b) kg c) 900 g 1071 a) g b) kg c) 800 g 1072 a) 500 g b) kg 1073 a) 5 kg b) 4,5 kg c) 1,1 kg
|
|
- Karl-Erik Engström
- för 7 år sedan
- Visningar:
Transkript
1 BASHÄFTE X Kapitel a) b) c) a) 9 b) 9 c) 9 a) b) c) d) a), b),8 c), d) 9, a) b) 9 a) 9 b) a), b), 8 a), b), 9 Störst: 8 Minst: 88 Störst: 8, Minst:,8 a) 89 a) b) 8 kr kr a) 8 9 kr a) b) 8 kr 9 9 kr kr a) 8,8 b) 9, a), b), kr, kr, kr a) 8 b), kr 8 a) b) 9 kr a) b) c) g a) b) c) cl a) b) c) 8 kr a), b), c), 8 9 kr kr a) g b) kr kr a) b) c) a) 8 b) 9 a) c) a) c) m a) 99 b),99 c), a) 9 b) 9 8 a), b), c), d) 8,9 9 a), b), s a) 8 b) c) a) 8, b), a), b) a), b),88 a),8 b), a) 8 b) a) kr b), kr 8 a) kr b), kr 9 kr kr, kr 9 kr a), kr b), kr, kr a) 9, kr b) 9, kr gram (g) kilogram (kg) 8 hektogram (hg) 9 ton a) g b) g g a) g b) g c) 8 g a) g b) 8 g g a) kg b), kg c), kg a), kg b), kg c), kg a), kg b), kg c), kg a) kg b) 9 kg c) kg a) kg b) kg c) kg 8 a) kg b) kg c) kg 9 a) ton b) 9 ton c), ton 8 a) ton b), ton c), ton 8 a), ton b), ton ton 8 g 8 g 8 a) g b) kg 8 hg 8 st 8 liter (l) 88 deciliter (dl) 89 milliliter (ml) 9 centiliter (cl) 9 a) ml b) ml c) ml 9 a) ml b) ml ml 9 a) ml b) ml c) ml 9 a) liter b), liter c) liter 9 a), liter b), liter c), liter 9 a) cl b) cl c) cl 9 a) cl b) cl c) cl 98 a) liter b) liter c), liter 99 a), liter b),9 liter c), liter a), liter b), liter c), liter a) dl b) dl c) dl a) dl b) dl c) dl a) dl b) dl c) 8 dl a) liter b) liter c), liter a), liter b), liter c), liter a) dl b) dl c) dagar a) 8 dl b),8 liter 8 a) dl b) dl c) 8 kr d) kr 9 a) b) a), b), Störst: Minst: Störst:, Minst:,9 a) 8 b) a) b) c) a) 8 8 FACIT matematikboken X 9
2 a) b) c) 8 a) b) c) 8 8 år 9 år år a) 8, a), a) b),9 a) g b) g g a) b) c) a), b), c), a) g b) g a) kg b), kg a) kg b) kg a) ton b), ton a) ml b) ml a) liter b), liter a) cl b) cl a) liter b), liter 8 a) liter b),9 liter 9 a) gram (g) b) liter (l) c) kilogram (kg) d) deciliter (dl) m st år och år eller år och 9 år eller år och 8 år Kapitel a) b) a) 9 b) a) b) kr a) a) b) 8 kr 8 kr 9 a), b), a), b),9 kr a) b) a), b),8 a), b),, kr a) b) c) a) b) c) 8 a) b) c) 9 a) c) a) c) a) 8 b) c) a) b) c) a) 8 b) c) a) b) 9 c) 8 a) 8 b) c) a) b) c) a) b) c) 8 a) c) 9 a) b) c) a) c) a) b) 9 c) a), kg b), kg c),8 kg a), b), c), a), b),8 c), a), b), c), a), liter b),9 liter c), liter a) b) c) a) 8 b) c) a) 8 b) c) a) 9 b) c) 8 st a) 8 a) 9 b) 9 a), b), a), b), g, kr, kr g, kr a) b) c) a) b) 99 a), b),9 a) b),8 c), a) g b) ml c) hg a), b), a) b), c) 8 a),8 b), c), d), 9 a) kg b) 9 kg c) 8 kg a) b) FACIT matematikboken X
3 a) b) c) d) a) b) c) d) 9 8 a) b) 9 a) b) a) b) a) b) 9 st st a) x = b) y = c) z = a) z = b) x = c) y = a) x = b) y = c) z = a) x = b) y = 8 a) z = b) x = 9 a) x = 8 b) y = 9 a) z = b) x = 9 st (x + = ) st (x + = ) st (x + = 9) a) Ja b) Ja c) Nej a) Ja b) Nej c) Ja a) b) c) a) b), c), 8 a), b), c) 9,9 kr 8, =,, =, =,, =,, =,,, =, 8 a), b), c), 8 a), b), c),8 8 a) b) 8 a) b) 8, kr 8 a) b) 8 a) b) 88 a) x = b) y = c) z = 9 89 a) z = b) x = c) y = 9 a) x = b) z = c) z = 9 st (x + = 8) m Viktoria: kr Jonas: kr 8 9 Kapitel. eller. 9. eller h 8 min 9 h min.. a). b). c) h d) 8 km e) min km km km/h a). b) km c) km/h d) min e). f) km a) barn b) år år d) barn 8 st antal barn 9 C temp Skonummer Frekvens x f J n = x skonummer F M A M J J A S O N D månad a) 88 kr b) 98 kr a) b) a) 8 b) c) a) b) a) h min b) min a) T ex, b) T ex, a), b),8 c),8 a), kg b) kg c), kg 8 kr 9, =,, =,, =, =, =, =, a) dl b) cl c) ml FACIT matematikboken X
4 a), 8,,,, b) och c) a) mål b),,,,,, c) mål a) 8 st b) 9 kompisar c) mackor d) mackor a) b) kast c) poäng d), poäng e) poäng 8. eller. 9 h min h min a) 9. b).. km h a) 8. b) km c) km d). e) min a) Mars b) Juli c) st d) st cm längd ålder 8 år a) b),,,,, 8, c) Start 8 Mål st bröder elever Kapitel cm = mm, cm = mm cm = mm, cm = mm, cm = mm a) cm b) cm c) cm Längd på bilden: cm cm 8 Längd på bilden: cm 8 cm 9 Längd på bilden: cm cm Längd på bilden: cm Bredd på bilden: cm cm Bredd i verkligheten: 8 cm Längd på bilden:, cm Bredd på bilden: cm cm Bredd i verkligheten: cm a) b) a) b) 9 c) a), b), c), d), a) 9. eller.. eller. c). eller 9. a) T ex b) T ex + 9 a) b) c), s 8 a) tonåringar b) tonåringar c) tonåringar 9 a) b) c), a) m b), m c), m AB =, cm BC = cm CD =, cm AD = cm Omkretsen = cm AB =, cm AC = cm BC = cm Omkretsen =, cm AB =, cm BC =, cm CD =, cm AD = cm Omkretsen =, cm Basen = cm Höjden = cm Arean = cm Basen = cm Höjden = cm Arean = cm Basen = cm Höjden = cm Arean = cm 8 Basen = cm Höjden = cm Arean = cm 9 a) m b) m a) m b) m Basen = 8 cm Höjden = cm Arean = cm Basen = cm Höjden = cm Arean = cm Basen = cm Höjden = cm Arean = cm Basen =, m Höjden = m Arean = m Basen = cm Höjden = cm Arean = cm Basen = dm Höjden = dm Arean = dm 8 9 A: B: C: Vinkelsumma: 8 A: B: 9 C: Vinkelsumma: 8 A: B: C: Vinkelsumma: 8, cm = mm cm = mm a) cm b) cm a) m b) m Längd på bilden: cm cm FACIT matematikboken X
5 8 Längd på bilden: cm Bredd på bilden:, cm m Bredd i verkligheten:, m 9 AB =, cm BC = cm CD =, cm AD = cm Omkretsen = cm Arean =, cm Basen = cm Höjden = cm Arean = 9 cm februari a) 9 b) 9 c) 8 st 9 8 Kapitel a) b) a) b) a) b) Visa din lärare a) b) a) b) a) b) 8 a) a), b), c), a), b), c), 8 a) b), 9 a) kr b) kr c) kr a) kr b) kr a) cl b) cl c) cl a) b) kr a) min b) min c) min a) mån b) mån c) mån + = 8 = = a) b) a) c) a) b) c) a) h min b) h min a) B, F och G b) A, E och H c) C, D och I a) B b) C c) E a) b),9 8 Störst:,99 Minst:,99 9 a) b),9 a) b) b) 9 9 a) b) + = + = = = a) 8 b) FACIT matematikboken X
6 Blå: % Gul: % Blå: % Gul: % Blå: % Gul: % 8 Blå: % Gul: % 9 Blå: % Gul: % Visa din lärare Visa din lärare Visa din lärare =, = % 8 9 =, = % =, = % =, = % =, = % =, = % =, = % =, = % =, = % =, = % =, = % =, = % % 8 % 9 % 8 % 9 % 8 % % % % % % % a) % b) % c) 8 % 8 a) kr b) kr 9 a) kr b) kr a) kr b) kr a) 8 kr b) kr a) kr b) kr a) kr b) kr kr kr 88 kr a) b) c) 8 =, = % 9 a) kr b) kg c) kr d) m 8 a) b) 9 8 a) % b) 99 % 8 a) % b) 9 % 8 a) % b) % 8 a), b), c), 8 a) B b) E c) G 8 a) b) 8 a) b) 88 a), b), 8 9 kr En dag Kapitel a) b) c) a) b) c) a) c) a) b) c) a) a) b) 9 a) 8 9 a) ( + ) kr b) kr a) ( 8 + ) kr b) kr a) ( 9) kr b) kr a) ( 9 ) kr b) kr 8 x kr 9 y kr (z + ) kr (a ) kr b kr a) (x + ) ml b) (x ) ml a) kr b) kg a), b), c), d), a) b), c) a), b) % a) Martin b) st c) % a) Betalar: kr Kvar: kr b) Betalar: kr Kvar: kr c) Betalar: kr Kvar: 8 kr d) Betalar: kr Kvar: kr 8 a) D b) B c) E 9, cm a) 9 c) FACIT matematikboken X
7 a) x = b) y = c) z = a) y = b) z = c) x = a) z = b) x = c) y = a) x = b) y = c) z = 8 a) x = b) y = c) z = 9 a) x = b) y = c) z = st (x + = ) st (x + = 8) st (y + = ) st (z + = ) a) Ja b) Ja c) Nej a) Ja b) Ja c) Nej Talet är 8 Talet är 9 8 Talet är 9 Talet är Talet är a) 8 b) c) 8 a) b) a) 8 b) c) a) b) 9 c) a) b) c) a) b) c) a) ( + ) kr b) kr 8 (x + ) år 9 a) (x ) cm b) (x + ) cm a) x = b) y = c) z = a) z = b) x = c) y = a) x = b) x = c) z = st (x + = ) st (x + = ) a) b) c) Lena: kr Peter: kr FACIT matematikboken X
8 Facit till Bashäfte X
Facit till Bashäfte X KAPITEL a) b) c) a) b) c) a) b) a) b) kr kr a) b) kr a) b) kr kr kr a) C b) C a) C b) C c) C Visa din lärare Visa din lärare = + = = a) b) a) b) a) b) Visa din lärare a) b) Visa din
Läs merFACIT Ö1A Ö1B. 1 a 25 b 40 c 50 d 500. 2 a 24 b 36 c 40 d 400. 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180.
FACIT Ö1A 1 a 25 b 40 c 50 d 500 2 a 24 b 36 c 40 d 400 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180 Ö1B 1 a 3311 b 2042 2 a 2468 b 3579 c 1953 3 a 5566 b 7432 c 9876 4 a 1205
Läs mer8 a) 670. b) a) 0,11. b) 0, a) 0,45. b) 0, a) 0,5. b) 0,2. 12 a) 0,004. b) 0, a) 0,95. b) 1,2. 14 a) 9,95. b) 0,5.
Arbetsblad a) 8 a) 0 a), a) 0 00 a) 0 00 00 000 a) 0,8 0,0 a) 0,0, a), 0,, d), Störst: 0, Minst: 0, Störst: 8, Minst: 8,0 8 Störst:, Minst:,0 Störst: 0,8 Minst: 0,0 0 a) 0 0 80 d) 0 a) 0 0, 0 d), a) 00
Läs merARBETSBLAD FACIT. 1 Skriv med siffror Träna huvudräkning. 10 Multiplikation med uppställning De fyra räknesätten 1.
FACIT Skriv med siffror 0 0 0 0 0 8 0 8 0 0 0 008 0 00 8 0 00 0 000 00 000 08 000 00 00 8 0 000 0 000 000 0 00 000 00 8 Addition med uppställning 08 88 8 8 0 0 80 0 8 88 0 0 0 Subtraktion med uppställning
Läs merSteg dl. 3 a) 12 b) eller 5 = = 6 a) 100% b) 75% 7 7 gröna rutor. Steg 5. 2 a) 600 b) 6% c) 270
Förtest Bråk och procent Steg a) b) dl Pizzadeg vatten jäst olja salt vetemjöl personer dl / paket msk / tsk / dl I den högra är störst del skuggad. a) T ex ruta av b) T ex rutor av Steg dl a) b) eller
Läs merArbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 =
Arbetsblad NAMN: Addition och subtraktion i flera steg + 3 + 3 + + 3 + 3 + 9 3 3 9 9 9 39 3 3 + 39 3 + 99 0 3 Kopiering tillåten Matematikboken Författarna och Liber AB Arbetsblad Addition och subtraktion
Läs merFacit åk 6 Prima Formula
1 Facit åk 6 Prima Formula Kapitel 2 - Volym och skala Sidan 51 1 a C, F och G b D och H 2 A: sexsidigt prisma B: rätblock C: kon D: tetraeder (tresidig pyramid), E: tresidigt prisma F: klot G: cylinder
Läs mer150 cm 2 m 70 dm. 280 cm 3,5 m 40 dm 3,50 0,50. 200 cm 1,5 2,5. 6 m. 30 cm 4 dm 500 mm. 2 m. 70 dm. 150 cm. 3,5 m. 40 dm. 280 cm.
Skriv sträckorna i storleksordning. Längdenheter: meter (m), decimeter (dm), centimeter (cm) och millimeter (mm). Längden 15 cm kan skrivas på olika sätt: 15 cm = 1 m 5 cm = 1,5 m eller 15 dm cm eller
Läs merArbetsblad 3:1. Hur stor är vinkeln? 1 Vilken eller vilka av vinklarna är. 2 Uppskatta (gör en bra gissning) hur stora vinklarna är.
Arbetsblad :1 Hur stor är vinkeln? 1 Vilken eller vilka av vinklarna är a) rät b) spetsig c) trubbig A C D F E G 2 Uppskatta (gör en bra gissning) hur stora vinklarna är. A C D E F G Mät vinklarna och
Läs merSammanfattningar Matematikboken Y
Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller
Läs merInnehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18
Innehåll 1 Allmän information Seriens uppbyggnad Lärobokens struktur 6 Kapitelinledning 7 Avsnitten 7 Pratbubbleuppgifter Aktivitet Taluppfattning och huvudräkning 9 Resonera och utveckla 9 Räkna och häpna
Läs merLäxa 9 7 b) Dividera 84 cm med π för att få reda på hur lång diametern är. 8 1 mm motsvarar 150 / 30 mil = = 5 mil. Omvandla till millimeter.
LEDTRÅDAR LÄXOR Läa Förläng så att du får ett heltal i nämnaren. Använd division. Varje sekund klipper Karin, m =, m. Läa 0 ml = 0,0 liter Använd sambandet s = v t. Räkna ut hur mycket vattnet väger när
Läs merSammanfattningar Matematikboken X
Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för
Läs merREPETITION 3 A. a) b) a) 1 4 av 200 kr b) 10 % av 750 kr c) 2 3. av 60 kg. a) b) c) b) a) 6 8. a) b) b) 0,075 c) d) 0,9.
DEL I 1 Mät vinklarna. Gradtalen ska sluta på 0 eller 5. 2 Hur mycket är a) 1 4 av 200 kr b) 10 % av 750 kr c) 2 3 av 60 kg 3 Mät sidorna i hela och halva centimeter. Beräkna sedan omkrets och area av
Läs mer4 Dividera höjningen (0,5 %) med räntesatsen från början (1 %). 7 Du kan pröva dig fram till exempel så här: Från Till Procent- Procent enheter
ledtrådar LäOr Läa 8 Räkna först ut hur mycket tiokronorna och enkronorna är värda sammanlagt. Läa 8 Räkna först ut hur mycket allt vatten i hinken väger när den är full. Läa MGN = 8 Tänk dig att näckrosen
Läs merLäxa 11. Läxa T ex kan en sida vara 4 cm. Hur lång är då höjden mot den sidan? 8 b) Flytta andra stickan i översta raden ett steg åt höger.
ledtrådar LäxOr Läxa Rita en bild med de lyktstolparna. Hur många mellanrum är det? Läxa 8 På nedre halvan ska talen adderas tv å och två och på den övre halvan ska talen subtraheras. Läxa 6 7 Rita en
Läs merAddition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning 1 3 5 = 2 2 2 + 5 = 3 3 7 + 3 = 4 4 1 4 = 5 7 2 + 7 5
OH 1 Addition och subtraktion Vilka uträkningar visas på tallinjerna nedan? 1 = 7 6 1 0 1 + = 7 6 1 0 1 7 + = 7 6 1 0 1 1 = 7 6 1 0 1 Beräkna med huvudräkning 8 6 6 8 7 + 7 8 9 7 9 1 8 10 1 + 0 Kopiering
Läs merARBETSBLAD FACIT. 1 Skriv med siffror Träna huvudräkning. 10 Multiplikation med uppställning De fyra räknesätten 1.
Skriv med siffror 0 0 0 0 0 0 0 0 0 00 0 00 0 00 0 000 00 000 0 000 00 00 0 000 0 000 000 0 00 000 00 Addition med uppställning 0 0 0 0 0 0 0 0 Subtraktion med uppställning 0 0 0 0 0 Multiplikation med
Läs merRep 1 NÅGOT EXTRA. Sidan 88. Sidan 85. Sidan 89. Sidan 86. Sidan 87. Sidan 90
2 VOLYM OCH SKALA / REP 1 FACIT TILL ELEVBOKEN 125 a dl b ml c cl d l 126 5 st 127 200 cm 3 (2 dl = 0,2 l = 0,2 dm 3 = 200 cm 3 ) Sidan 85 128 A B C D Vas tom 235 g 528 g 0,85 kg 1,250 kg Vas med vatten
Läs merSpråkstart Matematik Facit. Matematik för nyanlända. Jöran Petersson
Språkstart Matematik Facit Matematik för nyanlända Jöran Petersson Positionssystem hela tal s. 4-5 3. Skriv med siffror. 52 502 5002 65 665 6665 31 131 3131 4. Skriv hur mycket siffran är värd. 300 4 1000
Läs merFacit åk 6 Prima Formula
Facit åk 6 Prima Formula Kapitel 1 Omkrets och area Sidan 7 1 A och C 2 D och E 3 a G, H och J b I och J c J Sidan 8 4 a 1 b 1 c 1 d 4 5 A = 0 B = 2 C = 4 D = 2 6 a 8 0 8 b 1 0 1 c 3 8 3 d 1 3 8 F7 A B
Läs merFacit Läxor. Tal. Tian Siffrans värde blir tio gånger mindre. 40 till 04 11 67, 69 och 71 12 a) 10, 22 och 15, 14 b) 15, 27 och 10, 9
Tal Läxa 1 1 a) 307 b) 55 c) 00 003 a) 131 > 113 b) 1 > 1 c) 99 < 9 99 3 a) 1 170 b) 5 75 c) 91 a) 3 hundra b) 3 ental c) 3 tusen 5 a) 370 b) 0 a) 31 b) 1 3 c) 1 3 7 a) 99 b) 13 a) 37 b) 19 00 9 5 15 50
Läs merFacit Träningshäfte 9:2
Kapitel 1 1 a) 4 800 000 b) 300 200 c) 25 085 d) 0,8 e) 0,25 f) 0,785 2 a) 2 miljoner 35 tusen: 2 035 000 235 tusen: 235 000 tjugotretusen femhundra: 23 500 b) 12 tiondelar: 1,2 12 hundradelar: 0,12 12
Läs mer1 a) 8,3 b) 5,4. 2 a) 16,38 b) 20, m. 4 a) 6 cm 2 b) 5 cm 2. 5 a) m 2 b) m c) dm 2. 6 a) 12 m 2 b) 27 cm 2
epetition Facit epetition a) 9, 7, 2 a),, a),,7 A,2 B,9 C,7 a),,0 c) 0,2 2,0 m 2, m 2,2 m, m 7 a) 0, m 0,0 m c) 0, m a) 9 a) 0 2 a) 7 a) st st 2 a) 7 0 a),0 kr,0 kr,7 m,7 km T.ex. 7 valpar dl 9 0, m 20
Läs merSvikten. enheter. Innehåll Tid och temperatur Längd Vikt Volym Problemlösning Kan du? Hur gick det?
Svikten enheter Innehåll Tid och temperatur Längd Vikt Volym Problemlösning Kan du? Hur gick det? 2 11 12 17 18 23 24 29 30 31 7, 9, 11, 15, 17, 21, 23, 27, 29 11, 17, 23, 29, 32 På sidorna 11, 17, 23,
Läs merInnehåll. 1 Allmän information 5. 4 Formativ bedömning Diagnoser och tester Prov och repetition Kommentarer till kapitlen 18
Innehåll Allmän inormation Seriens uppbyggnad Lärobokens struktur Kapitelinledning Avsnitten Pratbubbleuppgiter Aktivitet Resonera och utveckla Räkna och häpna 0 Sammanattning 0 Blandade uppgiter 0 Kan
Läs merDetta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning
Allmänt om proven Detta prov består av del 1 och. Här finns också facit och förslag till poängsättning och bedömning. Provet finns på lärarwebben, dels som pdf-fil och dels som redigerbar Word-fil. Del
Läs mer,5 10. Skuggat. Svart ,2 4. Randigt. b) 0,4 10. b) 0,3 10. b) 0,08. b) 0, ,7 0, ,17 0,95 0,15 0,2 + 0,7
Tal a) 00 50 00 c) 5 00 a) 0,0 0,5 c) 0,05 Färg Bråkform Decimalform Röd Grön _ Gul _ Blå _ a) 7 00 70 00 07 00 5 00 50 00 05 00 00 0,0 00 0,0 0 00 0, 0 00 0, 0,07 0,7,07,05 0,5,5 5 a) Bråkform Decimalform
Läs mera) 4a + a b) 4a 3a c) 4(a + 1)
REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin
Läs merREPETITION 2 A. a) 4a + a b) 4a 3a c) 4(a + 1)
REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin
Läs merrektangel cirkel triangel 4 sidor 3 sidor 4 sidor
geometriska former och figurer Vad heter figurerna? figur namn rektangel cirkel triangel Hur många sidor har varje figur? 4 sidor 3 sidor 4 sidor Para ihop varje föremål med en eller flera geometriska
Läs merFörord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60.
Förord Det här häftet är tänkt som ett komplement till kapitel 5, Genrepet, i läroboken Matte Direkt år 9. Häftet vänder sig främst till de elever som har svårigheter att klara Genrepets nivå i boken och
Läs merFacit Läxor. hur många areaenheter som får plats cm 2 cm och 12 4 cm samt 3 cm 16 cm och 6 cm 8 cm.
Läa a) b) c) a) 6,8 b) 8, c) 66 a),99,09,,8,8 b) 0,0 Hon får 9 kr tillbaka. a) 00 b) 00 c) 00 6 a) 0 längder b) 7 m c) kr 7 Decimaltecknet skiljer heltalen från decimaltalen. Placeringen avgör om siffran
Läs merMatematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.
M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per
Läs merLÄXA 3. 7 a) 3 120 b) 231 och 3 120 c) 235 och 3 120
acit till läorna LÄXA LÄXA a),75 0 b), 0 a) 7, b) 0, a) 0 b) 7 c) 00 00 km/s a), b) a) 900 b) 5, cm a) 50 cm b) 0 cm c) 0,5 cm a),5 b) 0,0 5,05,7,9,5, a) 00 b) 0 c) 79 7 a) b) 55 9,5 TIAN centi = hundradel,
Läs merI addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1
BEGREPP ÅR 3 Taluppfattning och tals användning ADDITION 3 + 4 = 7 term + term = summa I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 SUBTRAKTION 7-4 = 3 term term
Läs merSynnöve Carlsson Gunilla Liljegren Margareta Picetti. Matte. Borgen. Direkt. Facit BONNIERS
Synnöve Carlsson Gunilla Liljegren Margareta Picetti Matte Direkt Borgen Facit 6B BONNIERS Innehåll Kapitel 6 3 Kapitel 7 6 Kapitel 8 9 Kapitel 10 14 Läxor 15 Repetition 18 Kapitel 9 11 BONNIER UTBILDNING
Läs merStart Matematik facit
FACIT Start Matematik facit Årskurs 4-9 Facit till Start Matematik 47-60-0 Liber AB Får kopieras 2 Kapitel Siffror och tal a) 9-42 a) 9-42 c) 84 d) 555 e) -6 f) 7 400 c) 84 d) 555 e) -6 f) 7 400 g) 985
Läs merKompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 6
Kompletterande lösningsförslag och ledningar, Matematik 000 kurs A, kapitel Kapitel.1 101, 10, 10 Eempel som löses i boken. 104, 105, 10, 107, 108, 109 Se facit 110 a) Ledning: Alla punkter med positiva
Läs mer8 miljarder B. 8 miljoner B. 80 tusen B. 8 tusen B 8 MB 8 GB. 8 kb. 80 kb B B B B 32 MB 32 GB.
Tal Sida av 9 a) 000 9 000 c) 000 000 d) 9 000 000 e) 000 000 000 f) 9 000 000 000 a) 00 000 c) 00 000 d) 00 000 000 99 78 79 9 000 000 000 00 000 000 000 00 000 00 000 7 a) 8 kb 80 tusen B 80 kb 8 miljoner
Läs mer4 Sätt in punkternas koordinater i linjens ekvation och se om V.L. = H.L. 5 Räkna först ut nya längden och bredden.
Läxor Läxa 7 En sådan timme skulle ha 00 00 s = 0 000 s. 8 a) O = π d och A = π r r. 0 Beräkna differensen mellan hela triangelns area och arean av den vita triangeln i toppen. Läxa 9 Hur stor andel målar
Läs merx kr y kr a) 7 dm b) 325 mm c) 1,2 km d) cm 2 Hur mycket är a) b) ( ) / 4 c) 10 / (14 4)
REPETITION 2 A Del I 1 Skriv i meter. a) 7 dm b) 32 mm c) 1,2 km d) 1 20 cm 2 Hur mycket är a) + 1 b) ( + 1) / c) / (1 ) 3 Hur lång tid är det mellan klockslagen? a) 13.3 1. b).2 11.37 c) 1. 21.32 Teckna
Läs merSammanfattningar Matematikboken Z
Sammanfattningar Matematikboken Z KAPitel procent och statistik Procent Ordet procent betyder hundradel och anger hur stor del av det hela som något är. Procentform och 45 % = 0,45 6,5 % = 0,065 decimalform
Läs merVersion 2018-xx-xx TANKENÖTTER FACIT
Version 2018-xx-xx 5 TANKENÖTTER FACIT 1. 5 2, 5 3, 6 2, 6 3 2. 2 0, 2 1, 3 0, 3 1, 4 0, 4 1 3. A = 1 B = 2 C = 8 Alternativt svar: A = 0 B = 2 C = 9 4. a. 7 3 = 21 b. 7 5 = 35 c. 7 3 5 = 105 5. 9 216
Läs merFacit Arbetsblad. 7 a) 32 b) 35 c) 27 8 a) 5 b) 18 c) 4 9 a) 18 b) 30 10 a) 17 b) 19 11 a) 6 b) 0 12 a) 24 b) 35. 1 Tal
1 Tal Arbetsblad 1:1 1 a) 18 9 06 b) 85 10 00 c) 0 1 080 9 060 d) 5 105 6 780 e) 78 8 970 9 05 f) 990 75 102 5 2 a) 0 = 2 2 2 5 b) 75 = 5 5 c) 6 = 2 2 a) 8 = 2 2 2 2 b) 28 = 2 2 7 c) 90 = 2 5 a) = 2 2
Läs merRepstegen Diagnoser Enheter & tid
Repstegen Diagnoser Enheter & tid Diagnos Längd A a m b cm c mm Diagnos Längd B a m b mm c cm Fjärilen: mm Fröställningen: mm Skruven: mm Spindeln: cm eller 0 mm a 00 cm b 00 cm c 0 cm a 0 mm b 00 mm c
Läs merGEOMETRISKA TILLÄMPNINGAR
INNEHÅLL GEOMETRISKA TILLÄMPNINGAR GEOMETRISKA TILLÄMPNINGAR 251 252 GEOMETRISKA TILLÄMPNINGAR I samband med ett åskväder regnade det enligt en regnmätare 38 mm. Hur många liter vatten kom det a) på en
Läs merFacit Arbetsblad. 5 Genrepet. 11 a) 0,74 b) 0,842 c) 9,05 12 a) 4,92 b) 0,49 c) 3,07
Genrepet Arbetsblad :1 0, 0,6 1,1 b) 0, 0,6 1,0 c) 0,1 0,9 1,8 0,0 0, 0,0 0, 0, a),, b) 0,9 1,1 1, 1, c) 0,9 1, 1, 1,8 d),6,, 6 a) b) 0,6 c) 0,0 a) 0,001 b) 0, c) 0,06 6 a) 0,0 b) 0, c) 1, 7 a) 0,008 b)
Läs merFacit till Tema Matematik 5
Facit till Tema Matematik 5 Till dig som använder detta facit: Sidnumren hänvisar till sidan i arbetsboken. På en del frågor står det Elevens eget svar i facit. Det beror på att man kan svara på olika
Läs merSTARTAKTIVITET 2. Bråkens storlek
STARTAKTIVITET 2 Bråkens storlek Arbeta gärna två och två. Rita en stjärna över de bråk som är mindre än 1 2. Sätt ett kryss över de bråk som är lika med 1 2. Rita en ring runt de bråk som är större än
Läs merSteg 10. 6 a) 0,129 b) 1,72 c) 2,05 7 a) 960 kr b) 1600 kr c) 14 kr 8 30% 9 a) 32% b) 60% c) 12% 10 20% 11 a) b) c) 2. 12 a) 135 b) c) 6 ( )
Bråk och procent Steg elever a) st b) st 0,, %,,,, 0 liter T ex och a) b) 0 a) 0, b) 0, c) 0, a) ( ) b) c) 00 0 a) b) c) a) ( 00) b) 0 ( 000) c) ( ) 000 a) 0, b) 0, c) 0, a) b) c) 0 a) b) a) > b) < c)
Läs mer7F Ma Planering v2-7: Geometri
7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
Läs merMatematikboken. Facit. Lennart Undvall Svante Forsberg Christina Melin. Matematikboken 4a Facit 2008 Författarna och Liber AB
Matematikboken Facit 4a Lennart Undvall Svante Forsberg Christina Melin 2008 författarna och Liber AB Redaktion: Ove Aspeling Liber AB, 113 98 Stockholm Tfn 08-690 92 00 Hemsida: www.liber.se Kundservice
Läs merAnsvarig lärare: Kristina Wallin , Maria Lindström , Barbro Wase
Skolmatematiktenta LPGG06 Kreativ Matematik Delkurs 2 20 augusti 2015 14.00 18.00 Hjälpmedel: Miniräknare Ansvarig lärare: Kristina Wallin 054-700 23 16, Maria Lindström 054-700 21 46, Barbro Wase 070-6309748
Läs merRepetition 1A. Del I. a) 0,3 eller 0,13 b) 1,19 eller 1,2 c) eller. a) b) c) a) fem tiondelar = b) = c) tre hundradelar =
Repetition A Del I a) 976 + 2 = b) 07 233 = c) 6 = 2 Vilket av talen är störst? a) 0,3 eller 0,3 b),9 eller,2 c) 7 0 3 Hur stor andel av figuren är vit? a) b) c) eller 7 00 Skriv talen i decimalform. a)
Läs mer8F Ma Planering v2-7 - Geometri
8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
Läs mer9E Ma Planering v2-7 - Geometri
9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar
Läs merGruppledtrådar 6-2A (i samband med sidorna 50-60) Ledtråd 2 Den har 4 begränsningsytor (B). Ledtråd 1 Polyedern är regelbunden.
Gruppledtrådar 6-2A (i samband med sidorna 50-60) Polyedern är regelbunden. Den har 4 begränsningsytor (B). Polyedern har 4 hörn (H). Antal kanter (K) kan beräknas med formeln B + H K = 2 Begränsningsytorna
Läs merL ÄR ARHANDLEDNING. Gunilla Viklund Birgit Gustafsson Anna Norberg
L ÄR ARHANDLEDNING Gunilla Viklund Birgit Gustafsson Anna Norberg Negativa tal Utför beräkningarna. Addera svaren i varje grupp till en kontrollsumma. Alla kontrollsummor ska bli lika. 2 5 13 + ( 2) 11
Läs merPRIMA MATEMATIK EXTRABOK 3 FACIT
PRIMA MATEMATIK EXTRABOK FACIT t.ex. Dela upp talet. = + + = + + = + + Dela upp talet i lika stora delar. = +, +++ = ++ = +, ++ = ++++ = + = + + Skriv alla uppdelningar du kan av talet, lika stora delar.,
Läs merMatematik Formula, kap 3 Tal och enheter
Matematik Formula, kap 3 Tal och enheter Nedan berättar jag i punktform hur du ska arbeta och lite av det vi gör tillsammans. Listan kommer att fyllas på allteftersom vi arbetar. Då och då hittar du blå
Läs merMatematik. Namn: Datum:
Matematik Namn: Datum: Multiplikation, tabell 2 och 4. Hur många ben har djuren tillsammans? + = = + + = = + + + + = = + = = + + + = = Skriv färdigt multiplikationen! 3 4 = 4 2 = 2 5 = 4 6 = 4 0 = 4 5
Läs merFacit till Trampolinen - bråk och decimaltal. Sidan 2 Sidan 3
Facit till Trampolinen - bråk och decimaltal Sidan 2 Sidan 3 1 2 3 3 2 2 5 4 5 4 1 2 1 4 3 3 1 1 2 4 1 2 4 4 2 1 3 3 Facit till Trampolinen - bråk och decimaltal Sidan 4 Sidan 5 1 5 2 6 2 3 3 4 2 1 10
Läs merPernill a Falck Margareta Picetti Matte. Borgen. Facit 5A
Pernill a Falck Margareta Picetti Matte Borgen Facit 5A SANOMA UTBILDNING Postadress: Box 30091, 104 25 Stockholm Besöksadress: Alströmergatan 12, Stockholm Hemsida: www.sanomautbildning.se E-post: www.sanomautbildning.se
Läs merMatematikbokens Prio kapitel Kap 3,.,Digilär, NOMP
Geometri Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp
Läs mera) b) 2 Hur mycket är a) 1 4 av 200 kr b) 10 % av 750 kr c) 2 3 av 60 kg
REPETITION 3 Del I 1 Mät vinklarna. Gradtalen ska sluta på 0 eller 5. 2 Hur mycket är a) 1 4 av 200 kr b) 10 % av 750 kr c) 2 3 av 60 kg 3 Mät sidorna i hela och halva centimeter. eräkna sedan omkrets
Läs merArbetsblad 5:1. Tal och tallinjer. 1 Skriv rätt tal på tallinjen. 2 Ordna talen i storleksordning med det minsta först. 3 Vilka tal kommer sen?
Arbetsblad 5:1 sid 143 Tal och tallinjer 1 Skriv rätt tal på tallinjen. a) 0 0,5 1 b) 0 0,5 1 c) 0 1 2 2 Ordna talen i storleksordning med det minsta först. 0,4 0,404 0,44 0,04 0,45 3 Vilka tal kommer
Läs merÖvningsblad 3.1 A. Omkrets och area. 1 Beräkna figurernas omkrets och area. Varje ruta har arean 1 cm 2.
Övningsblad 3.1 A Omkrets och area 1 Beräkna figurernas omkrets och area. Varje ruta har arean 1 cm 2. a) b) O = A = O = A = 2 Skugga rektangelns area och markera triangelns omkrets. (m) (m) 25 80 80 70
Läs merPENGAR TILLBAKA 2. GEOMETRI P. Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning
2. GEOETRI P R PENGAR TILLBAA Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning E R Löser problemet och ger korrekt svar E Redovisningen är
Läs merMatematikbokens Prio kapitel Kap 3,.,Digilär, NOMP
Geometri Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp och samband
Läs merLEDTRÅDAR. KAPITEL Se facit Tiotusentalsiffran måste vara antingen 4 eller a) b)
LEDTRÅDAR KAPITEL 1 101 Se facit 101 a) 100 + 600 b) 00 400 + 500 10 a) Största talet, dvs 10, ska placeras så att det inte multipliceras med. b) Största talet, dvs 10, ska dras bort. 104 a) Värdet i parentesen
Läs merEva Björklund Heléne Dalsmyr. matematik. Koll på. Skriva Facit
Eva Björklund Heléne Dalsmyr 5B matematik Koll på Skriva Facit 6Ekvationer, uttryck och mönster 1 a) b) = c) d) 2 a) = b) c) = d) 3 a) < b) < c) < d) > 4 a) < b) < c) > d) < 5 a) < b) > c) < d) > Talet
Läs merMa7-Per: Geometri. Det tredje arbetsområdet handlar om geometri.
Ma7-Per: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda
Läs mersträckan = tiden. hastigheten hastigheten = sträckan tiden 210 hastigheten = 3 = 70 Bilisten kör 70 km/h. tiden =
Enheter och skala I det här kapitlet kan du lära dig mer om hastighet att skriva minuter som del av timme att räkna om km/h till m/s något om hastigheter till sjöss om volymenheterna cm 3, dm 3 och m 3
Läs merKapitel 4 Inför Nationella Prov
Kapitel 4 Inför Nationella Prov Sidan 3 Tretusen fyrahundra fyra 2 a 9 0 b Minsta fyrsiffriga tal är 09 (0029 = 29 är tvåsiffrigt.) 3 a 3 43 b 5 042 c 890 4 a 9 08 b 0 09 c 2 500 000 d 2 050 000 5 a 900
Läs mera) trettiotvåtusen femhundrasju b) femhundratusen åttiotre a) ett udda tal b) det största jämna tal som är möjligt A B C A B C 3,1 3,2
Alternativdiagnos 1 1 Skriv med siffror a) trettiotvåtusen femhundrasju b) femhundratusen åttiotre 2 Använd siffrorna 2, 3, 4 och 5 och skriv a) ett udda tal b) det största jämna tal som är möjligt 3 Vilka
Läs merVikt och volym. Kapitel 4 Vikt och volym
Vikt och volym Kapitel 4 Vikt och volym I kapitlet får eleverna arbeta med vikt och volym. Avsnittet om volym tar upp enheterna liter, deciliter och centiliter. Avsnittet om vikt tar upp enheterna kilogram,
Läs merMatematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping
Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att
Läs merTorskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning
Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som
Läs merMatematik Formula, kap 3 Tal och enheter
Matematik Formula, kap 3 Tal och enheter Nedan berättar jag i punktform hur du ska arbeta och lite av det vi gör tillsammans. Listan kommer att fyllas på allteftersom vi arbetar. Då och då hittar du blå
Läs merKapitel 4. cos(64 )= s s = 9 cos(64 )= 3.9m. cos(78 )= s s = 9 cos(78 )= 1.9m. a) tan(34 )= x x = 35 tan(34 )= 24cm
Kapitel 4 4107 4103 a) tan(34 )= x x = 35 tan(34 )= 4cm 35 b) cos(40 )= x x = 61 cos(40 )= 47cm 61 c) tan(56 )= 43 x x = 43 tan(56 ) = 9cm d) sin(53 )= x x = 75 sin(53 )= 60cm 75 4104 a) tan(v )= 7 4 v
Läs mer8E Ma: Aritmetik och bråkbegreppet
8E Ma: Aritmetik och bråkbegreppet Under veckorna 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och
Läs merFacit åk 6 Prima Formula
Facit åk 6 Prima Formula Kapitel 3 Algebra och samband Sidan 95 1 a 12 cm (3 4 cm) b Han vet inte att uttrycket 3s betyder 3 s eller s + s + s 2 a 5x b 6y c 12z 3 a 30 cm (5 6 cm) b 30 cm (6 5 cm) Sidan
Läs merFacit till Testsidor i Mattedetektiverna 3A Lärarboken
Facit till Testsidor i Mattedetektiverna 3A Lärarboken 1 / 8 Test 3A - 1 1 Addera två tusental och fem tiotal till talen. 4582 6155 3473 2 532 4 5 1 423 2 Subtrahera tre hundratal och fem ental från talen.
Läs merVälkommen till Borgar!
Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med naturettor och hoppas att du kommer att trivas mycket bra hos oss. Studier i naturvetenskapliga ämnen förutsätter
Läs merUppfriskande Sommarmatematik
Uppfriskande Sommarmatematik Matematiklärarna på Bäckängsgymnasiet genom Johan Espenberg juni 206 Välkommen till Naturvetenskapsprogrammet GRATTIS till din plats på Naturvetenskapsprogrammet på Bäckängsgymnasiet!
Läs merGunilla Viklund Birgit Gustafsson Anna Norberg
L ÄRARMAT E R I A L Gunilla Viklund Birgit Gustafsson Anna Norberg Negativa tal Utför beräkningarna. Addera svaren i varje grupp till en kontrollsumma. Alla kontrollsummor ska bli lika. 2 5 13 + ( 2) 11
Läs merPositionssystemet och enheter
strävorna 5A 5C Positionssystemet och enheter uttrycksformer tal geometri Avsikt och matematikinnehåll Aktiviteten utgår från en gammal och väl beprövad mall för att skapa struktur och ge förståelse för
Läs merEva Björklund Heléne Dalsmyr. matematik. Koll på. Skriva Facit
Eva Björklund Heléne Dalsmyr 6A matematik Koll på Skriva Facit 1 De fyra räknesätten 2 438 1 a) 2 993 b) 4 140 c) 3 526 2 1 125 pennor. 4,14 3 a) 20,47 b) 669,6 c) 35,037 d) 4,158 4 a) 8,99 b) 39,01 c)
Läs merFörtest. Hur kan jag arbeta med förtesten? Hur dokumenterar jag elevens kunskapsutveckling? Uppfattar du det som att eleven kan matematikinnehållet
AB Vår LP (8766) Flik 0 Förtest (Lev vc).qxd 00-0-6 :5 Sida Förtest För alla lärare är det viktigt att skaffa sig en god bild av elevens kunskaper för att veta vad eleven behöver för att gå vidare i sin
Läs merSynnöve Carlsson. Gunilla Liljegren Margareta Picetti. Borgen. Facit
Synnöve Carlsson Borgen Gunilla Liljegren Margareta Picetti Facit 6B Sanoma Utbildning Postadress: Box 0091, 10 25 Stockholm Besöksadress: Alströmergatan 12, Stockholm Hemsida: www.sanomautbildning.se
Läs merMatematikboken Z röd Läraranvisning punktskrift. Verksnummer: 30381
Matematikboken Z röd Läraranvisning punktskrift Verksnummer: 30381 Läraranvisningens innehåll Läraranvisningen är till för att du som undervisande lärare ska få information om hur den pedagogiskt anpassade
Läs mer0,22 m. 45 cm. 56 cm. 153 cm 115 cm. 204 cm. 52 cm. 38 cm. 93 cm 22 cm. 140 cm 93 cm. 325 cm
Läs mer
Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 2
Kapitel 2.1 2101, 2102, 2103, 2104 Exempel som löses i boken. 2105 Hela cirkeln är 100 %. Den ofärgade delen är 100 % - 45 % = 55 % 2106 a) Antalet färgade rutor 3 = b) 3 = 0, 6 c) 0,6 = 60 % Totala antalet
Läs merVälkommen till Borgar!
Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med ettor och hoppas att du kommer att trivas mycket bra hos oss. Din första termin på gymnasiet kommer att
Läs merTal Repetitionsuppgifter
epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver
Läs merNästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar
Matematikplanering 7B Läsår 15/16 Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar på att bli upptäckt. Mönster, statistik, överlevnad, evolution, mopeder
Läs merMatematik klass 3 Problemlösning nummer 3
Matematik klass 3 Problemlösning nummer 3 Anneli Weiland Matematik åk 3 Problemlösning 1 Erik älskar dinosaurier. Han hade redan 26 stycken olika, men han önskade sig 7 till. Om han fick dem också, hur
Läs merMatematik Åk 9 Provet omfattar stickprov av det centrala innehållet i Lgr-11. 1. b) c) d)
1. b) c) d) a) Multiplikation med 100 kan förenklas med att flytta decimalerna lika många stg som antlet nollor. 00> svar 306 b) Använd kort division. Resultatet ger igen rest. Svar 108 c) Att multiplicera
Läs merEva Björklund Heléne Dalsmyr. matematik. Koll på. Skriva Facit
Eva Björklund Heléne Dalsmyr 5A matematik Koll på Skriva Facit 1 Tal i decimalform,3 1 a) 0,5 b) 0,7 c) 0, a) 4, b),1 c) 9,4 3 a) 35,8 b) 41, c) 0,9 4 a) 1,1 b) 4, c) 7,3 5 a) 13,4 b) 3,5 c) 91,7 a) 40,8
Läs mer