Föreläsning 7b Längdskalan är L = 2 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Föreläsning 7b. 3329 Längdskalan är L = 2 3"

Transkript

1 Föreläsning 7b 3329 Längdskln är L = 2 3 eller 2 : 3 som det oft skrivs i smbnd med krtor. Från teorin får vi tt A, reskln är längdskln i kvdrt det vill säg A = L 2. I denn uppgift ger det A = ( ) = 4 9. Vidre vet vi från teorin tt tt volymskln V är längdskln i kubik, det vill säg V = L 3. I denn uppgift leder det till V = ( ) = 8 27 Svr: L = 2 3, A = 4 9 och V = En sid i den stor tringeln är 6 cm. Motsvrnde sid i den lill tringeln är 4.5 cm. Vi kn då teckn längdskln: L = = = 3 4 Då längdskln är 3 4 är reskln 9 6. Vi ntr tt den lill tringelns re är cm2. Nu kn vi teckn följnde ekvtion 2 Svr: Aren hos den lill tringeln är 6.75 cm 2 = 9 6 = = 27 4 Håkn Strömberg KTH Syd Hninge

2 333 ) Här hndlr det om volymskln. Vi vet tt volymskln V = L 3, där L är längdskln. Längdskln kn vi enkelt bestämm till L = 4 8 = 2. Dett betyder tt V = = Med den kunskpen kn vi nu räkn ut den större lådns volym. Antg tt den större lådns volym är cm = = = 60 Svr: Den okänd volymen är 60 cm b) Ett problem, när på identiskt med föregående. Vi behöver inte funder så mycket om kroppens form, så länge vi hr möjlighet tt bestämm längdskln. Det hr vi om två motsvrnde sidor är givn i den verklig kroppen och kroppens vbildning. Vi bestämmer längdskln L = 3 2 = 4. Det betyder tt volymskln V = ( ) 3 4 =. Med hjälp v dett kn vi ställ upp ekvtionen 320 = = 320 = 5 Svr: Den okänd volymen är 5 cm Den längst sidn i en tringel motsvrs v den längst sidn i en vbildning. Eftersom den längst sidn i T är 45 cm och den längst i T 2 är 5 cm så förstår vi tt längdskln är L = 5 45 = 3. Med längdskln 3 får vi reskln 9. Då den större v tringlrn hr ren 756 cm2 kn vi teckn ekvtionen, där den mindre nts vr cm 2 : 756 = 9 = = 84 Svr: Aren hos T 2 = 84 cm 2 Håkn Strömberg 2 KTH Syd Hninge

3 3333 Om det hndlr om femhörningr eller tjugofemhörningr spelr ingen roll. Huvudsken är tt vi känner längden hos en sid i den en figuren och längden v motsvrnde sid i den ndr. Då kn vi bestämm längdskln. L = 2 28 = 3 7 Dett leder direkt till reskln ( ) 3 2 A = = Nu kn vi teckn ekvtionen där vi ntr tt den mindre femhörningen hr ren cm = 9 49 = = 80 Svr: Den mindre v femhörningrn hr ren 80 cm Först bestämmer vi längdskln melln de två prismorn. L ger oss V genom V = L 3 = L = 9 2 = 3 4 Antg tt det större kärlet rymmer liter. Vi får då ( ) 3 3 = = = 27 = Svr: Det större prismt hr volymen 2.56 liter = 2.56 Håkn Strömberg 3 KTH Syd Hninge

4 3335 Här kn vi inte bestämm längdskln eftersom endst längden hos en sid är given. Däremot kn vi direkt bestämm reskln A = = 4 Vi vet ju tt A = L 2 så då kn vi bestämm L L 2 = 4 L 2 = 4 L = 2 En sid i den större prllellogrmmen är dubbelt så lång som motsvrnde sid i den mindre. Alltså är den eftersökt sid 2 3 = 26 cm Svr: 26 cm I denn uppgift är längden och ren inblndd. Vi hr en pr jens med bylängden 80 cm. Om mn syr ett pr jens som är 0% längre kommer dess tt få längden 80. = 88 cm (tillvätfktorn är.0). Nu kn vi bestämm L Areskln blir då A = L 2 = L = = 0 ( ) 0 2 = 00 2 Nu vet vi tt det går åt m 2 för tt tillverk de mindre jensen. Antg tt det går åt m 2 för de större. Vi får då följnde ekvtion = 00 2 = = 00 = 2 00 =.2 är lltså en okänd storhet, som vi inte behöver känn. Vi sk nu skriv ett uttryck som bestämmer den procentuell ökningen v åtgången v tyg. Svr: Svr 2%.2 00 = (.2 ) 00 = = 2 Håkn Strömberg 4 KTH Syd Hninge

5 3338 Vi hr längdskln given då är reskln A = L 2 = Antg tt områdets re är cm 2. Vi får då L = 4000 ( ) 2 = = = = cm 2 = dm 2 =240000m 2 Svr: m Vi betrktr dels hel glset och dels den del v glset som innehåller vätsk. Dess två kroppr är likformig. Längdskln är h h 2 L = h = 2 = h 2 h = 2 Vilket vi förstås kunde se med en gång. Då måste volymskln vr h V = L 3 = ( ) 3 = 2 8 Antg tt det finns cl vätsk kvr i glset. Vi får då den enkl ekvtionen 8 = 8 = Eftersom det fnns 8 cl från börjn och det återstår cl hr mn drucket 7 cl Svr: 7 cl Håkn Strömberg 5 KTH Syd Hninge

6 3340 Längdskln L = 400 m 2. Vi får och reskln A = = Tomtens re på krtn ntr vi vr 972 = = = = Aren på krtn är lltså m 2 =0.6075dm 2 =60.75cm 2. Vi känner inte längden hos någon v sidorn i rektngeln på krtn. Vi ntr tt sidorn är 3y respektive 4y. Då förhåller de sig 3y 4y = 3 4 Dett vr ju givet. Vi kn nu teckn ren och får följnde ekvtion 3y 4y = y 2 = y 2 = y = 2 y = 2.25 Vi får nu den längst sidn genom = 9 cm Svr: 9 cm Håkn Strömberg 6 KTH Syd Hninge

Addition och subtraktion

Addition och subtraktion Sidor i boken 35-39 Addition och subtrktion Vi börjr med lite ritmetik. Heltlsddition innebär ing som helst problem. Här tr vi lämpligen räknedosn till hjälp. Eempel. 3+00+5 = 7 Så länge ll nämnre är lik

Läs mer

Lathund, procent med bråk, åk 8

Lathund, procent med bråk, åk 8 Lathund, procent med bråk, åk 8 Procent betyder hundradel, men man kan också säga en av hundra. Ni ska kunna omvandla mellan bråkform, decimalform och procentform. Nedan kan ni se några omvandlingar. Bråkform

Läs mer

TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING.

TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING. Armin lilovic: EXTA ÖNINGA olmeräkning TILLÄMPNINGA A INTEGALE. OLYMEÄNING. uvud verktg för volmeräkning är duelintegrl som tillör kursen i flervrielnls, men någr volmeräkningr kn vi gör med jälp v enkelintegrl.

Läs mer

Kängurun Matematikens hopp Benjamin 2006 A: B: C: D: E:

Kängurun Matematikens hopp Benjamin 2006 A: B: C: D: E: 3-poängsproblem : = + + Vilket tal ska frågetecknet ersättas med A: B: C: D: E: : Sex tal står skrivna på korten här intill. Vilket är det minsta tal man kan bilda genom att lägga korten efter varandra

Läs mer

MA002X Bastermin - matematik VT16

MA002X Bastermin - matematik VT16 MA00X Bstermin - mtemtik VT6 Något om trigonometri Mikel Hindgren februri 06 Cirkelns ekvtion Exempel Beräkn vståndet melln punktern (4, 6) och (, ). 7 6 5 4 d (, ) 4 = (4, 6) 6 = 4 4 5 6 Pythgors sts:

Läs mer

Erfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare

Erfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare Erfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare I boken får vi följa hur barn tillsammans med sina lärare gör spännande matematikupptäckter - i rutinsituationer - i leken

Läs mer

Nämnarens adventskalendern 2007

Nämnarens adventskalendern 2007 Nämnarens adventskalendern 2007 1 När det närmar sig jul är det kallt. Då behöver de tre tomtenissarna både halsduk och mössa när de leker i snön. I korgen ligger en röd, en blå och en randig halsduk.

Läs mer

Vi skall skriva uppsats

Vi skall skriva uppsats Vi skall skriva uppsats E n vacker dag får du höra att du skall skriva uppsats. I den här texten får du veta vad en uppsats är, vad den skall innehålla och hur den bör se ut. En uppsats är en text som

Läs mer

DOP-matematik Copyright Tord Persson. Bråktal -3-2 -1 0 1 2 3. Läs av vilka tal på tallinjen, som pilarna pekar på. Uppgift nr 10 -3-2 -1 0 1 2 3

DOP-matematik Copyright Tord Persson. Bråktal -3-2 -1 0 1 2 3. Läs av vilka tal på tallinjen, som pilarna pekar på. Uppgift nr 10 -3-2 -1 0 1 2 3 Bråktal Uppgift nr En limpa delas i 4 lika stora delar. Hur stor del av limpan blir varje del? Uppgift nr 2 Hur många tiondelar behövs för att det skall räcka till en hel? Uppgift nr Hur läser man ut bråket

Läs mer

Konstruktioner. 1 Att dela en sträcka i två lika delar. I Euklidisk geometri. Johan Wild 2010-01-18. Sträcka AB skall delas i två lika delar.

Konstruktioner. 1 Att dela en sträcka i två lika delar. I Euklidisk geometri. Johan Wild 2010-01-18. Sträcka AB skall delas i två lika delar. Konstruktioner I uklidisk geometri Johan Wild 2010-01-18 c Johan Wild johan.wild@europaskolan.se Får gärna användas i undervisning, kontakta i så fall författaren. 1 tt dela en sträcka i två lika delar

Läs mer

I den här delen används inte räknare. Motivera alltid din slutsats med matematiska uttryck, figurer, förklaring el.dyl.

I den här delen används inte räknare. Motivera alltid din slutsats med matematiska uttryck, figurer, förklaring el.dyl. DEL 1 Tid 30 min Poängantal 20 I den här delen används inte räknare. Motivera alltid din slutsats med matematiska uttryck, figurer, förklaring el.dyl. 1. Vilket är det största heltalet, som uppfyller följande

Läs mer

4-6 Trianglar Namn:..

4-6 Trianglar Namn:.. 4-6 Trianglar Namn:.. Inledning Hittills har du arbetat med parallellogrammer. En sådan har fyra hörn och motstående sidor är parallella. Vad händer om vi har en geometrisk figur som bara har tre hörn?

Läs mer

D A B A D B B D. Trepoängsproblem. Kängurutävlingen 2012 Benjamin

D A B A D B B D. Trepoängsproblem. Kängurutävlingen 2012 Benjamin Kängurutävlingen enjamin Trepoängsproblem. Skrivtavlan i klassrummet är 6 meter bred. Mittdelen är m bred. De båda yttre delarna är lika breda. Hur bred är den högra delen? A: m :,5 m C:,5 m D:,75 m E:

Läs mer

Appendix. De plana triangelsatserna. D c

Appendix. De plana triangelsatserna. D c ppendix e pln tringelstsern Pythgors sts: I en rätvinklig tringel gäller, med figurens etekningr: 2 = 2 + 2 1 2 evis: Vi utnyttjr likformigheten melln tringlrn, oh. v denn får vi, med figurens etekningr:

Läs mer

Hälso- och sjukvårdslagen

Hälso- och sjukvårdslagen Hälso- och sjukvårdslagen Barnets behov av information, råd och stöd ska särskilt beaktas av hälso- och sjukvården och dess personal om barnets förälder eller någon annan vuxen som barnet varaktigt bor

Läs mer

När jag har arbetat klart med det här området ska jag:

När jag har arbetat klart med det här området ska jag: Kraft och rörelse När jag har arbetat klart med det här området ska jag: kunna ge exempel på olika krafter och kunna använda mina kunskaper om dessa när jag förklarar olika fysikaliska fenomen, veta vad

Läs mer

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2016-01-28

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2016-01-28 Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth 2016-01-28 Kul matematik utan lärobok Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier

Läs mer

När du som vårdpersonal vill ta del av information som finns hos en annan vårdgivare krävs det att:

När du som vårdpersonal vill ta del av information som finns hos en annan vårdgivare krävs det att: 1 (6) Sammanhållen journalföring information till dig som möter patienter Detta är ett kunskapsunderlag om sammanhållen journalföring för dig som arbetar i vården. Underlaget innehåller en kort beskrivning

Läs mer

Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument

Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument Distributiva lagen a(b + c) = ab + ac 3(x + 4) = 3 x + 3 4 = 3x + 12 3(2x + 4) = 3 2x + 3 4 = 6x + 12

Läs mer

2005-01-31. Hävarmen. Peter Kock

2005-01-31. Hävarmen. Peter Kock 2005-01-31 Hävarmen Kurs: WT0010 Peter Kock Handledare: Jan Sandberg Sammanfattning Om man slår upp ordet hävarm i ett lexikon så kan man läsa att hävarm är avståndet mellan kraften och vridningspunkten.

Läs mer

Introduktion till Open 2012

Introduktion till Open 2012 Introduktion till Open 2012 av Lisbeth Rydén Funktionen med OPEN som jag ser den Alla har sin egen idé med att åka till OPEN. Någon framförallt för att lära sig något om de ämnen som ska avhandlas (kurs),

Läs mer

SKOGLIGA TILLÄMPNINGAR

SKOGLIGA TILLÄMPNINGAR STUDIEAVSNITT 3 SKOGLIGA TILLÄMPNINGAR I detta avsnitt ska vi titta på några av de skogliga tillämpningar på geometri som finns. SKOGSKARTAN EN MODELL AV VERKLIGHETEN Arbetar man i skogen klarar man sig

Läs mer

Träning i bevisföring

Träning i bevisföring KTHs Matematiska Cirkel Träning i bevisföring Andreas Enblom Institutionen för matematik, 2005 Finansierat av Marianne och Marcus Wallenbergs Stiftelse 1 Mängdlära Här kommer fyra tips på hur man visar

Läs mer

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00 Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,

Läs mer

Föreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik

Föreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik Föreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik Summaregeln Om och B är disjunkta mängder så B = + B, ty innehåller inga upprepningar Produktregeln Om och B är disjunkta mängder så är B = B Exempel:

Läs mer

Vet du vilka rättigheter du har?

Vet du vilka rättigheter du har? Vet du vilka rättigheter du har? Särskilda ungdomshem (SiS) Till dig som är inskriven på ett särskilt ungdomshem De särskilda ungdomshemmen drivs av Statens institutionsstyrelse (SiS). När du kommer till

Läs mer

Webb-bidrag. Sök bidrag på webben www.solvesborg.se. Gäller från 2015-01-01

Webb-bidrag. Sök bidrag på webben www.solvesborg.se. Gäller från 2015-01-01 Sök bidrag på webben www.solvesborg.se Gäller från 2015-01-01 Innehåll Kontaktperson Fritids- och turismkontoret Sölvesborg kommun Inledning Följande bidrag går att söka på webben Logga in Dokumenthantering

Läs mer

Svenska Du kan med flyt läsa texter som handlar om saker du känner till. Du använder metoder som fungerar. Du kan förstå vad du läser.

Svenska Du kan med flyt läsa texter som handlar om saker du känner till. Du använder metoder som fungerar. Du kan förstå vad du läser. Svenska Du kan med flyt läsa texter som handlar om saker du känner till. Du använder metoder som fungerar. Du kan förstå vad du läser. Du berättar på ett enkelt sätt om det du tycker är viktigt i texten.

Läs mer

Syftet med en personlig handlingsplan

Syftet med en personlig handlingsplan Syftet med en personlig handlingsplan Gör idéerna konkreta Ger dig något att hålla dig till mellan mötena Skapar tillförlitlighet i utvecklingen Hjälper dig att fokusera på några områden Påminnelse om

Läs mer

Sammanfattning på lättläst svenska

Sammanfattning på lättläst svenska Sammanfattning på lättläst svenska Utredningen skulle utreda och lämna förslag i vissa frågor som handlar om svenskt medborgarskap. Svenskt medborgarskap i dag Vissa personer blir svenska medborgare när

Läs mer

Facit med lösningsförslag kommer att anslås på vår hemsida www.ebersteinska.norrkoping.se. Du kan dessutom få dem via e-post, se nedan.

Facit med lösningsförslag kommer att anslås på vår hemsida www.ebersteinska.norrkoping.se. Du kan dessutom få dem via e-post, se nedan. Detta häfte innehåller uppgifter från fyra olika områden inom matematiken. Meningen är att de ska tjäna som en självtest inför gymnasiet. Klarar du dessa uppgifter så är du väl förberedd inför gymnasiestudier

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 2: Derivata Institutionen för matematik KTH 8 september 2015 Derivata Innehåll om derivata (bokens kapitel 2). Definition vad begreppet derivata betyder Tolkning hur man kan tolka derivata Deriveringsregler

Läs mer

Nedfrysning av spermier. Information om hur det går till att lämna och frysa ned spermier.

Nedfrysning av spermier. Information om hur det går till att lämna och frysa ned spermier. Nedfrysning av spermier Information om hur det går till att lämna och frysa ned spermier. Innehållsförteckning Varför ska man frysa ner spermier? Hur går det till? Den här informationen riktar sig främst

Läs mer

Lösningsförslag till finaltävlingen den 19 november 2005

Lösningsförslag till finaltävlingen den 19 november 2005 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Lösningsförslg till finltävlingen den 19 novemer 2005 1 Vi utvecklr de åd leden och får ekvtionen vilken efter förenkling kn skrivs x 3 + xy + x 2 y

Läs mer

SANNOLIKHET. Sannolikhet är: Hur stor chans (eller risk) att något inträffar.

SANNOLIKHET. Sannolikhet är: Hur stor chans (eller risk) att något inträffar. SANNOLIKHET Sannolikhet är: Hur stor chans (eller risk) att något inträffar. tomas.persson@edu.uu.se SANNOLIKHET Grundpremisser: Ju fler möjliga händelser, desto mindre sannolikhet att en viss händelse

Läs mer

Referensvärden samtliga undergrupper

Referensvärden samtliga undergrupper Brukarenkät Utförare IFO-FH 214 Referensvärden samtliga undergrupper 214 2 Samtliga undergrupper Lägsta värde Högsta värde HELHET, NKI 8-76 7 1 TILLGÄNGLIGHET 84-79 7 1 EFFEKTIVITET 87-8 28 1 INFORMATION

Läs mer

Referensvärden samtliga resultatenheter

Referensvärden samtliga resultatenheter Brukarenkät Utförare IFO-FH 2 Referensvärden samtliga resultatenheter 2 3 Samtliga resultatenheter Lägsta värde Högsta värde HELHET, NKI - 78 55 94 TILLGÄNGLIGHET 61-78 59 92 EFFEKTIVITET 64-81 55 95 INFORMATION

Läs mer

Föräldrabroschyr. Björkhagens skola - en skola med kunskap och hjärta. Vad ska barnen lära sig i skolan?

Föräldrabroschyr. Björkhagens skola - en skola med kunskap och hjärta. Vad ska barnen lära sig i skolan? Föräldrabroschyr Björkhagens skola - en skola med kunskap och hjärta. Vad ska barnen lära sig i skolan? Vad ska barnen lära sig i skolan? Tanken med den här broschyren är att ge Er föräldrar en bild av

Läs mer

Steg 10. 6 a) 0,129 b) 1,72 c) 2,05 7 a) 960 kr b) 1600 kr c) 14 kr 8 30% 9 a) 32% b) 60% c) 12% 10 20% 11 a) b) c) 2. 12 a) 135 b) c) 6 ( )

Steg 10. 6 a) 0,129 b) 1,72 c) 2,05 7 a) 960 kr b) 1600 kr c) 14 kr 8 30% 9 a) 32% b) 60% c) 12% 10 20% 11 a) b) c) 2. 12 a) 135 b) c) 6 ( ) Bråk och procent Steg elever a) st b) st 0,, %,,,, 0 liter T ex och a) b) 0 a) 0, b) 0, c) 0, a) ( ) b) c) 00 0 a) b) c) a) ( 00) b) 0 ( 000) c) ( ) 000 a) 0, b) 0, c) 0, a) b) c) 0 a) b) a) > b) < c)

Läs mer

4-3 Vinklar Namn: Inledning. Vad är en vinkel?

4-3 Vinklar Namn: Inledning. Vad är en vinkel? 4-3 Vinklar Namn: Inledning I det här kapitlet skall du lära dig allt om vinklar: spetsiga, trubbiga och räta vinklar. Och inte minst hur man mäter vinklar. Att mäta vinklar och sträckor är grundläggande

Läs mer

Tåget går mot jul! Virka ditt sötaste luciatåg del 1 av 3

Tåget går mot jul! Virka ditt sötaste luciatåg del 1 av 3 Virka ditt sötaste luciatåg del 1 av 3 Amigurimi är japanska och betyder stickad eller virkad docka. Virka amigurimis i väntan på advent, lucia och tomten! Ett komplett litet lussefölje till lek eller

Läs mer

Pesach Laksman är lärarutbildare i matematik och matematikdidaktik vid Malmö högskola.

Pesach Laksman är lärarutbildare i matematik och matematikdidaktik vid Malmö högskola. 111a Geometri med snöre Pesach Laksman är lärarutbildare i matematik och matematikdidaktik vid Malmö högskola. Areabegreppet När elever får frågan vad area betyder ges mestadels svar som antyder hur man

Läs mer

Modul 6: Integraler och tillämpningar

Modul 6: Integraler och tillämpningar Institutionen för Matematik SF65 Envariabelanalys Läsåret 5/6 Modul 6: Integraler och tillämpningar Denna modul omfattar kapitel 6. och 6.5 samt kapitel 7 i kursboken Calculus av Adams och Essex och undervisas

Läs mer

Lathund till Annonsportalen

Lathund till Annonsportalen Lathund till Annonsportalen * För uppdrags-/arbetsgivare * www.gu.se/samverkan/annonsportalen/ Snabbvägar: 1. Klicka på För arbetsgivare 2. Sök efter arbetsgivarens namn i sökrutan. a. Om namnet finns

Läs mer

Bered en buffertlösning. Niklas Dahrén

Bered en buffertlösning. Niklas Dahrén Bered en buffertlösning Niklas Dahrén Grundprincipen vid beredning av en buffertlösning ü När vi bereder en buffertlösning blandar vi en svag syra med dess korresponderande bas (den bas som syran också

Läs mer

Snabbslumpade uppgifter från flera moment.

Snabbslumpade uppgifter från flera moment. Snabbslumpade uppgifter från flera moment. Uppgift nr Ställ upp och dividera utan hjälp av miniräknare talet 48 med 2 Uppgift nr 2 Skriv talet 3 8 00 med hjälp av decimalkomma. Uppgift nr 3 Uppgift nr

Läs mer

10.03.2010. Översikt. Rapport från skolverket. Förändring av matematikprestationerna 1995 2003-2007. Grundtankar bakom Pixel

10.03.2010. Översikt. Rapport från skolverket. Förändring av matematikprestationerna 1995 2003-2007. Grundtankar bakom Pixel Översikt Hur är situationen i Sverige och Norge när det gäller matematik-kompetensen? Är det nödvändigt att undervisa på andra sätt än vi gjort tidigare? Förändring av matematikprestationerna 1995 2003-2007

Läs mer

Boken om Teknik. Boken om Teknik är en grundbok i Teknik för åk 4 6.

Boken om Teknik. Boken om Teknik är en grundbok i Teknik för åk 4 6. Boken om Teknik Boken om Teknik är en grundbok i Teknik för åk 4 6. PROVLEKTION: Teknikens arbetssätt att göra på riktigt Följande provlektion är ett utdrag ur Boken om Teknik. Uppslaget som är hämtat

Läs mer

Repetitivt arbete ska minska

Repetitivt arbete ska minska Repetitivt arbete ska minska Ett repetitivt arbete innebär att man upprepar en eller några få arbetsuppgifter med liknande arbetsrörelser om och om igen. Ofta med ett högt arbetstempo. Ett repetitivt arbete

Läs mer

Vad är en webbläsare?

Vad är en webbläsare? Webbkunskap Vad är en webbläsare? En webbläsare är ett program som används för att komma ut på internet Det finns många olika, men några av de vanligaste är: Chrome Explorer Firefox Safari Internet webbsidor

Läs mer

TMV151/TMV181. Fredrik Lindgren. 19 november 2013

TMV151/TMV181. Fredrik Lindgren. 19 november 2013 TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment

Läs mer

David Wessman, Lund, 30 oktober 2014 Statistisk Termodynamik - Kapitel 5. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik.

David Wessman, Lund, 30 oktober 2014 Statistisk Termodynamik - Kapitel 5. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. 1 Jämviktsvillkor Om vi har ett stort system som består av ett litet system i kontakt med en värmereservoar. Storheter för det lilla systemet

Läs mer

Kan det vara möjligt att med endast

Kan det vara möjligt att med endast ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp

Läs mer

Diskussionsfrågor till version 1 och 2

Diskussionsfrågor till version 1 och 2 Diskussionsfrågor till version 1 och 2 Version 1 Tillgång till internet i hemmet A. Vilken åldersgrupp har haft den största ökningen av tillgång till internet under perioden? B. Kan man med hjälp av de

Läs mer

P-02/03 säsongen 2016

P-02/03 säsongen 2016 P-02/03 säsongen 2016 AGENDA DU ÄR VÄRDEFULL IDROTTENS VÄRDEGRUND LAGANDA = VI TILLSAMMANS VINNARE I LÄNGDEN DU ÄR VÄRDEFULL 1. VARFÖR ÄR VI TRÄNARE & VARFÖR SPELAR NI FOTBOLL? (grupperna skriver varsin

Läs mer

Hur skapar man formula r

Hur skapar man formula r Hur skapar man formula r Gamla jämfört med nya sättet Förord Att skapa olika typer av dokument är styrkan i ett ordbehandlingsprogram, såsom Microsoft Word. Dock är denna flexibilitet även till en nackdel.

Läs mer

Information sid 2 4. Beställning sid 5. Ändring/Nytt SIM sid 6. Avsluta abonnemang sid 7. Fakturafråga sid 8. Felanmälan/fråga sid 9.

Information sid 2 4. Beställning sid 5. Ändring/Nytt SIM sid 6. Avsluta abonnemang sid 7. Fakturafråga sid 8. Felanmälan/fråga sid 9. AcadeMedia Telefoni Innehåll Information sid 2 4 Beställning sid 5 Ändring/Nytt SIM sid 6 Avsluta abonnemang sid 7 Fakturafråga sid 8 Felanmälan/fråga sid 9 Kontkat sid 10 Information För att göra en beställning,

Läs mer

Koll på cashen - agera ekonomicoach!

Koll på cashen - agera ekonomicoach! För elever Fördjupningsuppgift: Koll på cashen - agera ekonomicoach! Fördjupningsuppgift: Ekonomicoach Så här går det till Börja med att se filmen Koll på cashen. Därefter är ni redo för att komma igång.

Läs mer

23 mars 2006, kl.9.00-13.00 Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 22p. för Väl Godkänd av max. 35p.

23 mars 2006, kl.9.00-13.00 Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 22p. för Väl Godkänd av max. 35p. HH / Georgi Tchilikov GEOMETRI och LINJÄR ALGEBRA, 5p. 3 mrs 6, kl.9.-3. Ing hjälpmedel, förutom skrivmteriel. Betygsgränser: 5p. för Godkänd, p. för Väl Godkänd v mx. 35p. Om ej nnt säges, gäller tt ll

Läs mer

Med detta och följande avsnitt blir det något svårare. Det finns också

Med detta och följande avsnitt blir det något svårare. Det finns också Nämnarens kryptoskola 10. Caesarkrypto lärarsida Med detta och följande avsnitt blir det något svårare. Det finns också här fler övningar som man kan använda om man behöver det. Med Caesar-krypto skall

Läs mer

Handledning för digitala verktyg Talsyntes och rättstavningsprogram. Vital, StavaRex och SpellRight

Handledning för digitala verktyg Talsyntes och rättstavningsprogram. Vital, StavaRex och SpellRight Handledning för digitala verktyg Talsyntes och rättstavningsprogram Vital, StavaRex och SpellRight Elevens namn:.. Skola: Datum:.. Varför behövs en handledning? Denna handledning är tänkt att användas

Läs mer

Varför är det så viktigt hur vi bedömer?! Christian Lundahl!

Varför är det så viktigt hur vi bedömer?! Christian Lundahl! Varför är det så viktigt hur vi bedömer?! Christian Lundahl! Fyra olika aspekter! Rättvisa! Reflektion och utvärdering av vår egen undervisning! Motivation för lärande! Metalärande (kunskapssyn)! 1. Rättvisa!

Läs mer

Gruppenkät. Lycka till! Kommun: Stadsdel: (Gäller endast Göteborg)

Gruppenkät. Lycka till! Kommun: Stadsdel: (Gäller endast Göteborg) Gruppenkät Du har deltagit i en gruppaktivitet! Det kan ha varit en tjej- / killgrupp, ett läger eller ett internationellt ungdomsutbyte. Eller så har ni kanske ordnat ett musikarrangemang, skött ett café,

Läs mer

Uppdrag: Huset. Fundera på: Vilka delar i ditt hus samverkar för att elen ska fungera?

Uppdrag: Huset. Fundera på: Vilka delar i ditt hus samverkar för att elen ska fungera? Uppdrag: Huset Praktiskt arbete: (Krav) Göra en skiss över ditt hus. Bygga en modell av ett hus i en kartong med minst två rum. Koppla minst tre lampor och två strömbrytare till ditt hus. Visa både parallellkoppling

Läs mer

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,

Läs mer

Projekt benböj på olika belastningar med olika lång vila

Projekt benböj på olika belastningar med olika lång vila Projekt benböj på olika belastningar med olika lång vila Finns det några skillnader i effektutveckling(kraft x hastighet) mellan koncentriskt och excentriskt arbete på olika belastningar om man vilar olika

Läs mer

Övningshäfte i matematik för. Kemistuderande BL 05

Övningshäfte i matematik för. Kemistuderande BL 05 Övningshäfte i matematik för Kemistuderande BL 05 Detta häfte innehåller några grundläggande övningar i de delar av matematiken som man har användning för i de tidiga kemistudierna. Nivån är gymnasiematematik,

Läs mer

Två konstiga klockor

Två konstiga klockor strävorna C Två konstiga klockor resonemang geometri Avsikt och matematikinnehåll Det som kan göra det svårt för barn att avläsa en analog klocka är att förstå att den består av två skalor som är beroende

Läs mer

FRÅN A TILL Ö LäraMera Ab / www.laramera.se och Allemansdata Ab / www.allemansdata.se FRÅN A TILL Ö

FRÅN A TILL Ö LäraMera Ab / www.laramera.se och Allemansdata Ab / www.allemansdata.se FRÅN A TILL Ö I programmet finns 11 olika aktiviteter för att träna varje bokstav och på att känna igen ord. För varje bokstav kan olika övningsblad skrivas ut: Inledningsvis väljer du vilken bokstav du vill öva på.

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010:

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010: Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning, 7/ 00: Genomgånget på föreläsningrn - 5. Generliserde integrler. Vi hr vist tt den bestämd integrlen I b f

Läs mer

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION OLIVI KVRNLÖ UPPTÄCK OCH DEINIER SMNDET MELLN TVÅ OMRÅDEN SOM DELS V GREN TILL EN POTENSUNKTION Konsultudrg rågeställning I den här ugiften sk vi undersök smbndet melln reorn i en kvdrt med sidn l.e. i

Läs mer

Volym och dubbelintegraler över en rektangel

Volym och dubbelintegraler över en rektangel Volym oh dubbelintegrler över en rektngel All funktioner nedn nts vr kontinuerlig. Om f (x i intervllet [, b], så är ren v mängden {(x, y : y f (x, x b} lik med integrlen b f (x dx. Låt = [, b] [, d] =

Läs mer

Enkätresultat för elever i år 2 i Nösnäsgymnasiet 2 i Stenungsund våren 2014

Enkätresultat för elever i år 2 i Nösnäsgymnasiet 2 i Stenungsund våren 2014 Enkätresultat för elever i år 2 i Nösnäsgymnasiet 2 i Stenungsund våren 2014 Antal elever: 47 Antal svarande: 40 Svarsfrekvens: 85% Klasser: 12BAa, 12BAb, 12LL Skolenkäten Skolenkäten går ut en gång per

Läs mer

VÄRDERINGSÖVNINGAR. Vad är Svenskt?

VÄRDERINGSÖVNINGAR. Vad är Svenskt? VÄRDERINGSÖVNINGAR Vad är Svenskt? Typ av övning: Avstamp till diskussion. Övningen belyser hur svårt det är att säga vad som är svenskt och att normen vad som anses vara svenskt ändras med tiden och utifrån

Läs mer

Enkätresultat för elever i åk 9 i Borås Kristna Skola i Borås hösten 2012. Antal elever: 20 Antal svarande: 19 Svarsfrekvens: 95% Klasser: Klass 9

Enkätresultat för elever i åk 9 i Borås Kristna Skola i Borås hösten 2012. Antal elever: 20 Antal svarande: 19 Svarsfrekvens: 95% Klasser: Klass 9 Enkätresultat för elever i åk 9 i Borås Kristna Skola i Borås hösten 2012 Antal elever: 20 Antal svarande: 19 Svarsfrekvens: 95% Klasser: Klass 9 Skolenkäten Skolenkäten går ut en gång per termin till

Läs mer

Smakstart. Effektmätning. Rapport 2013

Smakstart. Effektmätning. Rapport 2013 Rapport 1 3. Hur viktigt är följande saker när du handlar mat? Svara på en 5-gradig skala där 5 betyder mycket viktigt och 1 är helt oviktigt? Bas samtliga 351 st 2012 Bas samtliga 434 st 2 3B. När anser

Läs mer

Enkätresultat för elever i år 2 i Mega Musik gymnasium hösten 2014. Antal elever: 47 Antal svarande: 46 Svarsfrekvens: 98% Klasser: MM13

Enkätresultat för elever i år 2 i Mega Musik gymnasium hösten 2014. Antal elever: 47 Antal svarande: 46 Svarsfrekvens: 98% Klasser: MM13 Enkätresultat för elever i år 2 i Mega Musik gymnasium hösten 2014 Antal elever: 47 Antal svarande: 46 Svarsfrekvens: 98% Klasser: MM13 Skolenkäten Skolenkäten går ut en gång per termin till de skolor

Läs mer

Boll-lek om normer. Nyckelord: likabehandling, hbt, normer/stereotyper, skolmiljö. Innehåll

Boll-lek om normer. Nyckelord: likabehandling, hbt, normer/stereotyper, skolmiljö. Innehåll 1 Boll-lek om normer Nyckelord: likabehandling, hbt, normer/stereotyper, skolmiljö Innehåll Materialet bygger på en övning där eleverna, genom en lek med bollar, får utmana sin förmåga att kommunicera

Läs mer

CAEBBK01 Drag och tryckarmering

CAEBBK01 Drag och tryckarmering Drag och tryckarmering Användarmanual 1 Eurocode Software AB Innehåll 1 INLEDNING 3 1.1 ANVÄNDNINGSOMRÅDEN 3 1.2 TEKNISK BESKRIVNING 3 1.3 ARMERINGENS INLÄGGNING 4 1.4 ARBETSKURVA BETONG 4 2 INSTRUKTIONER

Läs mer

Ekvationssystem, Matriser och Eliminationsmetoden

Ekvationssystem, Matriser och Eliminationsmetoden Matematiska institutionen Göteborgs universitet och Chalmers tekniska högskola Version 359 Ekvationssystem, Matriser och Eliminationsmetoden - En inledning Ekvationssystem - matrisformulering Vi såg att

Läs mer

4 nödsamtal. SOS-operatören trycker nu på en knapp för att få fram telefonnummer och adress till telefonen pojken ringer från.

4 nödsamtal. SOS-operatören trycker nu på en knapp för att få fram telefonnummer och adress till telefonen pojken ringer från. 4 nödsamtal 1) Hjälp, farmor har ramlat! - SOS 112. Vad har inträffat? - Det är farmor, hon har ramlat! - Ja, hur är det med farmor då? - Hon svarar inte. - Andas hon? - Ja, jag tror det. - Hur ligger

Läs mer

ELEV- HANDLEDNING (Ansökan via webben) www.orebro.se/gymnasieantagningen

ELEV- HANDLEDNING (Ansökan via webben) www.orebro.se/gymnasieantagningen ELEV- HANDLEDNING (Ansökan via webben) www.orebro.se/gymnasieantagningen Gymnasieantagningen i Örebro län På Gymnasieantagningens hemsida www.orebro.se/gymnasieantagningen hittar du information om vad

Läs mer

[ÖVNINGSBANK] Sollentuna FK. Expressbollen

[ÖVNINGSBANK] Sollentuna FK. Expressbollen Expressbollen Övning nr. 1 Två lag på varje långlinje i en rektangel på 15x25 meter. o T.ex. Halv gympasal o Viktigt att vara tydlig med mitten, d.v.s. markera mitten med koner Varje spelare har en boll.

Läs mer

Bilaga B Kartläggningsmaterial - Litteracitet Samtals- och dokumentationsunderlag avkodning, läsning, läsförståelse och skrivning

Bilaga B Kartläggningsmaterial - Litteracitet Samtals- och dokumentationsunderlag avkodning, läsning, läsförståelse och skrivning Bilaga B Kartläggningsmaterial - Litteracitet Samtals- och dokumentationsunderlag avkodning, läsning, läsförståelse och skrivning Förberedelser och instruktioner Tid max: 70 min. Testledaren bör vara undervisande

Läs mer

För dig som är valutaväxlare. Så här följer du reglerna om penningtvätt i din dagliga verksamhet INFORMATION FRÅN FINANSINSPEKTIONEN

För dig som är valutaväxlare. Så här följer du reglerna om penningtvätt i din dagliga verksamhet INFORMATION FRÅN FINANSINSPEKTIONEN För dig som är valutaväxlare Så här följer du reglerna om penningtvätt i din dagliga verksamhet INFORMATION FRÅN FINANSINSPEKTIONEN MARS 2016 DU MÅSTE FÖLJA LAGAR OCH REGLER Som valutaväxlare ska du följa

Läs mer

Tomi Alahelisten Lärare Idrott & Hälsa - Internationella Skolan Atlas i Linköping. Orientering

Tomi Alahelisten Lärare Idrott & Hälsa - Internationella Skolan Atlas i Linköping. Orientering Orientering 1. Inledning Orientering härstammar från Norden i slutet på 1800-talet. Ursprungligen var orientering en militär övning, men tidigt såg man nyttan med att sprida denna kunskap till allmänheten

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

Datorövning 2 Statistik med Excel (Office 2007, svenska)

Datorövning 2 Statistik med Excel (Office 2007, svenska) Datorövning 2 Statistik med Excel (Office 2007, svenska) Denna datorövning fokuserar på att upptäcka samband mellan två variabler. Det görs genom att rita spridningsdiagram och beräkna korrelationskoefficienter

Läs mer

myabilia En introduktion 2016-08-31

myabilia En introduktion 2016-08-31 myabilia En introduktion 2016-08-31 Vad är myabilia? En webbtjänst för dig som använder Handi5, HandiKalender eller MEMOplanner Medium Handi5 HandiKalender MEMOplanner Medium Vad kan man göra med myabilia?

Läs mer

Rapport uppdrag. Advisory board

Rapport uppdrag. Advisory board 1 Rapport uppdrag Advisory board 2 Advisory board AB är en dialogmodell som på ett stukturerat sätt ger möjlighet till samråd och dialog med unga i utvecklingsarbeten/verksamhetsutveckling inom kommunen,

Läs mer

Inledande kurs i matematik, avsnitt P.6. Vi ritar upp enhetscirkeln och vinkeln 2π 3.

Inledande kurs i matematik, avsnitt P.6. Vi ritar upp enhetscirkeln och vinkeln 2π 3. Inlednde kurs i mtemtik, vsnitt P6 P6 eräkn sin P61 eräkn os 4 Vi ritr upp enhetsirkeln oh vinkeln Vi sk nvänd enhetsirkeln oh symmetrier i denn för tt estämm os 4 Den punkt på enhetsirkeln med vinkeln

Läs mer

Matematiken har alltid funnits omkring

Matematiken har alltid funnits omkring katarina brännström & åsa pesula På tredje plats i mitten Personalen på Karungi förskola arbetar med barnens känsla för lägesbegrepp med hjälp av sånger, teckningar och andra material. Med fokus på matematik

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

Design by. Manual Jossan.exe. Manual. till programmet. Jossan.exe. E-post: petter@sarkijarvi.se

Design by. Manual Jossan.exe. Manual. till programmet. Jossan.exe. E-post: petter@sarkijarvi.se Manual till programmet 1 Inledning Programmet är döpt efter Josefine Mattsson och har utvecklats av Josefines pappa Petter Särkijärvi i Pajala. Man kan köra/styra programmet med antingen mus, tangentbord,

Läs mer

Har du förstått? I De här talen är primtal a) 29,49 och 61 b) 97, 83 och 89 c) 0, 2 och 3.

Har du förstått? I De här talen är primtal a) 29,49 och 61 b) 97, 83 och 89 c) 0, 2 och 3. PASS 5. FAKTORISERING AV POLYNOM 5. Nyttan av faktorisering och faktorisering av heltal Har vi nytta av att kunna faktorisera polynom? Ja det har vi. Bra kunskaper i faktorisering av polynom möjliggör

Läs mer

Facit åk 6 Prima Formula

Facit åk 6 Prima Formula Facit åk 6 Prima Formula Kapitel 3 Algebra och samband Sidan 95 1 a 12 cm (3 4 cm) b Han vet inte att uttrycket 3s betyder 3 s eller s + s + s 2 a 5x b 6y c 12z 3 a 30 cm (5 6 cm) b 30 cm (6 5 cm) Sidan

Läs mer

Föräldrar i Skola24. Schema

Föräldrar i Skola24. Schema Föräldrar i Skola24 Schema Ett textschema kan ses på startsidan om skolan har valt att aktivera funktionen. Passerade lektioner visas i grått, nuvarande eller nästkommande lektion är blåmarkerad och kommande

Läs mer

3. Värmeutvidgning (s. 49 57)

3. Värmeutvidgning (s. 49 57) 3. Värmeutvidgning (s. 49 57) Om du vill öppna ett burklock som har fastnat kan du värma det under varmt vatten en stund och sedan lossnar det enklare. Detta beror på att värmen får locket att utvidga

Läs mer

Tillståndsmaskiner. 1 Konvertering mellan Mealy och Moore. Ola Dahl och Mattias Krysander Linköpings tekniska högskola, ISY, Datorteknik 2014-05-08

Tillståndsmaskiner. 1 Konvertering mellan Mealy och Moore. Ola Dahl och Mattias Krysander Linköpings tekniska högskola, ISY, Datorteknik 2014-05-08 Tillståndsmaskiner Ola Dahl och Mattias Krysander Linköpings tekniska högskola, ISY, Datorteknik 2014-05-08 Figur 2: En tillståndsgraf av Moore-typ för att markera var tredje etta i en insignalsekvens.

Läs mer

Institutionen för matematik Envariabelanalys 1. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej miniräknare)

Institutionen för matematik Envariabelanalys 1. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej miniräknare) Umeå universitet Dugga i matematik Institutionen för matematik Envariabelanalys 1 och matematisk statistik IE, ÖI, Stat. och Frist. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej

Läs mer