Addition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning = = = =
|
|
- Rebecka Göransson
- för 9 år sedan
- Visningar:
Transkript
1 OH 1 Addition och subtraktion Vilka uträkningar visas på tallinjerna nedan? 1 = = = = Beräkna med huvudräkning Kopiering tillåten matematikboken Liber ab 17
2 OH Multiplikation och division 1 10,7 7, 6, 10 6, 0,6 0, 0, ,0 0, , ,8 7 0, ,0 0, 0, , , 10 0,6 11 0, ,8 / 0, , 16 0, 0,0 1 0,06 0 1,8 18 Kopiering tillåten matematikboken Liber ab
3 OH Division med stora och små tal efter omskrivning Svar , / 60,6 / 6 0,6, / 0, / , 0, / 600 1, / 6 0, 8 0,1 / 0, / , 10 0, 0 0, 0, 0, 11 6 / 00 0,6 / 0, 1 6 / 0, / , 8 8 0,6 1 0, 1 0, 1, 0, 1 8 / 00 0,08 / 0,0 16 0,00 / 0,8 0,0 / 8 0,00 Kopiering tillåten matematikboken Liber ab 19
4 OH Vikt och volym Skriv i kilogram 1 hg, kg 600 g 0,6 kg 0,8 ton 800 kg Skriv i liter 7 dl 0,7 liter 10 cl 1, liter 6 00 ml 0, liter Skriv i gram 7, hg 0 g 8 0,86 kg 86 g 9 00 mg 0, g Skriv i centiliter 10 7 ml 7, cl 11 0,6 liter 6 cl 1, dl cl Skriv i hektogram 1 60 g 0,6 hg 1 7, kg 7 hg 1 0,9 kg 9, hg Skriv i milliliter 16 dl 00 ml 17 1,8 cl 18 ml 18 0, liter 00 ml 10 Kopiering tillåten matematikboken Liber ab
5 OH Uttryck med variabel 1 Ett päron kostar x kr och en banan y kr. Teckna uttryck för hur mycket du a) får betala för fem päron och två bananer b) får tillbaka på 100 kr om du köper sex päron. Du har x st tiokronor, y st femkronor och z st enkronor. a) Teckna ett uttryck för hur många mynt du har sammanlagt. b) Teckna ett uttryck för hur mycket dina mynt är värda sammanlagt. Ett abonnemang på några TV-kanaler kostar 9 kr i grundavgift. Dessutom kostar det 1 kr per månad. Teckna ett uttryck för vad det kostar att teckna ett abonnemang på x månader. Beräkna värdet av uttrycket x y för x = 6, och y =,. Kostnaden att hyra en bil en dag kunde vid ett tillfälle beräknas med uttrycket 9 +,0x där x är antalet kilometer man kör. a) Vad betyder talen 9 och,0 i uttrycket? b) Beräkna hur mycket Ida fick betala en dag när hon körde 0 km. 6 I en romb skär diagonalerna varandra mitt itu. Vinkeln mellan diagonalerna är rät. Om vi kallar diagonalernas längd för d och d 1 kan rombens area beräknas med uttrycket d 1 d. Beräkna arean av en romb där diagonalerna är 8 cm och 6 cm långa. d d 1 Kopiering tillåten matematikboken Liber ab 11
6 OH 6 Förenkling av uttryck 1 x + y + x x + y x y xy (a + b) 6a + b y (x + z) y x z x 9x x 6 8z z 7z 7 b b b 8 x y 8xy 9 b(a + 1) 6ab + b 10 (y + 1) y 11 6xy xy xy 1 6xy x Går ej förenkla 1 x + 0,x 1,x 1 y 0,y 0,8y 1 x(y ) xy + x 16 ab + a Går ej förenkla 17 x + (y x) x + y 18 a (b 7a) 10a b 1 Kopiering tillåten matematikboken Liber ab
7 OH 7 Räkna med bråk 1 Bråkform 7 Blandad form Skriv i blandad form 8 17 Skriv i bråkform Skriv i decimalform ,7 1, Hur mycket är av 00 kr 0 kr av 60 kor 0 kor Kopiering tillåten matematikboken Liber ab 1
8 OH 8 Förlängning och förkortning 1 Förläng bråken med = 6 Förläng bråken med 1 = 9 Förkorta bråken med 6 1 = Förkorta bråken med 8 1 = Förläng bråken med 6 Förkorta med Kopiering tillåten matematikboken Liber ab
9 OH 9 Procent Procent betyder hundradel. En procent av något är alltså samma sak som en hundradel av något. En procent skrivs 1 %. 1 % = = 0,01 Kvadraten består av hundra rutor. Varje ruta är en hundradel eller 1 % av hela kvadraten. 0 rutor av 100 är gröna. Alltså är 0 % av kvadraten grön. rutor av 100 är blåa. Alltså är % av kvadraten blå. rutor av 100 är gula. Alltså är % av kvadraten gul. Det hela är alltid 100 %. I vårt exempel ovan är 0 % + % + % = 100 %. Kopiering tillåten matematikboken Liber ab 1
10 OH 10 Vad är procent? Skriv i procentform 1 1 % 0,6 6 % % 0,06 6, % 0 % 6 0,8 80 % Hur stor är delen? 7 0 % av 70 kr kr 8 10 % av 10 liter 1 liter 9 % av 0 kg 10 kg 10 1 % av 1 00 m 1 m 11 0 % av 60 cl 18 cl 1 % av 800 g 16 g Du går runt kvadraten i pilens riktning. 1 Hur många procent av omkretsen A B har du gått när du kommit till punkt G? C 7 % 1 Vid vilken punkt är du när du gått 0 % av omkretsen? H D C 1 Hur många procent av omkretsen har du gått när du kommit till punkt D? G F E 0 % 16 Kopiering tillåten matematikboken Liber ab
11 OH 11 Räkna med procent 1 På en arbetsplats finns 60 anställda. Av dessa är 1 kvinnor. Hur många procent av de anställda är kvinnor? I en kemigrupp fick eleverna följande betyg: Betyg: G VG MVG Antal: 11 Hur var fördelningen mellan de olika betygen i procent? Hur många procent är a) 7 kr av 17 kr? Avrunda till hela procent. b) st av 110 st? Avrunda till tiondels procent. Erika tjänar 1 60 kr i månaden. Av lönen dras 6 90 kr i skatt. Hur många procent dras i skatt? Avrunda till hela procent. I en kommun ökade antalet invånare ett år från 1 67 till Med hur många procent ökade antalet invånare? Avrunda till tiondels procent. 6 I en skola gick 9 elever. % av eleverna gick år 8. Hur många elever gick i åttan? Avrunda till heltal. 7 Hyran för en liten lägenhet var 90 kr per månad. Hyran höjdes med, %. Vilken blev den nya hyran? Avrunda till tiotal kronor. 8 Beräkna räntan. Kapital Räntesats Tid a) 000 kr 7, % 1 år b) kr, % mån 9 Den 1 mars lånar Linnea kr. Räntesatsen är 8, %. Den 1 september betalar hon tillbaka lånet. Hur mycket får Linnea betala då? Kopiering tillåten matematikboken Liber ab 17
12 OH 1 Olika typer av diagram Stolpdiagram Används när man vill jämföra antal. Det observerade är tal. Ett stolpdiagram har därför tal längs x-axeln, t ex antal prickar eller antal elever. Personer per lägenhet 6 1 f x 1 6 antal personer Stapeldiagram Används när man vill jämföra antal. Det observerade är inte tal. Ett stapeldiagram har därför till exempel namn, bilmärken eller länder längs x-axeln. kg vikt Anna Björn Samir Olof milj inv. folkmängd Linjediagram Används när man vill visa en förändring under en viss tid. Förändringen visas som en graf (linje) år Cirkeldiagram Används när man vill visa hur det hela fördelas på sina delar. Hela cirkeln motsvarar det hela (100 %) och de olika stora tårtbitarna motsvarar delarna. Metallsammansättningen i nysilver koppar 0% zink % nickel 1% 18 Kopiering tillåten matematikboken Liber ab
13 OH 1 Procent och statistik 1 Ulrika kastade en tärning gånger. Så här blev resultatet: 6, 1,,,,,, 6,, 6,, 6,, 6,, 1,,,,,,, 6,, 1 Sammanställ resultatet i en frekvenstabell. Visa sedan resultatet i ett stolpdiagram med den relativa frekvensen längs y-axeln. Under en matematiklektion gjorde Gustav och David en undersökning om hur många som färdades i varje personbil som åkte förbi skolan. De visade resultatet i ett diagram som såg ut så här: antal bilar 10 f x antal personer a) Vilket antal personer var vanligast i bilarna? b) Hur många bilar undersöktes? c) I hur många procent av bilarna färdades tre personer? Diagrammet visar resultatet av ett läxförhör i fysik med 1 frågor. a) Hur många procent av eleverna fick 1 rätt? b) Fem elever hade alla rätt. Hur många elever fanns det sammanlagt i gruppen? c) Hur många elever hade 9 rätt? % f/n x antal rätt Kopiering tillåten matematikboken Liber ab 19
14 OH 1 Att luras med diagram 1 Diagrammet visar hur upplagan för en tidning har förändrats under några år antal år Upplagan har minskat kraftigt mellan åren Därefter har det varit en liten uppgång. Men i sin marknadsföring ger tidningen istället den här bilden: antal år Vilka två knep har använts för att vilseleda läsaren? Ett företag annonserar så här: Vilket knep har man använt här för att få det att se ut som om ökningen är större än vad som är fallet? Kopiering tillåten matematikboken Liber ab
15 OH 1 Skala 1 Mät i hela och halva centimeter. a) Hur långt är det fågelvägen mellan Garphyttan och Marieberg i verkligheten? b) Hur lång är sjön Tysslingen i verkligheten? c) Antag att kartan var ritad i skala 1 : i stället. Hur långt skulle det på den kartan vara mellan Garphyttan och Glanshammar? Skala 1 : Bilden visar en myra i skala : 1. Mät i hela centimeter och räkna ut hur lång myrans kropp är i verkligheten. Vilken är skalan? Bild Verklighet a) 1 cm 0 m b) 1 cm mm c) cm, km d) 0 mm 6 mil Kopiering tillåten matematikboken Liber ab 11
16 OH 16 Några månghörningar Rektangel Kvadrat höjd (h) s bas (b) A = A b = hb h s A = s s Parallellogram romb h b A = b h A = b h h b A = b h Triangel triangel h h b b b h A = A = b h A b h = 1 Kopiering tillåten matematikboken Liber ab
17 OH 17 Enheter för area 1 cm 1 cm 1 mm Kvadraten ovan har sidan 1 dm. Arean är 1 dm. Kvadraten har delats in i hundra rutor. Varje ruta har arean 1 cm. Vi ser alltså att 1 dm är lika mycket som 100 cm. På liknande sett kan man visa att 1 m är 100 dm och så vidare. 1 m = 100 dm 1 dm = 100 cm 1 cm = 100 mm Kopiering tillåten matematikboken Liber ab 1
18 OH 18 Omkrets och area 1 En rektangel har sidorna 1 cm och 7 cm. Beräkna rektangelns omkrets och area. Beräkna triangelns omkrets och area. (cm) En villatomt ser ut som bilden visar. Beräkna tomtens area. 0 (m) 9,,0,0 0 0, 0 Hur lång omkrets har en cirkel med radien 8, cm? Avrunda till hela centimeter. Hur lång omkrets har halvcirkeln? Avrunda till hela centimeter., (cm) 6 En cirkels radie är, cm. Beräkna arean. Avrunda till heltal. (cm) 7 Beräkna arean av det gråa området. Avrunda till heltal.,8 1 Kopiering tillåten matematikboken Liber ab
19 OH 19 Cirkelns area r s Kopiering tillåten matematikboken Liber ab 1
20 OH 0 Vinklar och cirkeldiagram 1 Triangeln är likbent. Hur stora är vinklarna A och B? I en fyrhörning är två vinklar 8. Den tredje vinkeln är 1. Hur stor är den fjärde vinkeln? Hur stor är vinkeln C? Av eleverna i en skola gick % år 7, % år 8 och 0 % år 9. Visa fördelningen i ett cirkeldiagram. Tabellen visar hur långa de olika årstiderna beräknas vara i stad. Rita ett cirkeldiagram som visar fördelningen mellan de olika årstiderna. Vår Sommar Höst Vinter 80 dagar 1 dagar 110 dagar 0 dagar 16 Kopiering tillåten matematikboken Liber ab
21 OH 1 Hur löser man ekvationer? X X X x + 1 = 7 X X X x = 7 1 x = 6 X 1 1 x = Hur löser man ekvationer med x i båda leden? X X X X 1 1 X X x + = x + 6 X X x + = 6 X X x = X 1 1 x = Kopiering tillåten matematikboken Liber ab 17
22 OH Teckna egna ekvationer 1 Ett tal multipliceras med 6. Om man sedan adderar med 18, får man summan 90. Vilket är talet? För en tredjedel av sina pengar köpte Johan en bok. Han köpte samtidigt en pärm som kostade 9 kr. Sammanlagt kostade boken och pärmen 19 kr. Hur mycket pengar hade Johan från början? I ett skolval fick miljöpartiet 1 % av alla röster. Det innebar att miljöpartiet fick röster. Hur många elever deltog i skolvalet? Sara och Cajsa har 6 kr tillsammans. Sara har 17 kr mer än Cajsa. Hur mycket har var och en? Emelies farmor är nio gånger så gammal som Emelie. Sammanlagt är de 70 år. Hur gammal är var och en? 6 I triangeln ABC fattas det för att vinkeln B ska vara dubbelt så stor som vinkeln A. Vinkeln C är 77. Hur stora är vinklarna A och B? 7 Linus samlar på femkronor och tiokronor. Han har lika många av varje slag. Sammanlagt är alla mynten värda 0 kr. Hur många mynt har Linus av varje slag? 8 Magnus och Mattias spelar kula. Från början hade Magnus tre gånger så många kulor som Mattias. Efter en stund har Mattias vunnit tio kulor av Magnus. De har då lika många kulor var. Hur många kulor hade var och en från början? 18 Kopiering tillåten matematikboken Liber ab
Sammanfattningar Matematikboken X
Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för
Sammanfattningar Matematikboken Y
Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller
ARBETSBLAD FACIT. 1 Skriv med siffror Träna huvudräkning. 10 Multiplikation med uppställning De fyra räknesätten 1.
FACIT Skriv med siffror 0 0 0 0 0 8 0 8 0 0 0 008 0 00 8 0 00 0 000 00 000 08 000 00 00 8 0 000 0 000 000 0 00 000 00 8 Addition med uppställning 08 88 8 8 0 0 80 0 8 88 0 0 0 Subtraktion med uppställning
ARBETSBLAD FACIT. 1 Skriv med siffror Träna huvudräkning. 10 Multiplikation med uppställning De fyra räknesätten 1.
Skriv med siffror 0 0 0 0 0 0 0 0 0 00 0 00 0 00 0 000 00 000 0 000 00 00 0 000 0 000 000 0 00 000 00 Addition med uppställning 0 0 0 0 0 0 0 0 Subtraktion med uppställning 0 0 0 0 0 Multiplikation med
Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 =
Arbetsblad NAMN: Addition och subtraktion i flera steg + 3 + 3 + + 3 + 3 + 9 3 3 9 9 9 39 3 3 + 39 3 + 99 0 3 Kopiering tillåten Matematikboken Författarna och Liber AB Arbetsblad Addition och subtraktion
Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18
Innehåll 1 Allmän information Seriens uppbyggnad Lärobokens struktur 6 Kapitelinledning 7 Avsnitten 7 Pratbubbleuppgifter Aktivitet Taluppfattning och huvudräkning 9 Resonera och utveckla 9 Räkna och häpna
Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning
Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:
Lokala mål i matematik
Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal
Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar
Matematikplanering 7B Läsår 15/16 Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar på att bli upptäckt. Mönster, statistik, överlevnad, evolution, mopeder
Läxa 9 7 b) Dividera 84 cm med π för att få reda på hur lång diametern är. 8 1 mm motsvarar 150 / 30 mil = = 5 mil. Omvandla till millimeter.
LEDTRÅDAR LÄXOR Läa Förläng så att du får ett heltal i nämnaren. Använd division. Varje sekund klipper Karin, m =, m. Läa 0 ml = 0,0 liter Använd sambandet s = v t. Räkna ut hur mycket vattnet väger när
Facit Läxor. Tal. Tian Siffrans värde blir tio gånger mindre. 40 till 04 11 67, 69 och 71 12 a) 10, 22 och 15, 14 b) 15, 27 och 10, 9
Tal Läxa 1 1 a) 307 b) 55 c) 00 003 a) 131 > 113 b) 1 > 1 c) 99 < 9 99 3 a) 1 170 b) 5 75 c) 91 a) 3 hundra b) 3 ental c) 3 tusen 5 a) 370 b) 0 a) 31 b) 1 3 c) 1 3 7 a) 99 b) 13 a) 37 b) 19 00 9 5 15 50
Repetitionsuppgifter 1
Repetitionsuppgifter 1 1 Vilka tal pekar pilarna på? a) b) Skriv talen med siffror 2 a) trehundra sju b) femtontusen fyrtiofem c) tvåhundrafemtusen tre 3 a) fyra tiondelar b) 65 hundradelar c) 15 tiondelar
a) 4a + a b) 4a 3a c) 4(a + 1)
REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin
REPETITION 2 A. a) 4a + a b) 4a 3a c) 4(a + 1)
REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin
REPETITION 3 A. en femma eller en sexa?
REPETITION 3 A 1 Du kastar en vanlig tärning en gång. Hur stor är sannolikheten att du får en femma eller en sexa? 2 Eleverna i klass 8C fick ge betyg på en bok som de hade läst. Diagrammet visar resultatet.
Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.
Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.
4 Dividera höjningen (0,5 %) med räntesatsen från början (1 %). 7 Du kan pröva dig fram till exempel så här: Från Till Procent- Procent enheter
ledtrådar LäOr Läa 8 Räkna först ut hur mycket tiokronorna och enkronorna är värda sammanlagt. Läa 8 Räkna först ut hur mycket allt vatten i hinken väger när den är full. Läa MGN = 8 Tänk dig att näckrosen
a) trettiotvåtusen femhundrasju b) femhundratusen åttiotre a) ett udda tal b) det största jämna tal som är möjligt A B C A B C 3,1 3,2
Alternativdiagnos 1 1 Skriv med siffror a) trettiotvåtusen femhundrasju b) femhundratusen åttiotre 2 Använd siffrorna 2, 3, 4 och 5 och skriv a) ett udda tal b) det största jämna tal som är möjligt 3 Vilka
Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.
M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per
I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1
BEGREPP ÅR 3 Taluppfattning och tals användning ADDITION 3 + 4 = 7 term + term = summa I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 SUBTRAKTION 7-4 = 3 term term
Kunskapsmål och betygskriterier för matematik
1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under
Mattestegens matematik
höst Decimaltal pengar kr 0 öre,0 kr Rita 0,0 kr på olika sätt. räkna,0,0 storleksordna decimaltal Sub för lite av två talsorter 7 00 0 tallinjer heltal 0 0 Add med tiotalsövergångar 0 7 00 0 Sub för lite
REPETITION 3 A. a) b) a) 1 4 av 200 kr b) 10 % av 750 kr c) 2 3. av 60 kg. a) b) c) b) a) 6 8. a) b) b) 0,075 c) d) 0,9.
DEL I 1 Mät vinklarna. Gradtalen ska sluta på 0 eller 5. 2 Hur mycket är a) 1 4 av 200 kr b) 10 % av 750 kr c) 2 3 av 60 kg 3 Mät sidorna i hela och halva centimeter. Beräkna sedan omkrets och area av
en femma eller en sexa?
REPETITION 3 A Du kastar en vanlig tärning en gång. Hur stor är sannolikheten att du får en femma eller en sea? 2 Eleverna i klass C fick ge betyg på en bok som de hade läst. Diagrammet visar resultatet.
Lärandemål E-nivå årskurs 9
Lärandemål E-nivå årskurs 9 Detta är vad ni behöver kunna för att nå E för kunskapskraven om begrepp och rutinuppgifter i matematik när ni slutar nian. Ni behöver klara av alla dessa moment. För att nå
8 Facit till Bashäfte X
Facit till Bashäfte X KAPITEL a) b) c) a) b) c) a) b) a) b) kr kr a) b) kr a) b) kr kr kr a) C b) C a) C b) C c) C Visa din lärare Visa din lärare = + = = a) b) a) b) a) b) Visa din lärare a) b) Visa din
Södervångskolans mål i matematik
Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal
Sammanfattningar Matematikboken Z
Sammanfattningar Matematikboken Z KAPitel procent och statistik Procent Ordet procent betyder hundradel och anger hur stor del av det hela som något är. Procentform och 45 % = 0,45 6,5 % = 0,065 decimalform
kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri
Studieplan och bedömningsgrunder i Matematik för åk F-1 Stor-liten, framför - bakom, större än osv. kunna visa att du förstår ordens förhållande till varandra, tex. med hjälp av olika saker eller genom
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet
8 a) 670. b) a) 0,11. b) 0, a) 0,45. b) 0, a) 0,5. b) 0,2. 12 a) 0,004. b) 0, a) 0,95. b) 1,2. 14 a) 9,95. b) 0,5.
Arbetsblad a) 8 a) 0 a), a) 0 00 a) 0 00 00 000 a) 0,8 0,0 a) 0,0, a), 0,, d), Störst: 0, Minst: 0, Störst: 8, Minst: 8,0 8 Störst:, Minst:,0 Störst: 0,8 Minst: 0,0 0 a) 0 0 80 d) 0 a) 0 0, 0 d), a) 00
Matematik Uppnående mål för år 6
Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och
Eva Björklund Heléne Dalsmyr. matematik. Koll på. Skriva Facit
Eva Björklund Heléne Dalsmyr 5A matematik Koll på Skriva Facit 1 Tal i decimalform,3 1 a) 0,5 b) 0,7 c) 0, a) 4, b),1 c) 9,4 3 a) 35,8 b) 41, c) 0,9 4 a) 1,1 b) 4, c) 7,3 5 a) 13,4 b) 3,5 c) 91,7 a) 40,8
Matematik A Testa dina kunskaper!
Testa dina kunskaper! Försök i största möjliga mån att räkna utan hjälp av boken, skriv små noteringar i kanten om ni tycker att ni kan uppgifterna, att ni löste dem med hjälp av boken etc. Facit kommer
2. 1 L ä n g d, o m k r e t s o c h a r e a
2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda
Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer
Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna
Start Matematik facit
FACIT Start Matematik facit Årskurs 4-9 Facit till Start Matematik 47-60-0 Liber AB Får kopieras 2 Kapitel Siffror och tal a) 9-42 a) 9-42 c) 84 d) 555 e) -6 f) 7 400 c) 84 d) 555 e) -6 f) 7 400 g) 985
4 Sätt in punkternas koordinater i linjens ekvation och se om V.L. = H.L. 5 Räkna först ut nya längden och bredden.
Läxor Läxa 7 En sådan timme skulle ha 00 00 s = 0 000 s. 8 a) O = π d och A = π r r. 0 Beräkna differensen mellan hela triangelns area och arean av den vita triangeln i toppen. Läxa 9 Hur stor andel målar
Övningsblad 1.1 A. Bråkbegreppet. 1 Skugga. 2 Hur stor andel av figuren är skuggad? 3 Ringa in 2 av stjärnorna.
Övningsblad 1.1 A Bråkbegreppet 1 Skugga 1 6 av figuren b) 2 3 av figuren 3 av figuren 4 2 Hur stor andel av figuren är skuggad? b) 3 Ringa in 2 av stjärnorna. 4 Skriv 20 valfria bokstäver och låt 1 av
Läxa 11. Läxa T ex kan en sida vara 4 cm. Hur lång är då höjden mot den sidan? 8 b) Flytta andra stickan i översta raden ett steg åt höger.
ledtrådar LäxOr Läxa Rita en bild med de lyktstolparna. Hur många mellanrum är det? Läxa 8 På nedre halvan ska talen adderas tv å och två och på den övre halvan ska talen subtraheras. Läxa 6 7 Rita en
Språkstart Matematik Facit. Matematik för nyanlända. Jöran Petersson
Språkstart Matematik Facit Matematik för nyanlända Jöran Petersson Positionssystem hela tal s. 4-5 3. Skriv med siffror. 52 502 5002 65 665 6665 31 131 3131 4. Skriv hur mycket siffran är värd. 300 4 1000
Eva Björklund Heléne Dalsmyr. matematik. Koll på. Skriva Facit
Eva Björklund Heléne Dalsmyr 5B matematik Koll på Skriva Facit 6Ekvationer, uttryck och mönster 1 a) b) = c) d) 2 a) = b) c) = d) 3 a) < b) < c) < d) > 4 a) < b) < c) > d) < 5 a) < b) > c) < d) > Talet
Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning
Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som
Matematik. Namn: Datum:
Matematik Namn: Datum: Multiplikation, tabell 2 och 4. Hur många ben har djuren tillsammans? + = = + + = = + + + + = = + = = + + + = = Skriv färdigt multiplikationen! 3 4 = 4 2 = 2 5 = 4 6 = 4 0 = 4 5
Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning
Allmänt om proven Detta prov består av del 1 och. Här finns också facit och förslag till poängsättning och bedömning. Provet finns på lärarwebben, dels som pdf-fil och dels som redigerbar Word-fil. Del
Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping
Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att
b) kg c) 900 g 1071 a) g b) kg c) 800 g 1072 a) 500 g b) kg 1073 a) 5 kg b) 4,5 kg c) 1,1 kg
BASHÄFTE X Kapitel a) b) c) a) 9 b) 9 c) 9 a) b) c) d) a), b),8 c), d) 9, a) b) 9 a) 9 b) a), b), 8 a), b), 9 Störst: 8 Minst: 88 Störst: 8, Minst:,8 a) 89 a) b) 8 kr kr a) 8 9 kr a) b) 8 kr 9 9 kr kr
Namn: Hundradelar. 4 tiondelar 0, 4 17 tiondelar 1, tiondelar 298 hundradelar. Hundradelar. 98 hundradelar 875 hundradelar
arbetsblad 1:1 Positionssystemet > > Skriv talen med siffror. Glöm inte decimaltecknet. Ental Tiondelar Hundradelar 1 tiondel 0, 1 52 hundradelar 0, 5 2 tiondelar 0, 17 tiondelar 1, 7 9 tiondelar 0, 9
,5 10. Skuggat. Svart ,2 4. Randigt. b) 0,4 10. b) 0,3 10. b) 0,08. b) 0, ,7 0, ,17 0,95 0,15 0,2 + 0,7
Tal a) 00 50 00 c) 5 00 a) 0,0 0,5 c) 0,05 Färg Bråkform Decimalform Röd Grön _ Gul _ Blå _ a) 7 00 70 00 07 00 5 00 50 00 05 00 00 0,0 00 0,0 0 00 0, 0 00 0, 0,07 0,7,07,05 0,5,5 5 a) Bråkform Decimalform
Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10
Namn: Hela och halva tusental till 00 000 Addera och subtrahera. 000+ 000= 000 000+ 00 = 00 000-000= 000 000-00 = 00 Skriv talen i fallande ordningsföljd. 000 0 00 0 00 0 00 00 0 000 0 00 0 00 0 00 0 00
Storvretaskolans Kursplan för Matematik F-klass- år 5
2010-11-01 Storvretaskolans Kursplan för Matematik F-klass- år 5 Skolan skall i sin undervisning sträva efter att eleven : utvecklar intresse för matematik samt tilltro till det egna tänkandet och den
Extramaterial till Start Matematik
EXTRAMATERIAL Extramaterial till Start Matematik Detta material innehåller diagnoser och facit till alla kapitel. Extramaterial till Start matematik 47-11601-0 Liber AB Får kopieras 1 70 Innehållsförteckning
Tal Räknelagar Prioriteringsregler
Tal Räknelagar Prioriteringsregler Uttryck med flera räknesätt beräknas i följande ordning: 1. Parenteser 2. Exponenter. Multiplikation och division. Addition och subtraktion Exempel: Beräkna 10 5 7. 1.
identifiera geometriska figurerna cirkel och triangel
MATEMATIK F-klass Genom att använda matematik i meningsfulla sammanhang visar vi barnen vilka möjligheter den ger. Ex datum, siffror och antal, ålder, telefonnummer mm. Eleven bör kunna: benämna siffrorna
Repetitionsuppgifter 1
Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv
FACIT Ö1A Ö1B. 1 a 25 b 40 c 50 d 500. 2 a 24 b 36 c 40 d 400. 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180.
FACIT Ö1A 1 a 25 b 40 c 50 d 500 2 a 24 b 36 c 40 d 400 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180 Ö1B 1 a 3311 b 2042 2 a 2468 b 3579 c 1953 3 a 5566 b 7432 c 9876 4 a 1205
Repetition 1A. Del I. a) 0,3 eller 0,13 b) 1,19 eller 1,2 c) eller. a) b) c) a) fem tiondelar = b) = c) tre hundradelar =
Repetition A Del I a) 976 + 2 = b) 07 233 = c) 6 = 2 Vilket av talen är störst? a) 0,3 eller 0,3 b),9 eller,2 c) 7 0 3 Hur stor andel av figuren är vit? a) b) c) eller 7 00 Skriv talen i decimalform. a)
Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60.
Förord Det här häftet är tänkt som ett komplement till kapitel 5, Genrepet, i läroboken Matte Direkt år 9. Häftet vänder sig främst till de elever som har svårigheter att klara Genrepets nivå i boken och
Steg dl. 3 a) 12 b) eller 5 = = 6 a) 100% b) 75% 7 7 gröna rutor. Steg 5. 2 a) 600 b) 6% c) 270
Förtest Bråk och procent Steg a) b) dl Pizzadeg vatten jäst olja salt vetemjöl personer dl / paket msk / tsk / dl I den högra är störst del skuggad. a) T ex ruta av b) T ex rutor av Steg dl a) b) eller
150 cm 2 m 70 dm. 280 cm 3,5 m 40 dm 3,50 0,50. 200 cm 1,5 2,5. 6 m. 30 cm 4 dm 500 mm. 2 m. 70 dm. 150 cm. 3,5 m. 40 dm. 280 cm.
Skriv sträckorna i storleksordning. Längdenheter: meter (m), decimeter (dm), centimeter (cm) och millimeter (mm). Längden 15 cm kan skrivas på olika sätt: 15 cm = 1 m 5 cm = 1,5 m eller 15 dm cm eller
Facit åk 6 Prima Formula
Facit åk 6 Prima Formula Kapitel 1 Omkrets och area Sidan 7 1 A och C 2 D och E 3 a G, H och J b I och J c J Sidan 8 4 a 1 b 1 c 1 d 4 5 A = 0 B = 2 C = 4 D = 2 6 a 8 0 8 b 1 0 1 c 3 8 3 d 1 3 8 F7 A B
STARTAKTIVITET 2. Bråkens storlek
STARTAKTIVITET 2 Bråkens storlek Arbeta gärna två och två. Rita en stjärna över de bråk som är mindre än 1 2. Sätt ett kryss över de bråk som är lika med 1 2. Rita en ring runt de bråk som är större än
Formula 9 facit. 1 Beräkningar med positiva tal 1
Beräkningar med positiva tal Formula 9 facit a) 5,5 (5,50) b) 5,59 c) 5,99 d) 5,54 2 a) 3 (3,00) b) 3,09 c) 3,49 d) 3,04 3 a) 6, (6,0) b) 6,0 c) 5,6 d) 6,06 4 a) 9,04 b) 8,95 c) 8,55 d) 9 (9,00) 5 a) 25
x kr y kr a) 7 dm b) 325 mm c) 1,2 km d) cm 2 Hur mycket är a) b) ( ) / 4 c) 10 / (14 4)
REPETITION 2 A Del I 1 Skriv i meter. a) 7 dm b) 32 mm c) 1,2 km d) 1 20 cm 2 Hur mycket är a) + 1 b) ( + 1) / c) / (1 ) 3 Hur lång tid är det mellan klockslagen? a) 13.3 1. b).2 11.37 c) 1. 21.32 Teckna
"Läsårs-LPP med kunskapskraven för matematik"
"Läsårs-LPP med kunskapskraven för matematik" Grundskola 4 6 1 LPP för hela läsåret med tillhörande kunskapskrav i matrisform Skapad 2016-08-17 av Charlotte Steinwig i Lerbäckskolan 4-6, Lund Grundskolor
Välkommen till Borgar!
Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med naturettor och hoppas att du kommer att trivas mycket bra hos oss. Studier i naturvetenskapliga ämnen förutsätter
Kommunövergripande Mål i matematik, åk 1-9
Kommunövergripande Mål i matematik, åk 1-9 Många skolor har lagt ner mycket tid på att omforma de mål som anges på nationell nivå till undervisningsmål på den egna skolan. Tanken är att vi nu ska kunna
Arbetsblad 3:1. Hur stor är vinkeln? 1 Vilken eller vilka av vinklarna är. 2 Uppskatta (gör en bra gissning) hur stora vinklarna är.
Arbetsblad :1 Hur stor är vinkeln? 1 Vilken eller vilka av vinklarna är a) rät b) spetsig c) trubbig A C D F E G 2 Uppskatta (gör en bra gissning) hur stora vinklarna är. A C D E F G Mät vinklarna och
Matematikboken Gamma. Facit till Bashäfte. Facit Matematikboken Gamma Bashäfte Författarna och Liber AB Får kopieras 1
Matematikboken Gamma Facit till Bashäfte Facit Matematikboken Gamma Bashäfte Författarna och Liber AB Får kopieras Tal och räkning a) 9 9 c) 9 a) 00 00 c) 00 a) c) 0 a) 9 99 c) 09 a) 90 c) 00 a), c),0
Arbetsblad 1:1. 1 Svara i bråkform hur stor andel av den stora rutan som är. 2 Svara i decimalform hur stor andel av den stora rutan som är.
Arbetsblad 1:1 Tal i bråkform och i decimalform Grundbok: grundkurs s. 8 blåkurs s. 0 1 Svara i bråkform hur stor andel av den stora rutan som är a) grå b) kryssad c) prickad d) vit 2 Svara i decimalform
Träningsuppgifter, gamla nationella prov i matematik(del B1) från Taluppfattning. Hashem Rezai, S:t Ilians skola, Västerås
Taluppfattning 1. Vilket av följande tal är minst? Ringa in ditt svar. 2,9 2,98 2,998 2,889 2,89 (1/0) 2. Hur många miljoner visar miniräknaren? Svar: (1/0) 3. Vilket tal pekar pilen på? 31 32 33 Svar:
Ämnesplan i matematik för Häggenås, Bringåsen och Treälven
Ämnesplan i matematik för Häggenås, Bringåsen och Treälven (2009-05-14) Namn Utarbetad under läsåret 08/09 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik
ARBETSBLAD 1. Skriv med siffror 1. 1 Sexhundrafem. 2 Tvåtusen trehundratolv. 3 Tolvtusen sjuhundrafemtio. 4 Femtusen trettiofem
Arbetsblad Skriv med siffror Sexhundrafem Tvåtusen trehundratolv Tolvtusen sjuhundrafemtio Femtusen trettiofem Sextontusen femhundraett Tvåtusen nittiofem Artontusen trettiotre Sextiofemtusen niohundratjugo
Broskolans röda tråd i Matematik
Broskolans röda tråd i Matematik Regering och riksdag har faställt vilka mål som svenska skolor ska arbeta mot. Dessa mål uttrycks i Läroplanen Lpo 94 och i kursplaner och betygskriterier från Skolverket.
PLANERING MATEMATIK - ÅK 7. Bok: X (fjärde upplagan) Kapitel : 5 Geometri Kapitel : 6 Bråk och procent. Elevens namn: Datum för prov HÄLLEBERGSSKOLAN
PLANERING MATEMATIK - ÅK 7 Bok: X (fjärde upplagan) Kapitel : 5 Geometri Kapitel : 6 Bråk och procent Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA
Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data
Geometri och statistik Blandade övningar Sannolikhetsteori och statistik 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data 27, 30, 32, 25, 41, 52, 39, 21, 29, 34, 55,
KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK
KRAVNIVÅER Åtvidabergs kommuns grundskolor MATEMATIK Reviderade april 2009 Förord Välkommen att ta del av Åtvidabergs kommuns kravnivåer och bedömningskriterier för grundskolan. Materialet har tagits fram
Arbetsblad 1:1. 1 Svara i bråkform hur stor andel av den stora rutan som är. 2 Svara i decimalform hur stor andel av den stora rutan som är.
Arbetsblad 1:1 Tal i bråkform och i decimalform Grundbok: grundkurs s. 8 blåkurs s. 0 1 Svara i bråkform hur stor andel av den stora rutan som är a) grå b) kryssad c) prickad d) vit 2 Svara i decimalform
Matematik. Ämnesprov, läsår 2013/2014. Bedömningsanvisningar Delprov B, C, D, E. Årskurs
Ämnesprov, läsår 2013/2014 Matematik Bedömningsanvisningar Delprov B, C, D, E Årskurs 6 Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta
Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal
Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att
Centralt innehåll i matematik Namn:
Centralt innehåll i matematik Namn: T - Taluppfattning T1 Tiosystemet 5,23 1000 = 523/0,01= T2 Positionerna 2,39-0,4 = T3 Primtal Vilka är de fem första primtalen. Vad är ett primtal? T4 Primtalsfaktorering.
Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013
Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter
Arbetsblad 5:1. Tal och tallinjer. 1 Skriv rätt tal på tallinjen. 2 Ordna talen i storleksordning med det minsta först. 3 Vilka tal kommer sen?
Arbetsblad 5:1 sid 143 Tal och tallinjer 1 Skriv rätt tal på tallinjen. a) 0 0,5 1 b) 0 0,5 1 c) 0 1 2 2 Ordna talen i storleksordning med det minsta först. 0,4 0,404 0,44 0,04 0,45 3 Vilka tal kommer
Rep 1 NÅGOT EXTRA. Sidan 88. Sidan 85. Sidan 89. Sidan 86. Sidan 87. Sidan 90
2 VOLYM OCH SKALA / REP 1 FACIT TILL ELEVBOKEN 125 a dl b ml c cl d l 126 5 st 127 200 cm 3 (2 dl = 0,2 l = 0,2 dm 3 = 200 cm 3 ) Sidan 85 128 A B C D Vas tom 235 g 528 g 0,85 kg 1,250 kg Vas med vatten
Arbetsblad 1:1. Hela tal på tallinjen. Skriv rätt tal på linjen. år 7, Bonnier Utbildning och författarna
Arbetsblad : Hela tal på tallinjen Skriv rätt tal på linjen. 55 0 50 00 0 0 0 0 00 00 00 00 00 5 000 000 50 000 0 000 7 00 000 00 000 Arbetsblad : Positionssystemet Skriv talen med siffror. Placera in
MATEMATIK - grunderna och lite till - Hans Elvesjö
MATEMATIK - grunderna och lite till - Hans Elvesjö 1 Största delen av boken ligger på höstadienivå med en mindre del på gymnasienivå Den har ej för avsikt att följa läroplanen men kan med fördel användas
MATEMATIK. Åk 1 Åk 2. Naturliga tal Naturliga tal Större än, mindre än, lika med
MATEMATIK Åk 1 Åk 2 Naturliga tal 0-100 Naturliga tal 0-100 Talföljd Talföljd Tiokamrater Större än, mindre än, lika med Större än, mindre än, lika med Positionssystemet Sifferskrivning Talskrivning Add.
REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna.
REPETITION Hur mcket är a) 9 b) 00 0 c) 00 På en karta i skala : 0 000 är det, cm mellan två små sjöar. Hur långt är det i verkligheten? Grafen visar hur långt en bil hinner de se första sekunderna efter
Extrablad 1. Vägen till 21. Uppgiften består av två delar. Du ska först finna vägen till 21 och därefter utföra en räkneoperation.
Extrablad 1 Vägen till 21 Uppgiften består av två delar. Du ska först finna vägen till 21 och därefter utföra en räkneoperation. A I rutnätet finns alla tal från 1 till 21 inskrivna. Alla tal utom 1, 2
Talområden. Utvidga talområden: - naturliga tal. - hela tal. -100, -5 0, 1, 2 o.s.v. - rationella tal. - reella tal. π, 2 o.s.v.
TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det nionde skolåret: Eleven skall ha förvärvat sådana kunskaper i matematik som behövs för att kunna beskriva och hantera situationer samt lösa
ATT KUNNA TILL. MA1050 Matte Grund. 2011-06-14 Vuxenutbildningen Dennis Jonsson
ATT KUNNA TILL MA1050 Matte Grund 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov G1 Kunna ställa upp och beräkna additions-, subtraktions-, multiplikations- och divisuionsuppgifter
markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA FYRA klart
PLANERING MATEMATIK - ÅK 8 Bok: Y (fjärde upplagan) Kapitel : 3 Algebra oc mönster Kapitel : 4 Geometri Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA
1 Skriv med siffror a) tolvtusen femton b) fem hela och fyra hundradelar. b) 1000 0,04. 3 Skriv i kilogram a) 0,2 ton b) 4 hg c) 6400 g
1 Skriv med siffror a) tolvtusen femton b) fem hela och fyra hundradelar 2 Beräkna a) 0,7 50 d) 45110 b) 1000 0,04 e) 78,2/100 c) 0,08 0,5 f) 555511000 3 Skriv i kilogram a) 0,2 ton b) 4 hg c) 6400 g 4
Matematik klass 4. Höstterminen. Namn: Anneli Weiland Matematik åk 4 HT 1
Matematik klass 4 Höstterminen Namn: Anneli Weiland Matematik åk 4 HT 1 Minns du addition? 7+5= 8+8= 7+8= 7+7= 8+3= 7+6= 6+6= 8+5= 6+5= 9+3= 9+5= 6+9= 9+2= 8+4= 7+4= 9+4= 6+7= 9+6= 9+7= 7+9= 8+7= 6+8=
Blandade uppgifter om tal
Blandade uppgifter om tal Uppgift nr A/ Beräkna värdet av (-3) 2 B/ Beräkna värdet av - 3 2 Uppgift nr 2 Skriv (3x) 2 utan parentes Uppgift nr 3 Multiplicera de de två talen 2 0 4 och 4 0 med varandra.
LÅc)CA. .~,'.,~c... _...
LÅc)CA.~,'.,~c... _... 1 Beräkna med huvudräkning a) Hur mycket får man tillbaka på en femtiokronorssedel, om man handlar för 44,50 kr? b) Hur mycket är 1/4 av 800 kr? c) Ett frimärke kostar 3,85 kr. Vad
Eva Björklund Heléne Dalsmyr. matematik. Koll på. Skriva Facit
Eva Björklund Heléne Dalsmyr 6B matematik Koll på Skriva Facit 6Talsystem och tal på tallinjen 5 3 1 a) 2 5 7 3 c) 5 6 d) 4 2 2 a) 2 4 6 6 c) 3 5 d) 8 7 3 a) 8 8 3 3 3 3 3 3 c) 2 2 2 d) 7 7 7 7 4 a) 9
Matematik F- 6 Checklista för matematik K L A R A T Begreppsbildning år år år år år år år Kunna ord om: F 1 2 3 4 5 6 storlek ex störst, minst antal ex flera, färre volym ex mest, minst vikt ex tyngst,
Arbetsblad 3:1. Tolka uttryck. 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck.
Arbetsblad :1 sid 78, 92 Tolka uttryck 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck. a) Karin är tre gånger så gammal: b) Katta är år yngre: a + a c) Kristina är en tredjedel så gammal:
sex miljoner tre miljarder femton miljoner trehundratusen 6 000 000 520 000 > 50 200 40 000 500 > 40 000 050 5 505 050 < 5 505 500
Namn: Förstå och använda stora tal som miljoner och miljarder Skriv talen med siffror. sex miljoner tre miljarder femton miljoner trehundratusen Läs talen först. Använd sedan > eller > < Vilket tal