Kap 4. 4.. ubbelintegraler. A. Beräkna följande dubbelintegraler a. d. (x + y) dxdy, över kvadraten x 3, y. (sin y + y cos x) dxdy, då ges av x π, y π. x cos xy dxdy, då ges av x π, y. xy cos (x + y ) dxdy, över x π, y π. C. Låt vara kvadraten x, y. Ange en Riemannsumma för xy dxdy, svarande mot en indelning av i kvadrater med sidan n och valet av (x k, y k ) punkter i kvadratens hörn. Beräkna integralen genom att låta n gå mot. A 3. Man beräknar en dubbelintegral f(x,y) dxdy och integrerar först med avseende på y. etta leder till beräkning av två enkelintegraler. Bestäm integrationsgränserna i dessa om a. ges av y x y och x begränsas av kurvorna y = x och y = x 4 är triangeln med hörnen i punkterna (,), (,) och (,) d. definieras genom x + y 5 och y x.
A 4. Följande upprepade enkelintegraler kan uppfattas som dubbelintegraler över ett område. Ange. x a. dx x / f(x,y) dy 4 x dx f(x,y) dy. x dx x f(x,y) dy A 5. Samma uppgift som i 3, men nu sker integrationen först i x-led. 6. Kasta om integrationsordningen x A a. dx f(x,y) dy x 3 e ln x A dx f (x,y) dy B 6 x dx B d. dy x 4 f(x,y) dy y f(x,y) dx + y dy y f(x,y) dx. y A 7. Beräkna följande dubbelintegraler: a. (xy + y ) dxdy, ges av x, y x + x + y dxdy, är den del av första kvadranten som begränsas av parabeln y = x samt linjerna y = och x = e x y dxdy, över triangeln med hörnen i punkterna (, ), (,) och (,)
A 7 d. dxdy, definieras genom x + y 6, x y och x e. xy dxdy, över fyrhörningen med hörnen i punkterna (,), (,), (,) och (,4) f. dxdy, då är triangeln med hörnen i punkterna + y 4 (,), (,) och (,) g. ( + x + y) dxdy, då begränsas av linjerna y = x, y = x och x = ± h. x y ey dxdy, då är fyrhörningen med hörnen i punkterna (,), (,), (,) och (,) i. y x dxdy, då begränsas av linjerna y + x =, x = och y = 4 j. dy y cos x 5 dx y k. (y x 8) dxdy, begränsas av y = x, y = (x ) och y = (x 4) l. ( x + y ) dxdy, definieras genom x + y m. (x + y) e y dxdy, över triangeln med hörnen i punkterna (,), (,) och (,) n. o. x dxdy, begränsas av hyperbeln xy = och linjerna y x =, y = x x y x 3 y 3 dxdy, begränsas av kurvan x 3 + y 3 = och koordinataxlarna 3
A 7 p. dx y sin y cos x y dy x q. r. y x dxdy, ges av x, y x och y x ( + x + y) dxdy, är triangeln med hörnen i punkterna (,), (,) och (,) s. e y dxdy, ges av x y t. x e xy dxdy, över området x, xy u. x 3 y dxdy, är cirkelskivan x + y r. B 8. Beräkna följande dubbelintegraler: a. d. x + y dxdy, definieras genom x y + y x + x 4 dxdy, ges av x och xy y x + xy dxdy, ges av y x x 3 ( + y) dxdy, över området x + y, x och y e. cos (x + y) dxdy, över kvadraten x π och y π f. x dxdy, då begränsas av parablerna y = x x och x = y y y g. dy y y y x + x 3 dx + y dxdy, då ges av x, + x3 4
B 8 h. cos yx dxdy, begränsas av kurvan yx 3 = π samt linjerna x =, x = och y = i. j. k. 3 y x dxdy, begränsas av y = x + x och y = x 3 + x (x y y 5 ) dxdy, över området y x y, y x + x dxdy, över triangeln med hörnen i punkterna 3 + x y (,), (,) och (, ) l. cos x y dxdy, ges av y x πy, y π m. dxdy, ges av y 3x 3y 9 (x + y) x n. x dxdy, då begränsas av y-axeln samt linjerna y =, x + y3 y = och y = x. B 9. Låt f(x,y) vara det största av talen 9y 4x och 8y 3x. Beräkna dubbelintegralen f(x,y) dxdy, då är rektangeln x, y. B. B. Beräkna x dxdy, över det område som begränsas av hyperbeln xy =, där x >, och dess normaler i punkterna (,) och (,). Bestäm, så att (x x y ) dxdy antar största möjliga värdet och bestäm detta värde. B. Låt f(a,b) = x 3 b + y3 a dxdy, där är rektangeln < x < a, < y < Bestäm eventuella lokala extrempunkter (och deras karaktär) till f. 5
B 3. Beräkna följande dubbelintegraler: a. ( heltalsdelen av (x + y) ) dxdy, då ges av x och y ( tecken av (x y + ) ) dxdy, då ges av x + y 4. B 4. Visa att lim r πr f(x,y) dxdy = f(,), där r är cirkelskivan r x + y r och f är en kontinuerlig funktion. 5. Bestäm projektionen på xy-planet av den kropp som begränsas av A a. paraboloiden z = x + y och planet z = x + y A paraboliska cylindrarna z = x och z = y A paraboloiden z = x + y och paraboliska cylindern z = y A d. paraboliska cylindern y = x samt planen x + y + z = 4 och z = A e. cylindrarna x + y = x och x + y = y samt planen z = och z = x + y A f. hyperboliska paraboloiden z = xy, planen x = och y = samt ytan xyz =. A g. paraboliska cylindern x = y samt planen x + y + z = och 3x + z = A h. ytan z = ( + y ) x samt planen x = y, x =, y =, z = A i. ytan z = (y x)(x y ) A j. ytan z = (y x) (y x + ) A k. planet z = och den del av klotet x + y + z = där z B l. ellipsoiden x + y + z xz =. 6
Ledningar till uppgifterna 5. a. (x + y) dxdy = dx 3 = x + dx =. 3 3 (x + y) dy = xy + y = y y = dx = (sin y + y cos x) dxdy = dy (sin y + y cos x) dx = = π/[(x sin y + y sin x)] x = π/ π/ x = dy = π sin y + y dy =. π x cos xy dxdy = dx x cos xy dy = [sin xy] y = y = dx = π = sin x dx =. π/ π/ π π d. xy cos(x + y ) dxdy = π dx xy cos(x + y ) dy = π = x sin(x + y ) y π = π dx = x y = sin(x + π) x sin x dx. e valda punkterna är på formen (m,l) och man behöver beräkna summan av termer ml, där m och l varierar mellan n n4 och n. 3 a-d. Skissera. 4 a- Integrationsgränserna i den inre integralen beskriver begränsningskurvorna y = y(x). 7
5 Jämför med 3. 6 a. x 3 y x, x y x 3 y, y. y ln x, x e e y x e, y. x 4 y x, 6 x + y x + y, y eller + y x y, y 8. d. y x y, y eller y x y, x x y x, y. 7 a. (xy + y ) dxdy = dx = x 3 + 3 x3 dx =. x (xy + y ) dy = xy + y = x 3 y3 y = dx = + x + y dxdy = dy + x + y dx = [(ln( + x + y))] dy x = y y = (ln ln( + y)) dy =. x = e x y = e x e y. d. ela upp i två delmängder med linjen x =. Integrera över var och en av dessa delmängder. e. Integrera först i y-led. f. Integrera först i x-led. g. Skissera. ela upp i två delmängder. h. Skissera. Integrera först i x-led. i. ela upp i två delmängder A och B, på vilka y x är respektive : A = den del av som ligger under linjen y x. y x dxdy = A (y x) dxdy + B (x y) dxdy. j. Kasta om integrationsordningen. k. ela upp i två delmängder med linjen x =. Integrera först i y- led. l. På grund av symmetrin räcker det att integrera över första kvadranten. Resultatet multipliceras med 4. 8
7 m. Integrera först i x-led. Partialintegrera. n. Skissera. Integrera först i y-led. o. Om man börjar integrera i y-led kan y 3 = t substitueras. p. Kasta om integrationsordningen. q. Skissera. Integrera först i y-led. r. Integrera först i x-led. s. Integrera först i x-led. t. Integrera först i y-led. u. Grafen är symmetrisk med avseende på origo. 8 a. Integrera först i x-led. Substituera y = t. Integrera först i y-led. Substituera x y = t. Integrera först i y-led. Substituera y x = t. d. Integrera först i x-led. Observera att täljaren får faktorn ( + y). e. ela upp i delområden på vilka cos (x + y) har konstant tecken. f. Hur ligger kurvorna i förhållande till linjen y = x? ela upp i två delområden. g. Skissera det totala integrationsområdet. Uttryck summan som en integral. h. Integrera först i y-led. Substituera π x = t. i. Sök kurvornas skärningspunkter och undersök hur kurvorna ligger i förhållande till varandra. j. Grafen är symmetrisk med avseende på x-axeln. k. Grafen är symmetrisk med avseende på xz-planet. Integrera först i x-led. Substituera y = sin t. Observera att cos t = + cos t. l. Integrera först i x-led. Partiell integration i y-led. m. Integrera först i x-led. Substituera x = t. n. Integrera först i x-led. Partiell integration i y-led. 9 ela upp i två delar A och B på vilka 9y 4x 8y 3x respektive 9y 4x 8y 3x. A = den del av där y x. Skissera området. ela upp i två dubbelintegraler. Största värdet fås då integranden är i alla punkter på. 9
Beräkna integralen. Man får en stationär punkt (a,b) = (,). 3 a. Undersök på vilka delar av integranden är =, =, osv. Undersök på vilka delar av integranden är =, =. 4. Använd medelvärdessatsen. 5 a-h. Eliminera z. en erhållna ekvationen samt de kvarvarande sambanden (i defgh) beskriver randkurvorna till den sökta mängden. i-l. Andragradsekvationen definierar två kontinuerliga funktioner z = z(x,y) av typen z = ±. eras grafer utgör kroppens begränsning i z led (i 95 k är planet z = en del av begränsning). Identifiering av dessa funktioner ( = ) ger ekvationen för projektionens rand.
Svar till uppgifterna 5. a. 3. π + π 8.. d.. 3 a. d. 4. dx dx dx 5 x x / f(x,y) dy. x f(x,y) dy. x 5 x f(x,y) dy + 5 x dx x dx 5 x f(x,y) dy. x f(x,y) dy. x 4 4 a. x, x y x. x y, x. x y 4 x, x. 5 a. d. y dy f(x,y) dx + y y dy f(x,y) dx + 4 y dy dy y y f(x,y) dx + y 5 y dy f(x,y) dx. y 4 y dy f(x,y) dx. y dy y 5 f(x,y) dx + dy f(x,y) dx. 5 y f(x,y) dx. 5 y
6 a. d. 3 y dy y dy dx f(x,y) dx. + y + y x f(x,y) dx + x f(x,y) dy. 8 dy y + y e dye y f(x,y) dx. f(x,y) dx. 7 a. e. 5. ln. 4 (e + e ). d. 4 9 ( 8 ). f. g.. h. 37 6. ln ( + ). e. i. 6 3. j. sin 3. k. 8 ( ln ). l. 4 3. m.. n. 9 4. o. 4. p. ( cos ) sin. 35 q. 6. r. ln 3 3. s. (e ). t. e e. u.. 8 a. 3 ( ln ). arctan π 4 ln 5. π ln. d.. e. π. f. 4 5. g. 4 ln 3. h. π.
8 i.. j.. k. π 3 3. l. π. m. π 3 ( 3 ). n. ln 7 6. 9 4 5. 9 6. x x y ; π 3. Lokalt minimum i punkten (,). 3 a. 6. 4π 3 + 8 ln ( + 3) 4 ln. 5 a. (x ) + (y ). x + y. x + 4y. d. y x, x + y 4. e. x + y x, x + y y. f. xy, x, y. g. y x, x + y. h. y x. i. y x y. j. y x (y + ). k. x + y. l. 3x + 4y 4. 3