUNNA TILL. MA1050 Matte Grund. 2011-06-14 Vuxenutbildningen Dennis Jonsson ATT KUNNA TILL MA1050 Matte Grund 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov G1 Kunna ställa upp och beräkna additions-, subtraktions-, multiplikations- och divisuionsuppgifter

Läs mer

Vilken rät linje passar bäst till givna datapunkter?

Vilken rät linje passar bäst till givna datapunkter? Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.

Läs mer

Kryssproblem (redovisningsuppgifter).

Kryssproblem (redovisningsuppgifter). Uppsala Universitet Matematiska Institutionen Bo Styf Flervariabelanalys, 5 hp STS, X 2010-03-19 Kryssproblem (redovisningsuppgifter). Till var och en av de åtta lektionerna hör ett par problem, som kallas

Läs mer

Vi skall skriva uppsats

Vi skall skriva uppsats Vi skall skriva uppsats E n vacker dag får du höra att du skall skriva uppsats. I den här texten får du veta vad en uppsats är, vad den skall innehålla och hur den bör se ut. En uppsats är en text som

Läs mer

Erfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare

Erfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare Erfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare I boken får vi följa hur barn tillsammans med sina lärare gör spännande matematikupptäckter - i rutinsituationer - i leken

Läs mer

a n = A2 n + B4 n. { 2 = A + B 6 = 2A + 4B, S(5, 2) = S(4, 1) + 2S(4, 2) = 1 + 2(S(3, 1) + 2S(3, 2)) = 3 + 4(S(2, 1) + 2S(2, 2)) = 7 + 8 = 15.

a n = A2 n + B4 n. { 2 = A + B 6 = 2A + 4B, S(5, 2) = S(4, 1) + 2S(4, 2) = 1 + 2(S(3, 1) + 2S(3, 2)) = 3 + 4(S(2, 1) + 2S(2, 2)) = 7 + 8 = 15. 1 Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment A, för D och F, SF161 och SF160, den juni 008 kl 08.00-1.00. DEL I 1. (p) Lös rekursionsekvationen

Läs mer

Volymer av n dimensionella klot

Volymer av n dimensionella klot 252 Volymer av n dimensionella klot Mikael Passare Stockholms universitet Ett klot med radien r är mängden av punkter vars avstånd till en given punkt (medelpunkten) är högst r. Låt oss skriva B 3 (r)

Läs mer

Matematikboken. alfa. Lennart Undvall Christina Melin Jenny Ollén

Matematikboken. alfa. Lennart Undvall Christina Melin Jenny Ollén Matematikboken alfa Lennart Undvall Christina Melin Jenny Ollén Matematikboken Alfa ISBN 978-91-47-10193-1 Författare: Lennart Undvall, Christina Melin och Jenny Ollén 2011 författarna och Liber AB Illustrationer:

Läs mer

Sammanfattning på lättläst svenska

Sammanfattning på lättläst svenska Sammanfattning på lättläst svenska Utredningen skulle utreda och lämna förslag i vissa frågor som handlar om svenskt medborgarskap. Svenskt medborgarskap i dag Vissa personer blir svenska medborgare när

Läs mer

Får nyanlända samma chans i den svenska skolan?

Får nyanlända samma chans i den svenska skolan? Får nyanlända samma chans i den svenska skolan? Sammanställning oktober 2015 De nyanlända eleverna (varit här högst fyra år) klarar den svenska skolan sämre än andra elever. Ett tydligt tecken är att för

Läs mer

ELEV- HANDLEDNING (Ansökan via webben) www.orebro.se/gymnasieantagningen

ELEV- HANDLEDNING (Ansökan via webben) www.orebro.se/gymnasieantagningen ELEV- HANDLEDNING (Ansökan via webben) www.orebro.se/gymnasieantagningen Gymnasieantagningen i Örebro län På Gymnasieantagningens hemsida www.orebro.se/gymnasieantagningen hittar du information om vad

Läs mer

Övningshäfte Algebra, ekvationssystem och geometri

Övningshäfte Algebra, ekvationssystem och geometri Stockholms Tekniska Gmnasium --9 Övningshäfte Algebra, ekvationssstem och geometri Nivå: rätt svårt Fråga : f är ett polnom. Beräkna värdet av f, f och fπ Fråga : Ingångslönen på företaget Börjes Gurkinläggning

Läs mer

Nämnarens adventskalendern 2007

Nämnarens adventskalendern 2007 Nämnarens adventskalendern 2007 1 När det närmar sig jul är det kallt. Då behöver de tre tomtenissarna både halsduk och mössa när de leker i snön. I korgen ligger en röd, en blå och en randig halsduk.

Läs mer

Långtidssjukskrivna. diagnos, yrke, partiell sjukskrivning och återgång i arbete. En jämförelse mellan 2002 och 2003 REDOVISAR 2004:7.

Långtidssjukskrivna. diagnos, yrke, partiell sjukskrivning och återgång i arbete. En jämförelse mellan 2002 och 2003 REDOVISAR 2004:7. REDOVISAR 2004:7 Långtidssjukskrivn dignos, yrke, prtiell sjukskrivning och återgång i rbete En jämförelse melln 2002 och 2003 Smmnfttning Kvinnor svrr för 65 procent v de långvrig sjukskrivningrn som

Läs mer

Analys o 3D Linjär algebra. Lektion 16.. p.1/53

Analys o 3D Linjär algebra. Lektion 16.. p.1/53 Anlys o 3D Linjär lgebr Lektion 16. p.1/53 . p.2/53 v 3D Linjär lgebr Hr betrktt vektorer v typen etc resp dvs ordnde triplr v typen. reell tl 3D Linjär lgebr Punkt-vektor dulismen En ordnd tripel v typen

Läs mer

Virkade tofflor. Storlek 35 37 & 38 40. By: Pratamedrut. pratamedrut.se/blog/virkade tofflor 1

Virkade tofflor. Storlek 35 37 & 38 40. By: Pratamedrut. pratamedrut.se/blog/virkade tofflor 1 Virkade tofflor Storlek 35 37 & 38 40 By: Pratamedrut pratamedrut.se/blog/virkade tofflor 1 Innehåll Lite tips sid 3 Material sid 3 Maskor och förkortningar sid 3 Tillvägagångssätt Sulor sid 4 Skor, nedre

Läs mer

Pesach Laksman är lärarutbildare i matematik och matematikdidaktik vid Malmö högskola.

Pesach Laksman är lärarutbildare i matematik och matematikdidaktik vid Malmö högskola. 111a Geometri med snöre Pesach Laksman är lärarutbildare i matematik och matematikdidaktik vid Malmö högskola. Areabegreppet När elever får frågan vad area betyder ges mestadels svar som antyder hur man

Läs mer

Partnerskapsförord. giftorättsgods görs till enskild egendom 1, 2. Parter 3. Partnerskapsförordets innehåll: 4

Partnerskapsförord. giftorättsgods görs till enskild egendom 1, 2. Parter 3. Partnerskapsförordets innehåll: 4 Partnerskapsförord giftorättsgods görs till enskild egendom 1, 2 Parter 3 Namn Telefon Adress Namn Telefon Adress Partnerskapsförordets innehåll: 4 Vi skall ingå registrerat partnerskap har ingått registrerat

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

Kan det vara möjligt att med endast

Kan det vara möjligt att med endast ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp

Läs mer

TMV151/TMV181. Fredrik Lindgren. 19 november 2013

TMV151/TMV181. Fredrik Lindgren. 19 november 2013 TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment

Läs mer

Möbiustransformationer.

Möbiustransformationer. 224 Om Möbiustransformationer Torbjörn Kolsrud KTH En Möbiustransformation är en komplexvärd funktion f av en komplex variabel z på formen f(z) = az + b cz + d. Här är a b c och d komplexa tal. Ofta skriver

Läs mer

NATIONELLA MATEMATIKTÄVLING

NATIONELLA MATEMATIKTÄVLING NATIONELLA MATEMATIKTÄVLING PRATA OM SPELS EN KURS I SANNOLIKHET 1 INLEDNING Sannolikhetskursen består av sju olika steg där det sista steget utgörs av själva tävlingsmomentet. Det är upp till pedagogen

Läs mer

Arbeta bäst där du är Dialect Unified Mi

Arbeta bäst där du är Dialect Unified Mi Arbeta bäst där du är Dialect Unified Mi [Skriv sammanfattningen av dokumentet här. Det är vanligtvis en kort sammanfattning av innehållet i dokumentet. Skriv sammanfattningen av dokumentet här. Det är

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 2012-01-09 kl 08-13

Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 2012-01-09 kl 08-13 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 212-1-9 kl 8-13 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är

Läs mer

Arbetsmarknadsläget i Hallands län i augusti månad 2016

Arbetsmarknadsläget i Hallands län i augusti månad 2016 MER INFORMATION OM ARBETSMARKNADSLÄGET Peter Nofors Analysavdelningen Totalt inskrivna arbetslösa i Hallands län augusti 2016: 9 511 (6,2%) 5 194 män (6,6%) 4 317 kvinnor (5,8%) 1 678 unga 18-24 år (9,3%)

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste

Läs mer

UTMANINGAR OCH MÖJLIGHETER HAR DU 730 DAGAR OCH ETT STARKT DRIV DÅ HAR VI EN LEDARROLL TILL DIG

UTMANINGAR OCH MÖJLIGHETER HAR DU 730 DAGAR OCH ETT STARKT DRIV DÅ HAR VI EN LEDARROLL TILL DIG UTMANINGAR OCH MÖJLIGHETER HAR DU 730 DAGAR OCH ETT STARKT DRIV DÅ HAR VI EN LEDARROLL TILL DIG VÄLKOMMEN TILL BERENDSEN Tack för att du vill lägga lite tid på att lära känna oss - det kan löna sig. För

Läs mer

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien. Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.

Läs mer

DOP-matematik Copyright Tord Persson. Bråktal -3-2 -1 0 1 2 3. Läs av vilka tal på tallinjen, som pilarna pekar på. Uppgift nr 10 -3-2 -1 0 1 2 3

DOP-matematik Copyright Tord Persson. Bråktal -3-2 -1 0 1 2 3. Läs av vilka tal på tallinjen, som pilarna pekar på. Uppgift nr 10 -3-2 -1 0 1 2 3 Bråktal Uppgift nr En limpa delas i 4 lika stora delar. Hur stor del av limpan blir varje del? Uppgift nr 2 Hur många tiondelar behövs för att det skall räcka till en hel? Uppgift nr Hur läser man ut bråket

Läs mer

Steg 10. 6 a) 0,129 b) 1,72 c) 2,05 7 a) 960 kr b) 1600 kr c) 14 kr 8 30% 9 a) 32% b) 60% c) 12% 10 20% 11 a) b) c) 2. 12 a) 135 b) c) 6 ( )

Steg 10. 6 a) 0,129 b) 1,72 c) 2,05 7 a) 960 kr b) 1600 kr c) 14 kr 8 30% 9 a) 32% b) 60% c) 12% 10 20% 11 a) b) c) 2. 12 a) 135 b) c) 6 ( ) Bråk och procent Steg elever a) st b) st 0,, %,,,, 0 liter T ex och a) b) 0 a) 0, b) 0, c) 0, a) ( ) b) c) 00 0 a) b) c) a) ( 00) b) 0 ( 000) c) ( ) 000 a) 0, b) 0, c) 0, a) b) c) 0 a) b) a) > b) < c)

Läs mer

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*)

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*) Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En cirkel är mängden v de punkter i plnet vrs vstånd till en given

Läs mer

Laganmälan & Laghantering

Laganmälan & Laghantering 203 Svenska Motorcykel- och Snöskoterförbundet Box 234 600 02 NORRKÖPING Tel. 0-23 0 80 www.svemo.se Laganmälan & Laghantering [En enkel guide för hur du anmäler ett lag i SVEMO TA.] Innehåll Innehåll...

Läs mer

Internetförsäljning av graviditetstester

Internetförsäljning av graviditetstester Internetförsäljning v grviditetstester Mrkndskontrollrpport från Enheten för medicinteknik 2010-05-28 Postdress/Postl ddress: P.O. Box 26, SE-751 03 Uppsl, SWEDEN Besöksdress/Visiting ddress: Dg Hmmrskjölds

Läs mer

Institutionen för matematik Envariabelanalys 1. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej miniräknare)

Institutionen för matematik Envariabelanalys 1. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej miniräknare) Umeå universitet Dugga i matematik Institutionen för matematik Envariabelanalys 1 och matematisk statistik IE, ÖI, Stat. och Frist. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer

Bruksanvisning - Spisvakt Prefi 2.3

Bruksanvisning - Spisvakt Prefi 2.3 Bruksanvisning - Spisvakt Prefi 2.3 Försäljning och support Rutab AB Tel: 0380-55 50 60 Lerbacksgatan 2 571 38 Nässjö order@rutab.se http://www.rutab.se Utvecklad och tillverkad av: Cabinova AB Verkstadsvägen

Läs mer

Det energieffektiva kylbatteriet

Det energieffektiva kylbatteriet Croline Hglund, Civ.ing. SP Sveriges Provnings- och Forskningsinstitut, Energiteknik, Borås, croline.hglund@sp.se Per Fhlén, Prof. Inst. för Instlltionsteknik, CTH, Göteorg, per.fhlen@hvc.chers.se Det

Läs mer

Matematiska uppgifter

Matematiska uppgifter Element Årgång 59, 976 Årgång 59, 976 Först häftet 3020. Lös på enklste sätt ekvtionssystemet (Svr: x = v = 2 och y = u = 2) x + 7y + 3v + 5u = 6 8x + 4y + 6v + 2u = 6 2x + 6y + 4v + 8u = 6 5x + 3y + 7v

Läs mer

SEPARABLA DIFFERENTIALEKVATIONER

SEPARABLA DIFFERENTIALEKVATIONER SEPARABLA DIFFERENTIALEKVATIONER En differentialekvation (DE) av första ordningen sägs vara separabel om den kan skrivas på formen P ( y) Q( ) () Den allmänna lösningen till () erhålles genom att integrera

Läs mer

Mätningar på op-förstärkare. Del 3, växelspänningsförstärkning med balanserad ingång.

Mätningar på op-förstärkare. Del 3, växelspänningsförstärkning med balanserad ingång. Mätningar på op-förstärkare. Del 3, växelspänningsförstärkning med balanserad ingång. Denna gång skall vi titta närmare på en förstärkare med balanserad ingång och obalanserad utgång. Normalt använder

Läs mer

Facit - Tänk och Räkna 6b

Facit - Tänk och Räkna 6b Fit Tänk oh Räkn Mätning oh sttistik A. B. C. A. B. C. A. B. C. 00 s s s 0 min min min 0 h h 0 h 0... h min h min h min.,. oh. h min.0 h min h min 0. Ktrineholm 0 ygn 0 ygn 0 ygn mån mån mån 00 min gr

Läs mer

Diskussionsfrågor till version 1 och 2

Diskussionsfrågor till version 1 och 2 Diskussionsfrågor till version 1 och 2 Version 1 Tillgång till internet i hemmet A. Vilken åldersgrupp har haft den största ökningen av tillgång till internet under perioden? B. Kan man med hjälp av de

Läs mer

CHECKLISTA FÖR PERSONALRUM

CHECKLISTA FÖR PERSONALRUM CHECKLISTA FÖR PERSONALRUM Checklistn är ett hjälpmedel både vid plnering v ny personlrum och vid genomgång v befintlig personlutrymmen. Den innehålller bl frågor om klädrum, torkskåp och torkrum, tvätt-

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

3. Olle skriver ned ett visst antal heltal mellan 10 och 25. Talens medelvärde är 18. Hur många är talen? (1) Medelvärdet av de tre första talen som O

3. Olle skriver ned ett visst antal heltal mellan 10 och 25. Talens medelvärde är 18. Hur många är talen? (1) Medelvärdet av de tre första talen som O 2 1. Familjen Berg, som består av två vuxna och tre barn, har beställt en resa till Cypern. Barnen är 1, 7 och 10 år gamla. Med barnrabatter kostar hela familjens resa 18 000 kr. Hur mycket kostar resan

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

Uttryck höjden mot c påtvåolikasätt:

Uttryck höjden mot c påtvåolikasätt: Sinusstsen Beviset i PB gger å tre resultt som nog få gmnsieelever är förtrogn med. Vrje tringel hr en s.k. omskriven cirkel en cirkel som går genom ll tre hörnen : C Uttrck höjden mot c åtvåoliksätt:

Läs mer

Monteringsanvisning. Bakåtvänd montering. Godkänd höjd 61-105 cm. Maximal vikt 18 kg. UN regulation no. R129 i-size. Ålder 6 mån - 4 år. 1 a.

Monteringsanvisning. Bakåtvänd montering. Godkänd höjd 61-105 cm. Maximal vikt 18 kg. UN regulation no. R129 i-size. Ålder 6 mån - 4 år. 1 a. 1 6 d c e Monteringsnvisning f h g i j k l m 7 8 10 2 3 9 c e d Bkåtvänd montering Godkänd höjd 61-105 cm 4 5 11 12 Mximl vikt 18 kg Ålder 6 mån - 4 år UN regultion no. R129 i-size 8 9 Tck för tt du vlde

Läs mer

Statistik 2015 - Äldre hjälpsökande hos Brottsofferjouren

Statistik 2015 - Äldre hjälpsökande hos Brottsofferjouren Statistik 2015 - Äldre hjälpsökande hos Brottsofferjouren En rapport från Brottsofferjouren Sverige Sofia Barlind statistik@boj.se Innehåll Brottsofferjourens statistikföring... 2 Ärendemängd... 2 Äldre

Läs mer

Ha det kul med att förmedla och utveckla ett knepigt område!

Ha det kul med att förmedla och utveckla ett knepigt område! Kul med pizzabitar Första gången eleverna får materialet i handen bör dem få sin egen tid till att undersöka det på det viset blir dem bekanta med dess olika delar. Det kan också vara en god idé att låta

Läs mer

Vi brister i det förebyggande arbetet, liksom att våra insatser för att förstärka värdegrunden i

Vi brister i det förebyggande arbetet, liksom att våra insatser för att förstärka värdegrunden i Under v. 45-50 genomfördes den årliga enkätundersökningen riktad till barn, elever, ungdomar och föräldrar i Lärande och kulturnämndens verksamheter. Resultaten som presenteras är kopplade till kommunfullmäktiges

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

Särskilt stöd i grundskolan

Särskilt stöd i grundskolan Enheten för utbildningsstatistik 15-1-8 1 (1) Särskilt stöd i grundskolan I den här promemorian beskrivs Skolverkets statistik om särskilt stöd i grundskolan läsåret 1/15. Sedan hösten 1 publicerar Skolverket

Läs mer