Repetitionsuppgifter



Relevanta dokument
Repetitionsuppgifter

TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B2/A , arctan x x 2 +1

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t))

LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

Föreläsning 19: Fria svängningar I

Lösningar till Matematisk analys IV,

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000

Differentialekvationssystem

Om antal anpassningsbara parametrar i Murry Salbys ekvation

Blandade A-uppgifter Matematisk analys

= (x, y) : x 2 +y 2 4, x 0, y (4r2 +1) 3 2

Tentamen i Envariabelanalys 2

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k)

TENTAMEN HF1006 och HF1008

INSTUDERINGSUPPGIFTER

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3,

Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion)

3 Rörelse och krafter 1

Chalmers tekniska högskola Datum: kl Telefonvakt: Milo Viviani MVE500, TKSAM-2

System med variabel massa

Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

Lösningar till MVE016 Matematisk analys i en variabel för I yy 1 + y 2 = x.

4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x),

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

{ } = F(s). Efter lång tid blir hastigheten lika med mg. SVAR: Föremålets hastighet efter lång tid är mg. Modul 2. y 1

Matematik 5 svar. Kapitel Test Blandade uppgifter Kapitel a) dy

Kap 3.7, 17.8 Linjära differentialekvationer med konstanta koefficienter.

INTEGRALER AV TRIGONOMETRISKA FUNKTIONER. Viktiga trigonometriska formler vid beräkning av integraler: (F1) (F2) (F3)

Om exponentialfunktioner och logaritmer

Kursens Kortfrågor med Svar SF1602 Di. Int.

( ) = 2x + y + 2 cos( x + 2y) omkring punkten ( 0, 0), och använd sedan detta ( ).

Kontrollskrivning KS1T

Kap Dubbelintegraler.

Om de trigonometriska funktionerna

TNA004 Analys II Tentamen Lösningsskisser

2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen

SF1600, Differential- och integralkalkyl I, del 1. Tentamen, den 9 mars Lösningsförslag. f(x) = x x

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T

Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll?

TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor

TATA42: Föreläsning 10 Serier ( generaliserade summor )

1 Elektromagnetisk induktion

Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK

SF1626 Flervariabelanalys

Matematiska Institutionen, K T H. B. Krakus. Matematik 1. Maplelaboration 2.

1. Geometriskt om grafer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Biomekanik, 5 poäng Kinetik Härledda lagar

LMA222a. Fredrik Lindgren. 17 februari 2014

Funktionsserier och potensserier. som gränsvärdet av partialsummorna s n (x) =

FÖRDJUPNINGS-PM. Nr Räntekostnaders bidrag till KPI-inflationen. Av Marcus Widén

Lösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00.

INSTUDERINGSUPPGIFTER

MVE500, TKSAM-2. (c) a 1 = 1, a n+1 = 4 a n för n 1

Lösningar till MVE017 Matematisk analys i en variabel för I x 3x y = x. 3x2 + 4.

Tentamen på grundkursen EC1201: Makroteori med tillämpningar, 15 högskolepoäng, lördagen den 14 februari 2009 kl 9-14.

Om exponentialfunktioner och logaritmer

vara en given funktion som är definierad i punkten a. i punkten a och betecknas f (a)

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

Chalmers tekniska högskola Datum: kl Telefonvakt: Jonny Lindström MVE475 Inledande Matematisk Analys

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder.

Funktionen som inte är en funktion

Tentamensproblem i Matematik 1 β. Sammanställda av Tomas Claesson Utskrivna av Kjell Elfström

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e x2 /4 2) = 2) =

VII. Om de trigonometriska funktionerna

cos( x ) I 1 = x 2 ln xdx I 2 = x + 1 (x 1)(x 2 2x + 2) dx

Tentamensskrivning i Matematik IV, 5B1210.

Algebra Negativa tal, Parenteser, Potenser, Bråk, Kvadreringsreglerna, Konjugatregeln

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen

Prov i matematik Fristående kurs Analys MN1 distans UPPSALA UNIVERSITET Matematiska institutionen Anders Källström

Chalmers tekniska högskola Datum: kl Telefonvakt: Jonny Lindström LMA222a Matematik DAI1 och EI1

SF1625 Envariabelanalys

Anm 3: Var noga med att läsa och studera kurslitteraturen.

AMatematiska institutionen avd matematisk statistik

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller

+ 5a 16b b 5 då a = 1 2 och b = 1 3. n = 0 där n = 1, 2, 3,. 2 + ( 1)n n

a) Beräkna arean av triangeln ABC då A= ( 3,2,2), B=(4,3,3) och C=( 5,4,3).

1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f.

Del I. Modul 1. Betrakta differentialekvationen

Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik

1. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t).

Chalmers tekniska högskola Datum: kl Telefonvakt: Carl Lundholm MVE475 Inledande Matematisk Analys

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7

4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf.

Matematik 1. Maplelaboration 1.

MVE500, TKSAM Avgör om talserierna är konvergenta eller divergenta (fullständig motivering krävs). (6p) 2 n. n n (a) n 2.

ÖVN 6 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF Nyckelord och innehåll. a n (x x 0 ) n.

gränsvärde existerar, vilket förefaller vara en naturlig definition (jämför med de generaliserade integralerna). I exemplet ovan ser vi att 3 = 3 n n

TATA42: Föreläsning 5 Serier ( generaliserade summor )

Besökstider: ca och 17.00

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A

FOURIERSERIER. Definition 1. (Trigonometrisk serie) Ett utryck av följande form. är en trigonometrisk serie.

Institutionen för matematik Envariabelanalys 1. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej miniräknare)

Serier. egentligen är ett gränsvärde, inte en summa: s n, där s n =

Skillnaden mellan KPI och KPIX

Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl

Transkript:

MVE5 H6 MATEMATIK Chalmers Repeiionsuppgifer Inegraler och illämpningar av inegraler. (a) Beräkna Avgör om den generaliserade inegralen arcan(x) ( + x) dx. dx x x är konvergen eller divergen. Beräkna den om den är konvergen.. (a) Beräkna 8x + 5 9x + x dx Avgör om konvergerar. Beräkna i så fall dess värde. dx x x 3. Beräkna cos x + cos x dx. 4. Avgör om den generaliserade inegralen är konvergen eller divergen. Besäm dess värde om den är konvergen. 5. Avgör om den generaliserade inegralen ln 3 d d är konvergen eller divergen. Besäm dess värde om den är konvergen. 6. Avgör om den generaliserade inegralen dx + x + x är konvergen eller divergen. Besäm dess värde om den är konvergen. 7. (a) Beräkna Avgör om den generaliserade inegralen 8. Beräkna ln( + ) 3 d. + d är konvergen eller divergen. Beräkna den om den är konvergen.

(a) 9. Beräkna (a) d d 8 3 + + + + d x ln(x + ) dx.. Beräkna x x dx om den konvergerar. Visa annars a den divergerar.. När kurvan y = + x, x roerar kring y-axeln uppsår en kropp. Beräkna volymen av denna.. När kurvan y = + x, x roerar kring x-axeln avgränsas en kropp i rumme. Beräkna volymen av denna kropp. 3. När område i plane som ligger över x-axeln, men under kurvan y = x x roerar run y-axeln uppsår en kropp i rumme. Beräkna volymen av den. 4. (a) Kurvan y = e x, x, roerar run x-axeln. Besäm arean av den ya som då uppsår. Kurvan y = ln( x ), x /, roerar run y-axeln så a en ya uppsår. Beräkna arean av den. 5. En parikel rör sig i plane enlig den parameriserade kurvan (x(), y()), där { x() = e 4 cos y() = e 4 sin. Hur lång färdas parikeln mellan iden = och =? 6. En skålformad behållare beskrivs av a man låer kurvan y = x, x 4 (4 meer) roera run y-axeln. Den är fylld ill höjden m av en oljeblandning som skika sig så a densieen på höjden h är 8 h kg/m 3. Vilke arbee krävs för a pumpa upp alla olja ill behållarens kan? 7. Vid en olycka på en oljeplaform sker e usläpp av olja. Vid en viss idpunk finns på avsånde x km från plaformen, där x, e x / ( + e x / ) on olja per kvadrakilomeer. På mer än kilomeers avsånd är oljemängden försumbar. Hur mycke olja har oal släpps u vid idpunken? 8. Man ska gräva e m lång dike med e värsni av formen y = x. De ska vara 9 m djup och 6 m bre (som bredas). m 6 m 9 m Man räknar med a jorden som ska grävas upp har en densie av formen ρ(d) = c + kd kg/m 3 där d är djupe under markyan och c sam k konsaner. Besäm e uryck för de (minsa) arbee som krävs för a gräva gropen. (Tyngdacceleraionen beecknas g och enheen är joule.)

9. Vid e bygge lyfs en behållare på marken med kg cemen från en sällning m ovan mark, genom a dra i e rep som väger / kg per meer. Vilke arbee uförs om behållaren lyfs ill en punk 5 m ovan mark?. Den 5 april 999 van Maria Grosso den sörsa loerivinsen som diills förekommi. Hon fick välja mellan a få oal 97 miljoner $ ubeal koninuerlig under 6 år eller a direk få en klumpsummma på 4 miljoner $. (Uppgifen kräver räknedosa!) (a) Vad var bäs a välja om man räknar med 6% koninuerlig räna? Om man räknar med 5%? Vinnaren valde klumpsumman. Vad rodde hon om ränan? Differenialekvaioner. Lös ekvaionen y y + y = e 3 + e.. Lös följande differenialekvaioner när x >. (a) xy = y(y ), xy + ( x)y = x. 3. Lös differenialekvaionen x y(x)y (x) = ( + y(x) ) cos(/x), x >, y(/π) =. 4. Lös följande differenialekvaioner (a) y x y = x, y() = x y xy = x 3, när x >. 5. Lös differenialekvaionen y + ( + x)y = e x, y() =. 6. Lös differenialekvaion y y = x, y () = y() =. 7. Besäm alla reella lösningar ill differenialekvaionen y () + y () + 5y() = e cos 3. 8. Lå f() =, då < och f() =, då. Lös differenialekvaionen y + y = f(), y() =, y () =, när. 9. Besäm med hjälp av Laplaceransformering den lösning ill y + y = 5e sin, för, som uppfyller y() = y () =. 3

3. Beraka differenialekvaionen y () + y() = f(),, där y() = y () = och f() är den periodiska funkion vars graf är f() 3 Besäm laplaceransformen ỹ(s) av lösningen y(). (De är allså ine själva y() som skall besämmas.) 3. Lå f() vara definierad för och ha Laplaceransformen f(s) = Besäm den lösning y() ill differenialekvaionen som uppfyller y() =. 3. Funkionen f() är definierad för och f() + (s + )e πs s. + y () + y() = f(),, f(ξ) sin( ξ) dξ = cos. Besäm funkionen f() och dess Laplaceransform f(s). Serier, poensserier och Taylorpolynom 33. För vilka x konvergerar x k+ k k? 34. (a) Besäm konvergensradien ill poensserien Avgör om serien konvergerar. Besäm i så fall dess värde. 35. För vilka x konvergerar k= (k!) 3 x k+ (3k)!3 k+. ( ) k (k + )3 k ( ) k x k k? 36. För vilka x konvergerar serien x 3k+ k k? 37. (a) Besäm konvergensradien ill poensserien (k!) x 4k+ k (k + )!. 4

Avgör om serien konvergerar. Besäm i så fall dess värde. ( ) k k(k )9 k 38. Besäm Taylorpolynome av ordning 6 kring x = ill funkionen x ( + x ). 39. Besäm Taylorpolynome av ordning 4 ill cos(x) kring x =. 4. (a) Besäm Tayloruvecklingen av ln x kring x = 3. Besäm Tayloruvecklingen av cos x kring x = π/3. 4. Besäm Taylorpolynome av ordning 9 kring x = ill funkionen /( x 3 ). 4. Beräkna gränsvärde av när x. 43. Beräkna gränsvärde av när. arcan(x ) x cos(x 3, ) ln( + 3 ) e sin(), Förslag ill svar. (a) ln()/4 Konvergen med värde π. (a) 9 ln 3x + 7 ln x + 8 8 Konvergen med värde π. 3. arcsin(sin(x)/ ) + C. 4. Konvergen med värde /4. 5. Konvergen med värde 4/3. 6. Konvergen med värde π/4 7. (a) 5 ln(5)/8 + ln() Divergen 8. (a) + ln ţ + ű + C, där C är en godycklig konsan. arcan( ) + C, där C är en godycklig konsan. 9. (a) ln(4/3) (x ) ln(x + ) x / + x + C. Konvergen med värde. π( )/3. 6π/5 3. 8π/3 (volymenheer) 4. (a) (4π/3)(( + e ) 3/ 3/ ) ln() / 5. 7(e 4 )/4 6. 3.45 5 πg joule 7. π( ( + e) ) 73 on. 8. g R 9 y(c + k(9 y))(9 y) dy 9. 475g/4 joule 5

. (a) Om ränan är 5% var de bäre a välja koninuerlig ubealning. Om ränan var 6% var de bäre a välja klumpsumman.c A ränan snarare skulle bli 6% än 5%.. y = (A + B + /)e + e 3 /4, där A och B är godyckliga konsaner. (a) y =, y = ( + ce x ), där c är en godycklig konsan y = (x + + /x) + ce x x, där c är en godycklig konsan 3. y = ±(e ( sin(/x)) ) / 4. (a) y = an(x 3 /3 + π/4) y = x 4 /5 + Cx, där C är en godycklig konsan. 5. y = e x 6. y = e x + e x x 7. y = e (A cos() + B sin() cos(3)/5), där A och B är godyckliga konsaner 8. y() = ( u( ))( + sin ) 9. y() = (e ) cos + (e + ) sin 3. s + e s s (s + )( e s ) 3. e u( π) sin 3. f() = cos( ) och f(s) = s/(s + ) 33. < x < 34. (a) 9 Konvergen med summan 3π/6 35. < x 36. 4 /3 x 4 /3 37. (a) 8 /4 Konvergen med summan arcan(/3)/3 + ln( /3) 38. x 4x 3 + 6x 5 39. x + x 4 /3 4. (a) ln 3 + P n= xn /(n 3 n ) X ţ (n)! (x π 3 3 )n (n + )! (x π ű 3 )n+. n= 4. + x 3 + x 6 + x 9 4. /3 43. 6/5 6