Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Relevanta dokument
Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Något om Dimensionsanalys och Mathematica. Assume period T Cm Α g Β L Γ s 1 kg Α m Β m Γ s 1 kg Α m Β. Identify exponents VL HL kg 0 Α m 0 Β Γ s 1 2 Β

Tillämpad vågrörelselära FAF260, 6 hp

Sammanfattning Fysik A - Basåret

Ingenjörsmetodik IT & ME 2010 Föreläsning 2. Enheter i SI-systemet Kap 1 Dimensionsanalys Kap 6

Laborationsintroduktion. FAFA05 och FAFA65

Ingenjörsmetodik IT & ME Föreläsare Dr. Gunnar Malm

Fysikaliska Modeller

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna.

Temperatur T 1K (Kelvin)

Experimentell metodik

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser.

Experimentella metoder 2013, Räkneövning 3

9 Storheter och enheter

Experimentell metodik

TENTAMEN. Institution: DFM, Fysik Examinator: Pieter Kuiper. Datum: april 2010

Svar och anvisningar

27,8 19,4 3,2 = = ,63 = 3945 N = = 27,8 3,2 1 2,63 3,2 = 75,49 m 2

Skydiving. En djupdykning i. Projekt i Mekanik. Kursansvarig: Richard Hsieh

Densitet Tabellen nedan visar massan och volymen för olika mängder kopparnubb.

Chalmers. Matematik- och fysikprovet 2009 Fysikdelen

Newtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål.

1 Dimensionsanalys och π-satsen.

Final i Wallenbergs Fysikpris

3-10 Potenser i problemlösning Namn:..

Kulstötning. Israt Jahan Martin Celander Andreas Svensson Jonathan Koitsalu

Information om ämnet Militärteknik med diagnostiskt självtest av förkunskaper till blivande studerande på Stabsutbildningen (SU)

Innehållsförteckning

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION

Gunga med Galileo matematik för hela kroppen

Repetition mätningar, kraft, densitet & tryck Heureka Fysik 1: kap. 1-3 version 2019

DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR

Repetition grunder, kraft, densitet & tryck Heureka Fysik 1: kap. 1-3 version 2012

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter om måttenheter;

Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola

Poissons ekvation och potentialteori Mats Persson

Tentamen i Fysik TEN 1:2 Tekniskt basår

TFYA16: Tenta Svar och anvisningar

WALLENBERGS FYSIKPRIS

Tentamen: Lösningsförslag

Tentamen Mekanik F del 2 (FFM520)

Linjära ekvationer med tillämpningar

Experimentella metoder, FK3001. Datorövning: Finn ett samband

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe

Lösningar Kap 7 Elektrisk energi, spänning och ström. Andreas Josefsson. Tullängsskolan Örebro

Tentamen i El- och vågrörelselära,

Final i Wallenbergs fysikpris

Appendix i instruktionen

Kapitel 1. Kemiska grundvalar

Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.

Tentamen : Lösningar. 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall:

Labbrapport svängande skivor

Övningar till datorintroduktion

Projekt: Filmat tornfall med modell av tornet. Benjamin Tayehanpour, Adrian Kuryatko Mihai

Lösningar Heureka 2 Kapitel 3 Rörelse i två dimensioner

TFEI02: Vågfysik. Tentamen : Lösningsförslag

Inlämningsuppgift 4 NUM131

3-8 Proportionalitet Namn:

Fysikaliska modeller

ɛ r m n/m e 0,43 0,60 0,065 m p/m e 0,54 0,28 0,5 µ n (m 2 /Vs) 0,13 0,38 0,85 µ p (m 2 /Vs) 0,05 0,18 0,04

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken

Prov Fysik 2 Mekanik

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning).

Lösningsförslag Inlämningsuppgift 1 elstatikens grunder

Trappist-1-systemet Den bruna dvärgen och de sju kloten

Grundläggande energibegrepp

Tentamen för TFYA87 Fysik och Mekanik

Kapitel 1. Kemiska grundvalar

Mekanik Föreläsning 8

LÖSNINGAR TILL PROBLEM I KAPITEL 1 LT L. = dim g dim R 1 2

WALLENBERGS FYSIKPRIS

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers :

Elektromagnetiska falt och Maxwells ekavtioner

mg F B cos θ + A y = 0 (1) A x F B sin θ = 0 (2) F B = mg(l 2 + l 3 ) l 2 cos θ

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen

att båda rör sig ett varv runt masscentrum på samma tid. Planet

" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar

Fysikens lagar och hur dessa påverkar en robot

Lite Kommentarer om Gränsvärden

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Laboration 1: Gravitation

FK Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (2:a omtentan), fredag 30 augusti 2013, kl 9:00-14:00

P1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3.

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)

Tentamen för TFYA87 Fysik och Mekanik

WALLENBERGS FYSIKPRIS

Tentamen för TFYA87 Fysik och Mekanik

Kinetisk Gasteori. Daniel Johansson January 17, 2016

Mekanik FK2002m. Kinetisk energi och arbete

Laboration 1: Gravitation

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232)

Mina videos Jag har satt samman en snabbkurs för er som behöver repetera grundskolans matematik:

undanträngda luften vilket motsvarar Flyft kraft skall först användas för att lyfta samma volym helium samt ballongens tyngd.

Vågrörelselära och optik

Tentamen Mekanik F del 2 (FFM521 och 520)

Kapitel 3. Standardatmosfären

6.3 Partikelns kinetik - Härledda lagar Ledningar

Transkript:

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 3/9 2009 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M. Tid: sekund (s), dimensionssymbol T. Elektrisk ström: ampère (A), dimensionssymbol I. Termodynamisk (absolut) temperatur: kelvin (K), dimensionssymbol Θ. Substansmängd: mol, dimensionssymbol N. Ljusintensitet: candela (cd), dimensionssymbol J. Kraft: Newton (N) Energi: Joule (J) Laddning: Coulomb (C) etc. Kan uttryckas i grundenheterna. Härledda SI-enheter Fördelar med att använda SI-enheter: 1) Uttrycker man alla storheter i SI-enheter vet man att svaret blir uttryckt i en SI-enhet. 2) Ofta har man fått fram den sökta storheten (vänsterledet) uttryckt i en kombination av andra storheter (högerledet). Man kan då lätt kontrollera om enheten hos vänsterledet överensstämmer med den resulterande enheten för högerledet. Om så inte är fallet har man gjort ett allvarligt fel. På tentamina m.m. brukar det bedömas strängt om man lätt hade kunnat konstatera att svaret är orimligt. 3) Med hjälp av enheterna kan vi på ett enkelt sätt uppskatta relationer mellan olika storheter. Det illustreras i problemen mot slutet. Några exempel 1) (Jfr. sid. 14 i kursboken av Grimvall). Watt (W) enhet för eekt P. Hur uttrycker vi W i grundenheter? Vi använder kända samband. Eekt = energi/tidsenhet, enhet W = J/s Energi (arbete) = kraft väg, enhet J = Nm Kraft = massa acceleration, enhet N = kg m/s 2 Metod 1 med användning av dimensionssymboler (Se kap. 6 i kursboken). dim(f ) = MLT 2 dim(e) = ML 2 T 2 dim(p ) = ML 2 T 3 Enhet: W = kg m 2 s 3 Metod 2 med användning av enheter (Jfr. avsnitt 1.3). W = J/s = Nm/s = (kg m/s2 ) m s = kg m2 s 3 1

Anm. Metoden med dimensionssymboler har nackdelen att vi först måste uttrycka alla storheter i grundenheter. Om vi räknar i enheter kan vi starta med härledda storheter som W, J och N och successivt byta ut dem mot grundenheter. 2) Farad (F) enhet för kapacitans C. Kapacitans denieras som laddning dividerat med spänningen över kondensatorn F = C/V Ström = laddning / tidsenhet, enhet för laddning: C = As Eekt = spänning strömstyrka, enhet för spänning: V = W/A Fann nyss att W = kg m 2 /s 3 Metod 1: dim (P ) = ML 2 T 3 enligt föregående uppgift dim (V ) = ML 2 I 1 T 3 dim (q) = IT dim (C ) = dim(q/v ) = IT (ML 2 I 1 T 3 ) 1 = IT M 1 L 2 IT 3 = I 2 T 4 M 1 L 2 F = C/V = As/V = As W/A = A2 s kg m 2 /s 3 = A2 s 4 kg m 2 3) Tesla (T) enhet för magnetisk fältstyrka B. Viktigt samband: Lorentzkraften: F = q v B Magnetfältets belopp ges alltså av B = F/(qv) Metod 1: dim (B) = dim (F/qv) = MLT 2 (IT ) 1 (LT 1 ) 1 = MLT 2 I 1 T 1 L 1 T = MT 2 I 1 N = kg m/s 2 C = As (båda sambanden visade tidigare) T = 4) Uppgift 2, sid. 24 i kursboken. Volt (V) enhet för spänning U eller potential V. kg m/s2 (As) (m/s) = kg m s As m s 2 = kg A s 2 Eekt = spänning strömstyrka, enhet för spänning V = W/A, där A är en grundenhet Fann i exempel 1 att W = kg m 2 /s 3 Metod 1: dim (P ) = ML 2 T 3 dim (V ) = ML 2 T 3 I 1 V = W/A = kg m 2 s 3 A 1 5) Uppgift 5, sid. 26. Här är det givet att specik värmekapacitet (även kallad värmekapacitivitet) uttryckt i grundenheter har enheten m 2 K 1 s 2 2

Vi vill dock uttrycka detta med hjälp av den härledda SI-enheten J. Från uppgift 1 eller tabell 1.2, sid. 13, nner vi att 1 J 1 kg m 2 s 2 = 1 (Jfr. sista exemplet på sid. 20). Detta skrivsätt är ofta praktiskt vid enhetsbyten: vi ställer upp en kvot som är ett och multiplicerar uttrycket med den. Vi kan nu skriva att specik värmekapacitet mäts i m 2 Ks 2 J kg m 2 s 2 = J K kg Värmekapaciteten anger hur mycket energi som måste tillföras för att ett föremål ska öka temperaturen med en grad, så dess enhet är J/K. Den specika värmekapaciteten är värmekapaciteten per kg, så dess enhet bör vara J/(kg K), vilket är just det vi fann. Dimensionsanalys Exempel 1 Det nns pulserande stjärnor vars ljusstyrka och radiella hastighet oscillerar med en period t. En hypotes är att t beror på stjärnans radie r, massa m och gravitationskonstanten G. Uttryck t i dessa storheter så att dimensionerna hänger ihop. Vi ansätter sambandet t = km a r b G c, där k är en dimensionslös konstant och exponenterna a, b och c ska bestämmas. Allmänt gäller (Newtons gravitationslag) att kraften mellan två partiklar med massorna m 1 och m 2 på avståndet r är F = Gm 1m 2 r 2 (Notera att Coulombs lag för kraften mellan två laddningar är på precis samma form). Kraft mäts i N = kg m/s 2. Om vi uttrycker G i de övriga storheterna får vi och enheten blir Ekvationen för t ger att F r2 G = m 1 m 2 (kg m)m 2 s 2 kg 2 = m3 kg s 2 kg a m b (m 3 kg 1 s 2 ) c ska ha enheten s. Därmed ska exponenten för s vara ett, d.v.s. 2c = 1, och exponenterna för kg och m ska vara noll, vilket ger a c = 0 och b + 3c = 0. Detta ger i tur och ordning c = 1 2, a = 1 2 och b = 3 2. Slutsats: Det sökta sambandet är t = k m 1/2 r 3/2 G 1/2 Anm. Verkar detta rimligt fysikaliskt? Uttrycket anger att perioden t minskar om m och/eller G ökar. Båda faktorerna innebär att kraften bakom oscillationen ökar och då verkar det rimligt att oscillationen sker snabbare, d.v.s. att perioden minskar. När radien r ökar verkar det också rimligt att oscillationen får större amplitud och sker långsammare. Även om detta resonemang inte ger de exakta värdena för exponenterna kan det vara skäl att tänka efter om trenderna verkar fysikaliskt rimliga. Exempel 2 Det hydrostatiska blodtrycket p kan antas bero på blodets densitet ρ, höjdskillnaden h mellan hjärtat och en lägre mätpunkt i kroppen och gravitationen g. Ange ett rimligt uttryck för p så att dimensionerna stämmer. Kan man tänka sig ett mera allmänt uttryck där dimensionerna också stämmer men där den fysikaliska situationen beskrivs bättre? 3

Vi ansätter p = kρ a h b g c, där k är en dimensionslös konstant. Tryck är kraft per ytenhet och mäts i pascal (Pa) = N/m 2 = (kg m/s 2 ) /m 2 = kg m 1 s 2. Vidare mäts ρ i kg/m 3 och tyngdaccelerationen g i m/s 2. Enheten hos högerledet blir därmed (kg m 3 ) a m b (m s 2 ) c = kg a m b+c 3a s 2c Jämförelse med enheten för p ger ekvationssystemet a = 1, -2c = -2, b + c - 3a = -1. Detta ger a = b = c = 1, d.v.s. sambandet blir p = kρhg Anm. Detta uttryck gäller för mätpunkter lägre än hjärtat men skulle ge det ofysikaliska resultatet att trycket blir negativt i hjärnan. Man skulle kunna skriva p = p 0 + kρhg där p 0 är ett slags grundblodtryck och den andra termen ger avvikelsen från detta i olika delar av kroppen. Även detta uttryck är dimensionsenligt. Uppgift 2, sid. 132: Luftmotstånd. Den bromsande kraften F på ett föremål antas bero på föremålets tvärsnittsarea A, dess hastighet v och luftens densitet ρ. Vi ansätter F = ka x v y ρ z, där k är en dimensionslös konstant och x, y och z är exponenter, som vi vill bestämma. För vänsterledet har vi dim(f ) = MLT 2 Vidare har vi dim(a) = L 2 dim(v) = LT 1 dim(ρ) = ML 3 Högerledet får därmed dimensionen (L 2 ) x (LT 1 ) y (ML 3 ) z = L 2x+y 3z T y M z Detta ska överensstämma med dimensionen för kraften F. Exponenterna för var och en av grundenheterna måste därför vara lika för vänsterled och högerled. Detta ger ekvationssystemet: M : 1 = z L : 1 = 2x + y 3z T : 2 = y Den första ekvationen ger direkt att z = 1 och den tredje ekvationen ger y = 2. Insättning av detta i den andra ekvationen ger sedan x = 1. Med ansatsen ovan får vi därmed F = kav 2 ρ Anm. I lösningen i kursboken på sid. 137 används i stället för A en variabel d med dimensionen längd. Det kan t.ex vara diametern hos ett klot. Detta ger svaret F = kd 2 v 2 ρ Problemet diskuteras närmare på sid. 129-131. Uppgift 4, sid. 133: Diusionsekvationen. En ofta förekommande ekvation i fysiken är diusionsekvationen c t = D 2 c x 2, där D kallas diusionskonstanten och c är koncentrationen (antal partiklar per m 3 ) som har dimensionen L 3. Här efterfrågas dim (D). 4

Som diskuteras på sid. 118 kan man behandla en derivata som en kvot när man betraktar dimensioner. Vi får därmed ( ) c dim = L 3 /T = L 3 T 1 t ( 2 ) c dim x 2 = L 3 /L 2 = L 5 Detta ger L 3 T 1 = dim (D) L 5 dim (D) = L 2 T 1 Uppgift 7, sid. 134: Släggkastning. Vi vill här ha ett dimensionsenligt uttryck för kastlängden s, som antas bero på utgångsfarten v, utgångsvinkeln α mot kastplanen, tyngdaccelerationen g och släggans massa m. Vi ansätter här s = k(α) v x g y m z (Vi bortser från luftmotståndet). Här har vi infört k(α) som en dimensionslös funktion av vinkeln α, som är dimensionslös. Denna funktion kan inte bestämmas med enbart dimensionsanalys. Vi har dim (v) = L T 1 dim (g) = L T 2 dim (m) = M Vänsterledet har dimensionen L. För högerledet får vi (L T 1 ) x (L T 2 ) y M z = L x+y T x 2y M z För att dimensionen för vänsterledet och högerledet ska vara samma måste vi ha L : 1 = x + y T : 0 = x 2y M : 0 = z Den sista ekvationen ger direkt att z = 0, dvs att kastlängden inte beror på släggans massa. Den andra ekvationen ger x = 2y. Insättning av detta i den första ekvationen ger 1 = 2y + y = y, dvs y = 1. Den andra ekvationen ger sedan x = 2. Vår dimensionsanalys ger därmed Anm. En striktare lösning av problemet ger s = k(α) v 2 g 1 = k(α)v2 g s = sin(2α) v2 g Här är sin(2α) av storleksordningen ett, så vår dimensionsanalys ger ett ungefärligt värde på kastlängden. Den maximala längden fås för α = π/4 och blir v 2 /g. 5