Systemteknik/Processreglering F3
|
|
- Dan Nilsson
- för 7 år sedan
- Visningar:
Transkript
1 Systemteknik/Processreglering F3 Matematisk modellering Tillståndsmodeller Stabilitet Läsanvisning: Process Control:
2 Modellering av processer Dynamiken i våra processer beskrivs typiskt av en eller flera differentialekvationer. Två olika angreppssätt: 1. Matematisk modellering Använd fysikens lagar (balansekvationer mm) för att ställa upp en modell 2. Experiment Utför experiment (t.ex. stegsvarsexperiment) på processen och analysera in- och ut-data FRT041 Systemidentifiering I praktiken används ofta en kombination av båda sätten
3 Matematisk modellering Flödesbalanser Intensitetsbalanser Konstitutiva relationer
4 Flödesbalanser T.ex. volymflöde [m 3 /s] Ändring av upplagrad volym = [ Inflöde ] [ Utflöde ] per tidsenhet materialflöde [mol/s] Ändring av antalet upplagrade partiklar = per tidsenhet [ ] Inflöde av partiklar [ ] Utflöde av partiklar
5 Flödesbalanser energiflöde [W] Ändring av upplagrad energi = [ Effekt in ] [ Effekt ut ] per tidsenhet strömflöde [A] [ ] Summa ström in = till knutpunkt [ ] Summa ström ut från knutpunkt
6 Intensitetsbalanser T.ex. kraftbalans [N] Ändring av rörelsemängd = per tidsenhet [ ] Drivande krafter [ ] Bromsande krafter spänningsbalans [V] [ ] Summa spänning runt en krets = 0
7 Konstitutiva relationer T.ex. Ideala gaslagen p = nr V T Torricellis lag v = 2 h Energi i uppvärmd vätska W = C p ρvt Ohms lag u = Ri
8 Typiska balansekvationer för kemiprocesser Total massbalans: dρv dt = i=all inlets ρ i q i i=all outlets ρ i q i Massbalans för komponent j: dc j V dt = i=all inlets c j,i q i i=all outlets c j,i q i + r j V Total energibalans: de dt = ρ i V i H i ρ i V i H i + i=all i=all inlets outlets k=all phase boundaries Q k + W
9 Exempel: CSTR med exoterm reaktion q in, c A,in, T in q, c A, T T c Exoterm reaktion A B, r = k 0 e E/RT c A Kylslinga med temperatur T c Perfekt omrörning, konstant densitet ρ
10 Exempel: CSTR med exoterm reaktion Total massbalans: d(ρv ) dt = ρq in ρq Massbalans för komponent A: d(c A V ) dt = c A,in q in c A q rv Total energibalans: ρvc p dt dt = ρc pq in (T in T)+( Δ H r )rv + UA(T c T)
11 Exempel: CSTR med exoterm reaktion Efter förenklingar: dv dt = q in q dc A = q in V (c A,in c A ) k 0 e E/RT c A dt dt dt = q in V (T in T)+ ( Δ H r)k 0 e E/RT c A + UA (T c T) ρc p V ρc p Olinjär tredje ordningens modell Tillståndsvariabler: V, c A, T Möjliga insignaler: q in, q, c A,in, T in, T c Konstanta parametrar: ρ, C p, ( Δ H r ), k 0, E, R, U, A
12 Exempel: mekaniskt system k m F d 0 z Massa m med position z Yttre kraft: F Fjäderkraft: F k = kz Dämparkraft: F d = dż
13 Exempel: mekaniskt system Kraftbalans: m z = F kz dż Inför v = ż v = d m v k m z + 1 m F ż = v Linjär andra ordningens modell Tillståndsvariabler v, z Insignal: F Konstanta parametrar: m, k, d
14 Tillståndsformen x u System y Generellt är x, u och y vektorer: x 1 x n u 1 u m x =. u =. y =. y 1 y p n = antal tillståndsvariabler = systemets ordningstal m = antal insignaler, p = antal utsignaler
15 Tillståndsformen x kallas systemets tillstånd (state) och innehåller värdet av alla ackumulerade storheter i systemet (systemets minne ) Systemets dynamik beskrivs av n första ordningens ordinära differentialekvationer: dx 1 dt = f 1 (x 1,..., x n, u 1,..., u m ) dx n dt. = f n (x 1,..., x n, u 1,..., u m )
16 Tillståndsformen Utsignalerna ges av p algebraiska ekvationer (anges inte alltid): y 1 = 1 (x 1,..., x n, u 1,..., u m ). y p = p (x 1,..., x n, u 1,..., u m ) Systemet kan skrivas på vektorform som dx = f (x, u) dt (tillståndsekvation) y = (x, u) (mätekvation) f och kan vara olinjära funktioner
17 Tillståndsformen för linjära system dx 1 dt = a 11x a 1n x n + b 11 u b 1m u m. dx n dt = a n1 x a nn x n + b n1 u b nm u m y 1 = c 11 x c 1n x n + d 11 u d 1m u m. y p = c p1 x c pn x n + d p1 u d pm u m
18 Tillståndsformen för linjära system På matrisform: dx = Ax + Bu dt (tillståndsekvation) y = Cx + Du (mätekvation) x och u anger avvikelser från en jämviktspunkt (x, u) =(0, 0) är alltid en jämviktslösning D kallas systemets direktterm och är ofta 0 för verkliga processer Miniproblem: Vilka dimensioner har matriserna A, B, C och D?
19 Exempel: mekaniska systemet Tillståndsvektor: x = v z Vi styr u = F och mäter y = z Modellen skriven på tillståndsform med matriser blir dx dt = k m d m 1 0 }{{} A y = 0 1 } {{ } C x + x + 1 m 0 }{{} B 0 u }{{} D u
20 Exempel: compartmentmodeller Erik Widmark modellerade spridningen av alkohol i kroppen, 1922 Torsten Teorell myntade begreppet compartment model, 1936 Compartmentmodeller krävs av FDA för att godkänna nya läkemedel
21 Exempel: compartmentmodell Systemet består av förbundna avdelningar (compartments) En tillståndsvariabel för varje avdelning representerar massan eller koncentrationen av det studerade ämnet Transporthastigheterna är proportionella mot koncentrationsskillnaderna Exempel med två avdelningar: u k k 0
22 Exempel: compartmentmodell Inför tillståndsvariablerna c 1 = koncentrationen i avdelning 1 c 2 = koncentrationen i avdelning 2 Dynamiken ges då av dc 1 V 1 dt = k 12(c 2 c 1 ) k 0 c 1 + u dc 2 V 2 dt = k 12(c 1 c 2 )
23 Exempel: compartmentmodell Antag V 1 = V 2 = k 12 = k 0 = 1 och att systemet är i vila, c 1 (0) =c 2 (0) =0. Svar vid injektion av enhetsvolym vid tiden 0 ( impulssvar ): c1, c c c t
24 Inlämningsuppgift 1 Compartmentsystem med tre avdelningar: u k 12 k k 0 MATLAB med Control System Toolbox
25 Lösning av den linjära tillståndsekvationen x u System y dx = Ax + Bu dt y = Cx + Du Hur svarar tillståndet x (och utsignalen y) på insignalen u och initialtillståndet x(0)?
26 Lösning av tillståndsekvationen skalära fallet System med en tillståndsvariabel och en insignal: dx(t) dt = ax(t)+bu(t) Lösning: t x(t) =e at x(0)+ e a(t τ ) bu(τ ) dτ 0 Exempel: Konstant insignal u(t) =u 0 och a = 0: x(t) begränsad om a < 0 x(t) =e at x(0)+ b a (eat 1)u 0
27 Simulering med u(t) =1 och x(0) =0 2 1 x(t) för a = 1, b = 0.5, 1, 2 b = 2 b = 1 b = Tid x(t) för a = 0.5, 1, 2, omb/a = 1 1 a = 2 a = 1 a = Tid
28 Lösning av tillståndsekvationen allmänna fallet t x(t) =e At x(0)+ e A(t τ ) Bu(τ ) dτ 0 där e At är matrisexponentialfunktionen, definierad som e At = I + At + (At)2 2! + (At)3 3! +
29 Exempel: Mekaniska systemet dx dt = d m 1 0 k m 1 x + m u 0 Antag: Ingen dämpning (d = 0), ingen yttre kraft (F = u = 0), initialvillkor x(0) =[v(0) z(0)] T =[01] T, m = k = 1: dx dt = 0 1 x 1 0 }{{} A Exponentialmatris: e At = cos t sin t sin t cos t Ger lösningen x(t) =e At x(0) = cos t sin t 0 = sin t sin t cos t 1 cos t
30 Simulering av mekaniska systemet z v x t
31 Egenvärden A:s egenvärden ges av de n rötterna till den karakteristiska ekvationen det(λ I A) =0 det(λ I A) =P(λ) kallas karakteristiskt polynom Egenvärdena kan vara komplexa (komplexkonjugerade) Multiplicitet av egenvärde = antal egenvärden med samma värde
32 Egenvärden Antag diagonal A-matris med egenvärden λ 1,...,λ n : λ λ A = λ n Då e λ 1t e λ 2t e At = e λ nt Varje egenvärde λ i ger en term e λ it i lösningen
33 Egenvärden För en generell A-matris ger varje egenvärde en term P mi 1(t)e λ it i e At där P mi 1(t) är ett polynom i t av högst gradtal m i 1 m i är egenvärdets multiplicitet Exempel: Egenvärden: Exponentialmatris: A = λ 1 = λ 2 = 1 (m = 2) e At = e t te t 0 e t
34 Stabilitet för linjära system Stabilitet är en inneboende systemegenskap beror ej på hur insignalen ser ut Vi kan studera det fria systemet dx dt = Ax Lösning: x(t) =e At x(0)
35 Stabilitetsbegrepp Asymptotisk stabilitet: x(t) 0 då t för alla initialvärden Stabilitet: x(t) begränsad då t för alla initialvärden Instabilitet: x(t) obegränsad då t för något initialvärde (Stabila men ej asymptotiskt stabila system kallas marginellt stabila)
36 Exempel Asymptotiskt stabila system: Vattentank med hål i botten Temperaturen i en ugn Hastigheten i en bil Stabila system: Vattentank utan hål i botten Massa fjäder-system utan dämpning Tillryggalagd sträcka i en bil Instabila system: Pendel i inverterat läge Segway
37 Stabilitet i det skalära fallet dx(t) = ax(t) dt x(t) =e at x(0) 2 a < 0 a = 0 a > x 1 x 1 x t t t asymptotiskt stabilt om a < 0 stabilt om a 0 instabilt om a > 0
38 Stabilitet i det allmänna fallet Egenvärdena λ i till A-matrisen avgör stabiliteten. Ett linjärt system är: Asymptotiskt stabilt om alla Re(λ i )<0 Instabilt om något Re(λ i )>0 Stabilt om alla Re(λ i ) 0och eventuella egenvärden på imaginära axeln har multiplicitet 1
39 Routh Hurwitz stabilitetskriterum 2:a ordningens karakteristiskt polynom (för 2 2-matris A): det(λ I A) =P(λ) =λ 2 + p 1 λ + p 2 Alla rötter ligger i vänster halvplan (alltså alla Re(λ i )<0) omoch endast om p 1 > 0 och p 2 > 0 3:e ordningens karakteristiskt polynom (för 3 3-matris A): det(λ I A) =P(λ) =λ 3 + p 1 λ 2 + p 2 λ + p 3 Alla rötter ligger i vänster halvplan (alltså alla Re(λ i )<0) omoch endast om p 1 > 0, p 2 > 0, p 3 > 0 och p 1 p 2 > p 3.
40 Exempel: mekaniska systemet dx dt = d m y = 0 k m x 1 x + m u 0 Karakteristisk ekvation: det(λ I A) = λ + d m 1 k m λ = λ2 + d m λ + k m = 0 Antag m, k, d > 0: Asymptotiskt stabilt Antag m, k > 0, d = 0: Vi får egenvärden k λ 1,2 =±i m Alltså är systemet stabilt (men ej asymptotiskt stabilt)
41 Simulering av mekaniska systemet m = k = d = 1: z v m = k = 1, d = 0: z v x 0 x t t
42 Linjära system på tillståndsform i MATLAB % Definiera systemmatriser A = [1 2; 3 4]; B = [0; 1]; C = [1 0]; D = 0; % Skapa tillståndsmodell sys = ss(a,b,c,d); % Beräkna egenvärden till A-matrisen eig(a) % Simulera systemet utan insignal från ett % visst initialvärde initial(sys,x0)
Olinjära system (11, 12.1)
Föreläsning 2 Olinjära system (11, 121) Introduktion Vad menas med ett olinjärt system? Betrakta ett system där insignalerna u 1 (t) och u 2 (t) ger utsignalerna y 1 (t) respektive y 2 (t), d v s och u
TSRT09 Reglerteori. Sammanfattning av Föreläsning 1. Sammanfattning av Föreläsning 1, forts. Sammanfattning av Föreläsning 1, forts.
Reglerteori 217, Föreläsning 2 Daniel Axehill 1 / 32 Sammanfattning av Föreläsning 1 TSRT9 Reglerteori Föreläsning 2: Beskrivning av linjära system Daniel Axehill Reglerteknik, ISY, Linköpings Universitet
Modellering av Dynamiska system. - Uppgifter till övning 1 och 2 17 mars 2010
Modellering av Dynamiska system - Uppgifter till övning 1 och 2 17 mars 21 Innehållsförteckning 1. Repetition av Laplacetransformen... 3 2. Fysikalisk modellering... 4 2.1. Gruppdynamik en sciologisk modell...
Systemteknik/Processreglering F6
Systemteknik/Processreglering F6 Linjärisering Återkopplade system ett exempel Läsanvisning: Process Control: 5.5, 6.1 Jämviktspunkter Olinjär process på tillståndsform: dx = f (x, u) dt y = (x, u) Processens
Föreläsning 8. Reglerteknik AK. c Bo Wahlberg. 27 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik
Föreläsning 8 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 27 september 2013 Introduktion Förra gången: Tillståndsmodell: ẋ(t) = Ax(t) + Bu(t), x(0) =
Systemteknik/Processreglering F2
Systemteknik/Processreglering F2 Processmodeller Stegsvarsmodeller PID-regulatorn Läsanvisning: Process Control: 1.4, 2.1 2.5 Processmodeller I den här kursen kommer vi att huvudsakligen att jobba med
Lösningsförslag till tentamen i Reglerteknik fk M (TSRT06)
Lösningsförslag till tentamen i Reglerteknik fk M (TSRT6) 216-1-15 1. (a) Känslighetsfunktionen S(iω) beskriver hur systemstörningar och modellfel påverkar utsignalen från det återkopplade systemet. Oftast
TSRT91 Reglerteknik: Föreläsning 10
TSRT91 Reglerteknik: Föreläsning 10 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 15 1 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Föreläsning 1 Reglerteknik AK
Föreläsning 1 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik, KTH 29 augusti, 2016 2 Introduktion Example (Temperaturreglering) Hur reglerar vi temperaturen i ett hus? u Modell: Betrakta en
Dagens teman. Linjära ODE-system av ordning 1:
Dagens teman Linjära ODE-system av ordning 1: Egenvärdesmetoden. Lösning av homogena system x 1 (t) = a 11 x 1 (t) + + a 1n x n (t) x 2 (t) = a 21 x 1 (t) + + a 2n x n (t) x n (t) = a n1 x 1 (t) + + a
Reglerteori. Föreläsning 11. Torkel Glad
Reglerteori. Föreläsning 11 Torkel Glad Föreläsning 11 Torkel Glad Februari 2018 2 Sammanfattning av föreläsning 10. Fasplan Linjärisering av ẋ = f(x) kring jämviktspunkt x o, (f(x o ) = 0) f 1 x 1...
Föreläsning 14-16, Tillståndsmodeller för kontinuerliga system
Föreläsning 14-16, Tillståndsmodeller för kontinuerliga system Reglerteknik, IE1304 1 / 50 Innehåll Kapitel 141 Introduktion till tillståndsmodeller 1 Kapitel 141 Introduktion till tillståndsmodeller 2
ERE103 Reglerteknik D Tentamen
CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system System- och reglerteknik ERE03 Reglerteknik D Tentamen 207-0-2 08.30-2.30 Examinator: Jonas Fredriksson, tel 359. Tillåtna hjälpmedel: Typgodkänd
x(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen:
Differentialekvationer II Modellsvar: Räkneövning 6 1. Lös det icke-homogena linjära DE-systemet ( ( 0 e x t (t = x(t + 1 3 e t med elimineringsmetoden. Lösning: den explicita formen av DE-systemet är
y(0) = e + C e 1 = 1
KTH-matematik Tentamensskrivning, 006-01-14, kl. 14.00 19.00. 5B106 Differentialekvationer I, för BDMP. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg (3) krävs minst 17 poäng, för betyg 4 krävs
Stabilitet m.a.p. begynnelsedata
Stabilitet m.a.p. begynnelsedata Begreppet stabilitet används i flera olika sammanhang. I kap.9-14 tänker man på black-box system och insignal-utsignalstabilitet begränsad insignal = begränsad utsignal
Diagonalisering och linjära system ODE med konstanta koe cienter.
Diagonalisering och linjära system ODE med konstanta koe cienter. Variabelbyte i linjära system di erentialekvationer. Målet med det kapitlet i kursen är att lösa linjära system di erentialekvationer på
1 Repetition - Övning 3.8
Repetition - Övning 38 Spåret av en matris definieras som: T r(a) = n i= a ii = n i= y z = y + y 2 + + y n = A y = Vi vill definiera när ett system kan ta emot input och leverera output utan att systemet
TSRT09 Reglerteori. Sammanfattning av föreläsning 9. Cirkelkriteriet. Sammanfattning av föreläsning 9, forts. Amplitudstabilitet hos svängningar
glerteori 27, Föreläsning Daniel Axehill / 23 Sammanfattning av föreläsning 9. Cirkelkriteriet Linjärt system G(s) återkopplat med en statisk olinjäritet f(x) TSRT9 glerteori Föreläsning : Fasplan Daniel
SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I
Institutionen för matematik, KTH Serguei Shimorin SF6, Differentialekvationer I Tentamen, torsdagen den 7 januari 26 Lösningsförslag Del I Moduluppgift En liter av lösningen som innehåller 2 gram av kemiska
Reglerteknik AK. Tentamen 24 oktober 2016 kl 8-13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 24 oktober 26 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
Robust flervariabel reglering
Föreläsning 2 Anders Helmersson andersh@isy.liu.se ISY/Reglerteknik Linköpings universitet Vad gör vi i dag Normer Representation av system Lyapunovekvationer Gramianer Balansering Modellreduktion Lågförstärkningssatsen
Föreläsning 2. Reglerteknik AK. c Bo Wahlberg. 3 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik
Föreläsning 2 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 3 september 2013 Introduktion Förra gången: Dynamiska system = Differentialekvationer Återkoppling
= y(0) för vilka lim y(t) är ändligt.
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa
Föreläsning 7. Reglerteknik AK. c Bo Wahlberg. 26 september Avdelningen för Reglerteknik Skolan för elektro- och systemteknik
Föreläsning 7 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik Skolan för elektro- och systemteknik 26 september 2013 Introduktion Förra gången: Känslighet och robusthet Dagens program: Repetion
3. Matematisk modellering
3. Matematisk modellering 3. Matematisk modellering 3.1 Modelleringsprinciper 3.1.1 Modelltyper För design och analys av reglersystem behöver man en matematisk modell, som beskriver systemets dynamiska
TENTAMEN I REGLERTEKNIK Y/D
TENTAMEN I REGLERTEKNIK Y/D SAL: TER, TER 2, TER E TID: 4 mars 208, klockan 8-3 KURS: TSRT2, Reglerteknik Y/D PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):
Flervariabel reglering av tanksystem
Flervariabel reglering av tanksystem Datorövningar i Reglerteori, TSRT09 Denna version: oktober 2008 1 Inledning Målet med detta dokument är att ge möjligheter att studera olika aspekter på flervariabla
Exponentialmatrisen. Definition med potensserie. Egenskaper. Den sista likheten utgör definitionen av e At. Man kan nämligen visa att matrisföljden
Exponentialmatrisen Moment (kapitel i Spanne) Övningar Denna stencil i första hand! Def. med serie (5.2) 8,(2) diagonaliserbar A (5.) b,2 (utnyttja svartill 3.2&3.5) Lösn. av tillståndsekv. Cayley-Hamiltons
Välkomna till TSRT19 Reglerteknik Föreläsning 10
Välkomna till TSRT19 Reglerteknik Föreläsning 10 Sammanfattning av föreläsning 9 Tillståndsbeskrivningar Överföringsfunktion vs tillståndmodell Stabilitet Styrbarhet och observerbarhet Sammanfattning föreläsning
Formalia. Modellbygge & Simulering, TSRT62. Föreläsning 1. Varför modeller? Föreläsning 1: Modeller och modellbygge
Formalia Modellbygge & Simulering, TSRT62 Föreläsning 1 Labanmälan via länk på kurshemsidan Datortenta i datorsal Fem av lektionerna i datorsal Reglerteknik, ISY, Linköpings Universitet Identifieringslabben
ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift
Vecka ALA-c 6 Innehåll Linearization and Stability RÄKNEÖVNING VECKA. Uppgift 9........................................ Uppgift 9.5...................................... 5 Egenvärdesproblemet 9. Uppgift
Reglerteori, TSRT09. Föreläsning 10: Fasplan. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet. Torkel Glad Reglerteori 2015, Föreläsning 10
Reglerteori, TSRT09 Föreläsning 10: Fasplan Reglerteknik, ISY, Linköpings Universitet Sammanfattning av föreläsning 9. Nyquistkriteriet 2(25) Im G(s) -1/k Re -k Stabilt om G inte omsluter 1/k. G(i w) Sammanfattning
TSRT91 Reglerteknik: Föreläsning 11
Föreläsningar / 5 TSRT9 Reglerteknik: Föreläsning Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
1+v(0)kt. + kt = v(0) . Detta ger sträckan. x(t) = x(0) + v(0) = x(0) + 1 k ln( 1 + v(0)kt ).
. (3 poäng) Antag att en partikel rör sig i ett medium där friktionskraften är proportionell mot kvadraten av hastigheten v(t) R så att dv(t) = k ( v(t) ), t > för en konstant k >. Bestäm v(t) som funktion
ÖVNINGSTENTAMEN Modellering av dynamiska system 5hp
ÖVNINGSTENTAMEN Modellering av dynamiska system 5hp Tid: Denna övn.tenta gås igenom 25 maj (5h skrivtid för den riktiga tentan) Plats: Ansvarig lärare: Bengt Carlsson Tillåtna hjälpmedel: Kurskompendiet
dy dx = ex 2y 2x e y.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 3 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, poäng 005-04-04 Skrivtid: 14 19. Hjälpmedel: Skrivdon,
Fredrik Lindsten Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY)
Innehåll föreläsning 9 2 Reglerteknik, föreläsning 9 Tillståndsbeskrivning, styr- och observerbarhet Fredrik Lindsten fredrik.lindsten@liu.se Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik
Figure 1: Blockdiagram. V (s) + G C (s)y ref (s) 1 + G O (s)
Övning 9 Introduktion Varmt välkomna till nionde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Känslighetsfunktionen y ref + e u F (s) G(s) v + + y Figure : Blockdiagram Känslighetsfunktionen
Tentamensskrivning i Differentialekvationer I, SF1633(5B1206).
Tentamensskrivning i Differentialekvationer I, SF633(5B6) Torsdagen den 3 oktober 8, kl 8-3 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
Reglerteknik. Datum: 20/ Tid: Examinator: Leif Lindbäck ( ) Hjälpmedel: Formelsamling, dimensioneringsbilaga, miniräknare.
Tentamen i Reglerteknik (IE1304) 20/3-2014 ES, Elektroniksystem Reglerteknik Kurskod: IE1304 Datum: 20/3-2014 Tid: 09.00-13.00 Examinator: Leif Lindbäck (7904425) Hjälpmedel: Formelsamling, dimensioneringsbilaga,
Reglerteori, TSRT09. Föreläsning 8: Olinjäriteter och stabilitet. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet
Reglerteori, TSRT09 Föreläsning 8: Olinjäriteter och stabilitet Reglerteknik, ISY, Linköpings Universitet Sammanfattning av föreläsning 7 2(27) H 2 - och H - syntes. Gör W u G wu, W S S, W T T små. H 2
TMA 671 Linjär Algebra och Numerisk Analys. x x2 2 1.
MATEMATISKA VETENSKAPER TMA67 8 Chalmers tekniska högskola Datum: 8--8 kl - 8 Examinator: Håkon Hoel Tel: ankn 38 Hjälpmedel: inga TMA 67 Linjär Algebra Numerisk Analys Tentan består av 8 uppgifter, med
Välkomna till Reglerteknik Föreläsning 2
Välkomna till Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer
Exempel: DC-servo med styrsignalmättning DEL III: OLINJÄR REGLERTEORI. DC-servo forts.: Rampsvar och sinussvar
Reglerteori 6, Föreläsning 8 Daniel Axehill / 6 Sammanfattning av föreläsning 7 TSRT9 Reglerteori Föreläsning 8: Olinjäriteter och stabilitet Daniel Axehill Reglerteknik, ISY, Linköpings Universitet H
Veckans teman. Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3
Veckans teman Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3 Ekvationstyper Första ordningen Separabla Högre ordning System Autonoma Linjära med konstanta koefficienter
TSRT21 Dynamiska system och reglering Välkomna till Föreläsning 10
TSRT21 Dynamiska system och reglering Välkomna till Föreläsning 10 Johan Löfberg Avdelningen för Reglerteknik Institutionen för systemteknik johan.lofberg@liu.se Kontor: B-huset, mellan ingång 27 och 29
Välkomna till TSRT15 Reglerteknik Föreläsning 2
Välkomna till TSRT15 Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer
Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,
Mat-. Grundkurs i matematik Tentamen och mellanförhörsomtagning,..23 Skriv ditt namn, nummer och övriga uppgifter på varje papper! Räknare eller tabeller får inte användas i detta prov! Gripenberg. Skriv
x 1(t) = x 2 (t) x 2(t) = x 1 (t)
Differentialekvationer II Modellsvar till räkneövning 4 16.4. 218 (kl 12-14 B222) 1. Lös det linjära homogena DE-systemet x 1(t) = x 2 (t) x 2(t) = x 1 (t) med matrismetoden. Påminnelse: egenvärden och
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 32 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-10-10 Skrivtid: 9.00 14.00. Hjälpmedel:
Reglerteori. Föreläsning 8. Torkel Glad
Reglerteori. Föreläsning 8 Torkel Glad Föreläsning 8 Torkel Glad Februari 2018 2 Sammanfattning av föreläsning 7 H 2 och H syntes. Gör W u G wu, W S S, W T T små. H 2 : Minimera ( W u G wu 2 2 + W SS
6. Stabilitet. 6. Stabilitet
6. Stabilitet 6. Stabilitet Såsom framgått i de två inledande kapitlen förutsätter en lyckad regulatordesign kompromisser mellan prestanda ( snabbhet ) och stabilitet. Ett system som oreglerat är stabilt
Lösningsförslag till tentamen i Reglerteknik (TSRT19)
Lösningsförslag till tentamen i Reglerteknik (TSRT9) 26-3-6. (a) Systemet är stabilt och linjärt. Därmed kan principen sinus in, sinus ut tillämpas. Givet insignalen u(t) sin (t) sin ( t) har vi G(i )
Reglerteknik 3. Kapitel 7. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist
eglerteknik 3 Kapitel 7 Köp bok och övningshäfte på kårbokhandeln Lektion 3 kap 7 Modellering Identifiering Teoretisk modellering Man använder grundläggande fysikaliska naturlagar och deras ekvationer
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Torsdag 5 december 206, kl. 3.00-6.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Fredrik Olsson, tel. 08-47 7840. Fredrik kommer och svarar på frågor
1 Diagonalisering av matriser
1 Diagonalisering av matriser Kan alla matriser diagonaliseras? Nej, det kan de inte. Exempel: ẋ 1 = x 1 + 2x 2, Integrerande faktor: e t x 2 = x 2 x 2 (t) = c 2 e t och ẋ 1 x 1 = 2c 2 e t. e t x 1 e t
Den enkla standardkretsen. Föreläsning 2. Exempel: ugn. Av/på-reglering. PID-reglering Processmodeller. r e u y
Föeläsning 2 Den enkla standadketsen PID-egleing Pocessmodelle e Reglato Pocess Negativ åtekoppling fån mätsignalen Reglaton bestämme stsignalen tifån eglefelet (contol eo)e= Rekommendead läsning: Feedback
6. Stabilitet. 6. Stabilitet. 6. Stabilitet. 6.1 Stabilitetsdefinitioner. 6. Stabilitet. 6.2 Poler och stabilitet. 6.1 Stabilitetsdefinitioner
Såsom framgått i de två inledande kapitlen förutsätter en lyckad regulatordesign kompromisser mellan prestanda ( snabbhet ) och stabilitet. Ett system som oreglerat är stabilt kan bli instabilt genom för
Biokemi. SF1538 Projekt i simuleringsteknik. Skolan för teknikvetenskap. Introduction. Michael Hanke. Kemiska reaktioner
1 (35) : Biokemi Skolan för teknikvetenskap SF1538 Projekt i simuleringsteknik 2 (35) Innehåll : 1 2 3 : 4 5 6 7 8 3 (35) Introduktion : Biokemiska är basen till livet Undersökningen av reaktionskedjor
Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.
Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x
, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1.
Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B Lördagen den januari, kl 9-4 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är
6. Stabilitet. 6. Stabilitet. 6. Stabilitet. 6.1 Stabilitetsdefinitioner. 6. Stabilitet. 6.2 Poler och stabilitet. 6.1 Stabilitetsdefinitioner
Såsom framgått i de två inledande kapitlen förutsätter en lyckad regulatordesign kompromisser mellan prestanda ( snabbhet ) och stabilitet. Ett system som oreglerat är stabilt kan bli instabilt genom för
AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 3 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET
Martin Enqvist Överföringsfunktioner, poler och stegsvar Reglerteknik Institutionen för systemteknik Linköpings universitet Repetition: Reglerproblemet 3(8) Repetition: Öppen styrning & återkoppling 4(8)
dx/dt x y + 2xy Ange även ekvationerna för de mot de stationära punkterna svarande linjariserade systemen.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA13 Differentialekvationer och transformmetoder
Lösningsförslag, tentamen, Differentialekvationer och transformer II, del 1, för CTFYS2 och CMEDT3, SF1629, den 19 oktober 2011, kl. 8:00 13:00.
Lösningsförslag, tentamen, Differentialekvationer och transformer II, del, för CTFYS2 och CMEDT3, SF629, den 9 oktober 20, kl. 8:00 3:00 av 8 3 poäng. Svar: i. sant, ii. falskt, iii. sant, iv. sant, v.
IV, SF1636(5B1210,5B1230).
Lösningar till tentamensskrivning i Matematik I, F636(5B,5B3) Tisdagen den 9 augusti 8, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
Kan vi beskriva ett system utan någon fysikalisk kännedom om systemet?
Kan vi beskriva ett system utan någon fysikalisk kännedom om systemet? 1 Om svaret på frågan är ja så öppnar sig möjligheten att skapa en generell verktygslåda som fungerar för analys och manipulering
STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER
Armin Halilovic: EXTRA ÖVNINGAR, SF676 STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Innehåll Stabilitet för en kritisk punkt (grundbegrepp) Stabilitet för ett linjärt homogent system
Reglering av inverterad pendel
Reglerteknik grk Lab 3 Reglering av inverterad pendel Denna version: 9 mars 2012 REGLERTEKNIK Namn: Personnr: AUTOMATIC LINKÖPING CONTROL Datum: Godkänd: Innehåll 1 Inledning 1 2 Systembeskrivning 3 3
Lösningsförslag TSRT09 Reglerteori
Lösningsförslag TSRT9 Reglerteori 217-3-17 1. (a) Underdeterminanter 1 s + 2, 1 s + 3, 1 s + 2, 1 (s + 3)(s 3), s 4 (s + 3)(s 3)(s + 2), vilket ger MGN dvs ordningstal 3. P (s) = (s + 3)(s 3)(s + 2), (b)
1. Lös ut p som funktion av de andra variablerna ur sambandet
Matematiska institutionen Stockholms universitet Avd matematik Eaminator: Torbjörn Tambour Tentamensskrivning i Matematik för kemister K den 0 december 2003 kl 9.00-4.00 LÖSNINGAR. Lös ut p som funktion
TENTAMEN I TSRT91 REGLERTEKNIK
SAL: TER2 TENTAMEN I TSRT9 REGLERTEKNIK TID: 29-4-23 kl. 4: 9: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 3-28393 BESÖKER SALEN: cirka
Reglerteori. Föreläsning 4. Torkel Glad
Reglerteori. Föreläsning 4 Torkel Glad Föreläsning 1 Torkel Glad Januari 2018 2 Sammanfattning av Föreläsning 3 Kovariansfunktion: R u (τ) = Eu(t)u(t τ) T Spektrum: Storleksmått: Vitt brus: Φ u (ω) =
Analys av jämviktslägen till differentialekvationer
Analys 360 En webbaserad analyskurs Ordinära differentialekvationer Analys av jämviktslägen till differentialekvationer Anders Källén MatematikCentrum LTH anderskallen@gmail.com Analys av jämviktslägen
Reglerteknik AK, FRTF05
Institutionen för REGLERTEKNIK Reglerteknik AK, FRTF05 Tentamen 3 april 208 kl 4 9 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar
Tentamen i Reglerteknik. 7,5 hp varav tentamen ger 4,5 hp
KTH-ICT-ES Tentamen i Reglerteknik. 7,5 hp varav tentamen ger 4,5 hp Kurskod: IE304 Datum: 0-03-4 Tid: 9.00-3.00 Examinatorer: Jan Andersson och Leif Lindbäck Tentamensinformation: Hjälpmedel: Bilagd formelsamling,
Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner. 2? Det är komplicerat att
Egensystem Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner Potens av matris 2 6 Ex Givet matrisen A =, vad är A 2? Det är komplicerat att beräkna högre
Lösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00.
Lösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00. Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Bonus
(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:
= 1, fallet x > 0 behandlas pga villkoret. x:x > 1
Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B00 Torsdagen den 0 januari 00, kl 400-900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och
Tentamen SF1633, Differentialekvationer I, den 23 oktober 2017 kl
Matematiska Institutionen, KTH Tentamen SF633, Differentialekvationer I, den 23 oktober 27 kl 8.- 3.. Examinator: Pär Kurlberg OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. För full poäng krävs
Reglerteknik. Kurskod: IE1304. Datum: 12/ Tid: Examinator: Leif Lindbäck ( )
Tentamen i Reglerteknik (IE1304) 12/3-2012 ES, Elektroniksystem Reglerteknik Kurskod: IE1304 Datum: 12/3-2012 Tid: 09.00-13.00 Examinator: Leif Lindbäck (7904425) Hjälpmedel: Formelsamling, dimensioneringsbilaga,
y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen
UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook
y z 3 = 0 z 5 16 1 i )
ATM-Matematik Mikael Forsberg 734-433 Sören Hector 7-46686 Rolf Källström 7-6939 Ingenjörer, Lantmätare och Distansstuderande, mfl. Linjär Algebra ma4a 4 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 14129 DEL A 1 (a) Bestäm linjen genom punkterna A = (,, 1) och B = (2, 4, 1) (1 p) (b) Med hjälp av projektion kan man bestämma det kortaste avståndet
Övningar i Reglerteknik
Övningar i Reglerteknik Stabilitet hos återkopplade system Ett system är stabilt om utsignalen alltid är begränsad om insignalen är begränsad. Linjära tidsinvarianta system är stabila precis då alla poler
Lösningsförslag TSRT09 Reglerteori
Lösningsförslag TSRT9 Reglerteori 8-8-8. (a) RGA(G()) = med y. ( ), dvs, vi bör para ihop u med y och u s+ (b) Underdeterminanter till systemet är (s+)(s+3), s+, s+3, s+, s (s+)(s+)(s+3). MGN är p(s) =
TENTAMEN Modellering av dynamiska system 5hp
TENTAMEN Modellering av dynamiska system 5hp - 0 Tid: måndag 8 Maj 0, kl 4-9 Plats: Polacksbacken Ansvarig lärare: Bengt Carlsson, tel 070-674590. Bengt kommer till tentasalen ca kl 6 och besvarar ev frågor.
Lösningsförslag TSRT09 Reglerteori
Lösningsförslag TSRT9 Reglerteori 6-8-3. (a Korrekt hopparning: (-C: Uppgiften som beskrivs är en typisk användning av sensorfusion, där Kalmanfiltret är användbart. (-D: Vanlig användning av Lyapunovfunktioner.
Reglerteori. Föreläsning 10. Torkel Glad
Reglerteori. Föreläsning 10 Torkel Glad Föreläsning 10 Torkel Glad Februari 2018 2 Sammanfattning av föreläsning 9. Cirkelkriteriet Linjärt system G(s) återkopplat med en statisk olinjäritet f(x): f(0)
Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL
Lösningar till Tentamen i Reglerteknik AK EL000/EL00/EL20 20-0-3 a. Överföringsfunktionen från u(t) till y(t) ges av Utsignalen ges av G(s) = y(t) = G(iω) A sin(ωt + ϕ + arg G(iω)) = 2 sin(2t). Identifierar
= = i K = 0, K =
ösningsförslag till tentamensskrivning i SF1633, Differentialekvationer I Tisdagen den 14 augusti 212, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till
Preliminärt lösningsförslag
Preliminärt lösningsförslag v4, 9 augusti 4 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 kl 43-93 Hjälpmedel : Inga hjälpmedel
Determinanter, egenvectorer, egenvärden.
Determinanter, egenvectorer, egenvärden. Determinanter av kvadratiska matriser de nieras recursivt: först för matriser, sedan för matriser som är mest användbara. a b det = ad bc c d det a a a a a a a
Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n.
Övningar Linjära rum 1 Låt v 1,, v m vara vektorer i R n Ge bevis eller motexempel till följande påståenden Satser ur boken får användas a) Om varje vektor i R n kan skrivas som linjär kombination av v