TSRT91 Reglerteknik: Föreläsning 10
|
|
- Jonathan Adam Karlsson
- för 6 år sedan
- Visningar:
Transkript
1 TSRT91 Reglerteknik: Föreläsning 10 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet
2 Föreläsningar 1 / 15 1 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet. PID-reglering. 3 Specifikationer. Rotort. 4 Nyquistkriteriet. Frekvensbeskrivning. 5 Tidsdiskreta system. 6 Specifikationer i frekvensplanet. 7 Kompensering i bodediagram. 8 Bodes integralsats. Känslighet. Robusthet. 9 Regulatorstrukturer. Tillståndsbeskrivning. 10 Lösningar. Stabilitet. Styr- och observerbarhet. 11 Återkoppling, polplacering, LQ-optimering. 12 Rekonstruktion av tillstånd, observatörer. 13 Tillståndsåterkoppling (forts). Sammanfattning.
3 Repetition: Tillståndsbeskrivning 2 / 15 Tillståndsbeskrivning: ẋ = Ax + Bu y = Cx + Du x är tillståndsvektorn (dim x = n) A, B, C och D är matriser I denna kurs är u och y oftast skalärer B kolonnvektor, C radvektor, D skalär D = 0 är vanligt
4 Repetition: Styrbar kanonisk form 3 / 15 Systemet med överföringsfunktionen G(s) = b 1 s n b n 1 s + b n s n + a 1 s n a n 1 s + a n kan beskrivas på tillståndsform som a 1 a 2... a n 1 a n ẋ = x + 0 u y = ( b 1 b 2... b n ) x
5 Repetition: Observerbar kanonisk form 4 / 15 Systemet med överföringsfunktionen G(s) = b 1 s n b n 1 s + b n s n + a 1 s n a n 1 s + a n kan beskrivas på tillståndsform som a b 1 a b 2 ẋ = x +. u a n b n 1 a n b n y = ( ) x
6 Linjärisering 5 / 15 Betrakta ett olinjärt system ẋ = f(x, u) y = h(x, u) med jämviktspunkten x 0, u 0, y 0 : 0 = f(x 0, u 0 ) y 0 = h(x 0, u 0 ) Låt δ x = x x 0 δ u = u u 0 δ y = y y 0
7 Linjärisering... 6 / 15 Linjäriserad tillståndsbeskrivning: δ x = Aδ x + Bδ u δ y = Cδ x + Dδ u (god approximation för små δ x, δ u, δ y ) Här är A = f x (x 0, u 0 ) B = f u (x 0, u 0 ) C = h x (x 0, u 0 ) D = h u (x 0, u 0 ) (jacobianer med i, j-element fi x j )
8 Lösning av tillståndsekvationerna 7 / 15 Tillståndsbeskrivningen ẋ(t) = Ax(t) + Bu(t), x(0) = x 0 har lösningen där x(t) = e At x 0 + t 0 e A(t τ) Bu(τ)dτ e At = I + At + A2 t Ak t k 2! k! = L 1{( si A) 1 } +... är lösningen till d Φ(t) = AΦ(t), dt Φ(0) = I
9 Stabilitet 8 / 15 Ett system är asymptotiskt stabilt om för varje val av x 0. ẋ(t) = Ax(t), x(0) = x 0 lim x(t) = 0 t Ett linjärt system är asymptotiskt stabilt om och endast om alla egenvärden till dess A-matris har strikt negativa realdelar.
10 Stabilitet... 9 / 15 Ett system är insignal-utsignalstabilt om en begränsad insignal ger en begränsad utsignal. Ett linjärt system är insignal-utsignalstabilt om alla egenvärden till dess A-matris har strikt negativa realdelar.
11 Exempel 10 / 15 Betrakta systemet ẋ(t) = y(t) = ( 1 ( ) ( x(t) + u(t) 0 2 0) 0 ) x(t) Asymptotiskt stabilt? Insignal-utsignalstabilt? Kan vi påverka båda tillstånden med u? Kan vi se bidrag från båda tillstånden i y?
12 Styrbarhet 11 / 15 En tillståndsvektor x är styrbar om det finns en insignal som för tillståndet från origo till x på ändlig tid. Ett system är styrbart om alla tillståndsvektorer är styrbara. Mängden av styrbara tillståndsvektorer spänns upp av kolonnerna i matrisen S = ( B AB... A n 1 B ) En insignal S kvadratisk, systemet styrbart omm det S 0
13 Observerbarhet 12 / 15 En tillståndsvektor x 0 är icke observerbar om utsignalen är identiskt lika med noll då initialvärdet är x och insignalen är identiskt lika med noll. Ett system är observerbart om det saknar icke observerbara tillståndsvektorer. Mängden av icke observerbara tillståndsvektorer är nollrummet till matrisen C CA O =. CA n 1 En utsignal O kvadratisk, systemet observerbart omm det O 0
14 Minimal realisation 13 / 15 En tillståndsbeskrivning av en given överföringsfunktion är en minimal realisation om det inte finns någon annan tillståndsbeskrivning av samma överföringsfunktion med lägre dimension hos tillståndsvektorn. (Det ska alltså inte finnas några onödiga tillstånd) En tillståndsbeskrivning är en minimal realisation av en överföringsfunktion om och endast om den är både styroch observerbar.
15 Utblick över resten av kursen 14 / 15 Tillståndsåterkoppling med u = Lx + l 0 r. (Styrbart system Polerna till det slutna systemet kan väljas godtyckligt) Tillståndsskattning med observatör ˆx = Aˆx + Bu + K(y C ˆx) (Observerbart system Skattningsfelet kan alltid fås att avta mot noll) Återkoppling från skattade tillstånd Linjärkvadratisk reglering och kalmanfilter
16 Sammanfattning 15 / 15 Tillståndsbeskrivning: Alternativt (och intuitivt) sätt att beskriva ett linjärt system Lösning av tillståndsekvationer Asymptotisk stabilitet: Alla A-matrisens egenvärden har strikt negativa realdelar Styrbarhet: Man vill kunna styra systemet vart som helst... Observerbarhet: Man vill kunna se effekter av alla tillståndsvariabler i utsignalen... Minimal realisation: Inga onödiga tillståndsvariabler...
17
TSRT91 Reglerteknik: Föreläsning 11
Föreläsningar / 5 TSRT9 Reglerteknik: Föreläsning Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
TSRT91 Reglerteknik: Föreläsning 12
TSRT91 Reglerteknik: Föreläsning 12 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 15 1 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
TSRT91 Reglerteknik: Föreläsning 9
TSRT91 Reglerteknik: Föreläsning 9 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 20 1 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
TSRT09 Reglerteori. Sammanfattning av Föreläsning 1. Sammanfattning av Föreläsning 1, forts. Sammanfattning av Föreläsning 1, forts.
Reglerteori 217, Föreläsning 2 Daniel Axehill 1 / 32 Sammanfattning av Föreläsning 1 TSRT9 Reglerteori Föreläsning 2: Beskrivning av linjära system Daniel Axehill Reglerteknik, ISY, Linköpings Universitet
Föreläsning 9. Reglerteknik AK. c Bo Wahlberg. 30 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik
Föreläsning 9 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 30 september 2013 Tillståndsåterkoppling Antag att vi återkopplar ett system med hjälp av u
TSRT91 Reglerteknik: Föreläsning 5
TSRT9 Reglerteknik: Föreläsning 5 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar / 23 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Reglerteknik I: F10. Tillståndsåterkoppling med observatörer. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik
Reglerteknik I: F10 Tillståndsåterkoppling med observatörer Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 14 2 / 14 F9: Frågestund F9: Frågestund 1) När ett system är observerbart då
Föreläsning 8. Reglerteknik AK. c Bo Wahlberg. 27 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik
Föreläsning 8 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 27 september 2013 Introduktion Förra gången: Tillståndsmodell: ẋ(t) = Ax(t) + Bu(t), x(0) =
TSRT91 Reglerteknik: Föreläsning 4
TSRT91 Reglerteknik: Föreläsning 4 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 16 1 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
TSRT91 Reglerteknik: Föreläsning 2
Föreläsningar / TSRT9 Reglerteknik: Föreläsning 2 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Industriell reglerteknik: Föreläsning 2
Industriell reglerteknik: Föreläsning 2 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 33 1 Sekvensstyrning: Funktionsdiagram, Grafcet. 2 Grundläggande
Välkomna till TSRT19 Reglerteknik Föreläsning 10
Välkomna till TSRT19 Reglerteknik Föreläsning 10 Sammanfattning av föreläsning 9 Tillståndsbeskrivningar Överföringsfunktion vs tillståndmodell Stabilitet Styrbarhet och observerbarhet Sammanfattning föreläsning
Fredrik Lindsten Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY)
Innehåll föreläsning 9 2 Reglerteknik, föreläsning 9 Tillståndsbeskrivning, styr- och observerbarhet Fredrik Lindsten fredrik.lindsten@liu.se Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik
TSRT91 Reglerteknik: Föreläsning 4
Föreläsningar 1 / 16 TSRT91 glerteknik: Föreläsning 4 Martin Enqvist glerteknik Institutionen för systemteknik Linköpings universitet 1 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Föreläsning 7. Reglerteknik AK. c Bo Wahlberg. 26 september Avdelningen för Reglerteknik Skolan för elektro- och systemteknik
Föreläsning 7 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik Skolan för elektro- och systemteknik 26 september 2013 Introduktion Förra gången: Känslighet och robusthet Dagens program: Repetion
REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen , kl
REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL20 Kortfattade lösningsförslag till tentamen 202 2 7, kl. 9.00 4.00. (a) (i) Överföringsfunktionen ges av G(s)U(s) = G 0 (s)u(s)+g (s)(u(s)+g 0 (s)u(s)) = [G
1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Onsdag 22 augusti 2018, kl
Tentamenskod Klockslag för inlämning Utbildningsprogram Bordnummer RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Onsdag 22 augusti 208, kl. 4.00-7.00 Plats: Bergsbrunnagatan 5, sal Ansvarig lärare: Hans
TSIU61: Reglerteknik. Tillståndsbeskrivning. Lite om tillstånd och återkoppling
TSIU61 Föreläsning 10 HT1 2017 1 / 24 Innehåll föreläsning 10 TSIU61: Reglerteknik Föreläsning 10 Lite om tillstånd och återkoppling gustafhendeby@liuse ˆ Repetition av system ˆ Överföringsfunktion till
1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Onsdag 23 augusti 2017, kl
Tentamenskod Klockslag för inlämning Utbildningsprogram Bordnummer RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Onsdag 23 augusti 207, kl. 4.00-7.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Hans
TENTAMEN I TSRT91 REGLERTEKNIK
SAL: TER2 TENTAMEN I TSRT9 REGLERTEKNIK TID: 29-4-23 kl. 4: 9: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 3-28393 BESÖKER SALEN: cirka
Reglerteori. Föreläsning 4. Torkel Glad
Reglerteori. Föreläsning 4 Torkel Glad Föreläsning 1 Torkel Glad Januari 2018 2 Sammanfattning av Föreläsning 3 Kovariansfunktion: R u (τ) = Eu(t)u(t τ) T Spektrum: Storleksmått: Vitt brus: Φ u (ω) =
Reglerteori. Föreläsning 11. Torkel Glad
Reglerteori. Föreläsning 11 Torkel Glad Föreläsning 11 Torkel Glad Februari 2018 2 Sammanfattning av föreläsning 10. Fasplan Linjärisering av ẋ = f(x) kring jämviktspunkt x o, (f(x o ) = 0) f 1 x 1...
Figure 1: Blockdiagram. V (s) + G C (s)y ref (s) 1 + G O (s)
Övning 9 Introduktion Varmt välkomna till nionde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Känslighetsfunktionen y ref + e u F (s) G(s) v + + y Figure : Blockdiagram Känslighetsfunktionen
TSRT91 Reglerteknik: Föreläsning 1
1 / 27 Diverse TSRT91 Reglerteknik: Föreläsning 1 Föreläsare och examinator: Martin Enqvist Martin Enqvist Lektionsassistent: Yuxin Zhao Kursrum i Lisam Reglerteknik Institutionen för systemteknik Linköpings
Välkomna till TSRT15 Reglerteknik Föreläsning 12
Välkomna till TSRT15 Reglerteknik Föreläsning 12 Sammanfattning av föreläsning 11 Återkoppling av skattade tillstånd Integralverkan Återblick på kursen Sammanfattning föreläsning 11 2 Tillstånden innehåller
TSRT91 Reglerteknik: Föreläsning 1
TSRT91 Reglerteknik: Föreläsning 1 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Diverse 1 / 27 Föreläsare och examinator: Martin Enqvist Lektionsassistent: Angela Fontan
Lösningsförslag till tentamen i Reglerteknik fk M (TSRT06)
Lösningsförslag till tentamen i Reglerteknik fk M (TSRT6) 216-1-15 1. (a) Känslighetsfunktionen S(iω) beskriver hur systemstörningar och modellfel påverkar utsignalen från det återkopplade systemet. Oftast
Välkomna till TSRT19 Reglerteknik Föreläsning 12
Välkomna till TSRT19 Reglerteknik Föreläsning 12 Sammanfattning av föreläsning 11 Integralverkan Återkoppling av skattade tillstånd Återblick på kursen LABFLYTT! 2 PGA felbokning datorsal så måste ett
A. Stationära felet blir 0. B. Stationära felet blir 10 %. C. Man kan inte avgöra vad stationära felet blir enbart med hjälp av polerna.
Man använder en observatör för att skatta tillståndsvariablerna i ett system, och återkopplar sedan från det skattade tillståndet. Hur påverkas slutna systemets överföringsfunktion om man gör observatören
Reglerteknik AK, FRT010
Institutionen för REGLERTEKNIK Reglerteknik AK, FRT Tentamen januari 27 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
TSRT09 Reglerteori. Sammanfattning av föreläsning 10. Fasplan. Olika typer av jämviktspunkter. Samband linjärt olinjärt: nära jämviktspunkt
TSRT9 Reglerteori Föreläsning : Exakt linjärisering och prestandagränser Daniel Axehill Reglerteknik, ISY, Linköpings Universitet Reglerteori 27, Föreläsning Daniel Axehill / 32 Sammanfattning av föreläsning
TENTAMEN I REGLERTEKNIK Y/D
TENTAMEN I REGLERTEKNIK Y/D SAL: T1, KÅRA TID: 9 juni 2017, klockan 14-19 KURS: TSRT12, Reglerteknik Y/D PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):
Fredrik Lindsten Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY)
Innehåll föreläsning 12 2 Reglerteknik, föreläsning 12 Sammanfattning av kursen Fredrik Lindsten fredrik.lindsten@liu.se Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY) 1. Sammanfattning
Lösningsförslag till tentamen i Reglerteknik (TSRT19)
Lösningsförslag till tentamen i Reglerteknik (TSRT9) 26-3-6. (a) Systemet är stabilt och linjärt. Därmed kan principen sinus in, sinus ut tillämpas. Givet insignalen u(t) sin (t) sin ( t) har vi G(i )
TSIU61: Reglerteknik
TSIU61: Reglerteknik Föreläsning 11 Tidsdiskret implementering Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 11 Gustaf Hendeby HT1 2017 1 / 17 Innehåll föreläsning 11 ˆ Sammanfattning av föreläsning
Föreläsning 14-16, Tillståndsmodeller för kontinuerliga system
Föreläsning 14-16, Tillståndsmodeller för kontinuerliga system Reglerteknik, IE1304 1 / 50 Innehåll Kapitel 141 Introduktion till tillståndsmodeller 1 Kapitel 141 Introduktion till tillståndsmodeller 2
Reglerteori. Föreläsning 3. Torkel Glad
Reglerteori. Föreläsning 3 Torkel Glad Föreläsning 1 Torkel Glad Januari 2018 2 Sammanfattning av föreläsning 2 Det mesta av teorin för envariabla linjära system generaliseras lätt till ervariabla (era
Olinjära system (11, 12.1)
Föreläsning 2 Olinjära system (11, 121) Introduktion Vad menas med ett olinjärt system? Betrakta ett system där insignalerna u 1 (t) och u 2 (t) ger utsignalerna y 1 (t) respektive y 2 (t), d v s och u
Exempel: DC-servo med styrsignalmättning DEL III: OLINJÄR REGLERTEORI. DC-servo forts.: Rampsvar och sinussvar
Reglerteori 6, Föreläsning 8 Daniel Axehill / 6 Sammanfattning av föreläsning 7 TSRT9 Reglerteori Föreläsning 8: Olinjäriteter och stabilitet Daniel Axehill Reglerteknik, ISY, Linköpings Universitet H
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Tisdag 23 oktober 208, kl. 4.00-7.00 Plats: Polacksbackens skrivsal Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl
Reglerteknik AK. Tentamen kl
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 20 0 20 kl 8.00 3.00 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
TSRT21 Dynamiska system och reglering Välkomna till Föreläsning 10
TSRT21 Dynamiska system och reglering Välkomna till Föreläsning 10 Johan Löfberg Avdelningen för Reglerteknik Institutionen för systemteknik johan.lofberg@liu.se Kontor: B-huset, mellan ingång 27 och 29
Överföringsfunktion 21
Vad är reglerteknik? 8 Analys och styrning av dynamiska system Välj styrsignalen (u(t)) så att systemet (mätsignalen y(t)) uppför sig som önskat (referenssignalen r(t)) trots störningar (v(t)) Vi betraktar
Reglerteori, TSRT09. Föreläsning 8: Olinjäriteter och stabilitet. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet
Reglerteori, TSRT09 Föreläsning 8: Olinjäriteter och stabilitet Reglerteknik, ISY, Linköpings Universitet Sammanfattning av föreläsning 7 2(27) H 2 - och H - syntes. Gör W u G wu, W S S, W T T små. H 2
Lösningar till tentamen i Reglerteknik I 5hp (a) Statiska förstärkningen = (0), och ( )= [ ( )].
Lösningar till tentamen i Reglerteknik I 5hp --5. (a) Statiska förstärkningen (), och ( ) [ ( )]. ( ) [ 4 +4 ] +4 + 4 + () 5 (b) Systemet står på observerbar kanonisk form, så vifår direkt att ( ) 3 +5.
TENTAMEN: DEL A Reglerteknik I 5hp
TENTAMEN: DEL A Reglerteknik I 5hp Tid: Torsdag 7 december 205, kl. 8.00-.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Hans Norlander, tel. 08-473070. Tillåtna hjälpmedel: ursboken(glad-ljung), miniräknare,
TENTAMEN Reglerteknik I 5hp
TENTAMEN Reglerteknik I 5hp Tid: Tisdag 8 juni 00, kl 8.00 3.00 Plats: Polacksbackens skrivsal Ansvarig lärare: Kjartan Halvorsen, tel 08-473070. Kjartan kommer och svarar på frågor ungefär kl 9.30 och
REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL En tillståndsmodell ges t.ex. av den styrbara kanoniska formen: s 2 +4s +1.
REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL20 Lösningsförslag till tentamen 2009 2 5, kl. 4.00 9.00. (a) Laplacetransform av () ger s 2 Y (s)+4sy (s)+y (s) =U(s), och överföringsfunktionen blir G(s)
Reglerteknik AK, FRTF05
Institutionen för REGLERTEKNIK Reglerteknik AK, FRTF05 Tentamen 3 april 208 kl 4 9 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar
REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120
REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL0 Kortfattade lösningsförslag till tentamen 00 0 4, kl. 4.00 9.00. (a) Stegsvaret ges av y(t) =K( e t/t ). Från slutvärdet fås K =, och tiskonstanten kan avläsas
Lösningsförslag till tentamen i Reglerteknik Y/D (TSRT12)
Lösningsförslag till tentamen i Reglerteknik Y/D (TSRT) 0-03-8. (a) Nolställen: - (roten till (s + ) 0 ) Poler: -, -3 (rötterna till (s + )(s + 3) 0) Eftersom alla poler har strikt negativ realdel är systemet
REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl
REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen 2009 12 15, kl. 14.00 19.00 Hjälpmedel: Kursboken i Reglerteknik AK (Glad, Ljung: Reglerteknik eller motsvarande) räknetabeller, formelsamlingar
TENTAMEN I TSRT09 REGLERTEORI
SAL: Egypten TENTAMEN I TSRT09 REGLERTEORI TID: 2016-08-23 kl. 14:00 18:00 KURS: TSRT09 Reglerteori PROVKOD: DAT1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Daniel Axehill, tel. 013-284042, 0708-783670
Reglerteknik AK. Tentamen 24 oktober 2016 kl 8-13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 24 oktober 26 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
TSRT09 Reglerteori. Sammanfattning av Föreläsning 3. Sammanfattning av Föreläsning 3, forts. Sammanfattning av Föreläsning 3, forts.
Reglerteori 2016, Föreläsning 4 Daniel Axehill 1 / 18 Sammanfattning av Föreläsning 3 Kovariansfunktion: TSRT09 Reglerteori Föreläsning 4: Kalmanfiltret & det slutna systemet Daniel Axehill Reglerteknik,
TENTAMEN I REGLERTEKNIK Y TSRT12 för Y3 och D3. Lycka till!
TENTAMEN I REGLERTEKNIK Y TSRT2 för Y3 och D3 TID: 7 mars 25, klockan 4-9. ANSVARIGA LÄRARE: Mikael Norrlöf, tel 28 27 4, Anna Hagenblad, tel 28 44 74 TILLÅTNA HJÄLPMEDEL: Läroboken Glad-Ljung: Reglerteknik,
Lösningsförslag TSRT09 Reglerteori
Lösningsförslag TSRT9 Reglerteori 6-8-3. (a Korrekt hopparning: (-C: Uppgiften som beskrivs är en typisk användning av sensorfusion, där Kalmanfiltret är användbart. (-D: Vanlig användning av Lyapunovfunktioner.
Reglerteori. Föreläsning 8. Torkel Glad
Reglerteori. Föreläsning 8 Torkel Glad Föreläsning 8 Torkel Glad Februari 2018 2 Sammanfattning av föreläsning 7 H 2 och H syntes. Gör W u G wu, W S S, W T T små. H 2 : Minimera ( W u G wu 2 2 + W SS
REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl
REGLERTEKNIK KTH REGLERTEKNIK AK EL/EL/EL2 Tentamen 2 2 4, kl. 4. 9. Hjälpmedel: Kursboken i glerteknik AK (Glad, Ljung: glerteknik eller motsvarande) räknetabeller, formelsamlingar och räknedosa. Observeraattövningsmaterial
Reglerteknik AK. Tentamen 9 maj 2015 kl 08 13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 9 maj 5 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt 5 poäng.
Reglerteori, TSRT09. Föreläsning 4: Kalmanfiltret & det slutna systemet. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet
Reglerteori, TSRT09 Föreläsning 4: Kalmanfiltret & det slutna systemet Reglerteknik, ISY, Linköpings Universitet Sammanfattning av Föreläsning 3 2(19) Kovariansfunktion: Spektrum: R u (τ) = Eu(t)u(t τ)
TENTAMEN Reglerteknik 3p, X3
OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller i första hand för Reglerteknik 3p. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans med
TENTAMEN I REGLERTEKNIK Y/D
TENTAMEN I REGLERTEKNIK Y/D SAL: TER3 TID: 8 augusti 8, klockan 8-3 KURS: TSRT, Reglerteknik Y/D PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD): 6 ANSVARIG
TENTAMEN: DEL A Reglerteknik I 5hp
TENTAMEN: DEL A Reglerteknik I 5hp Tid: Torsdag 28 april 20, kl. 8.00-3.00 Plats: Gimogatan 4 sal 2 Ansvarig lärare: Hans Norlander, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 9.30 och
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Tisdag 8 oktober 206, kl. 2.00-5.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Hans Rosth, tel. 08-47070. Hans kommer och svarar på frågor ungefär kl.0.
1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Torsdag 15 december 2016, kl
Tentamenskod Klockslag för inlämning Utbildningsprogram Bordnummer 1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Torsdag 15 december 2016, kl. 8.00-11.00 Plats: Fyrislundsgatan 80, sal 1 Ansvarig lärare:
TENTAMEN I REGLERTEKNIK Y/D
TENTAMEN I REGLERTEKNIK Y/D SAL: TER, TER 2, TER E TID: 4 mars 208, klockan 8-3 KURS: TSRT2, Reglerteknik Y/D PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):
TENTAMEN: DEL A Reglerteknik I 5hp
TENTAMEN: DEL A Reglerteknik I 5hp Tid: Torsdag 9 mars 05, kl. 8.00-.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Hans Norlander, tel. 08-473070. Tillåtna hjälpmedel: Kursboken (Glad-Ljung), miniräknare,
1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Torsdag 17 mars 2016, kl
Tentamenskod Klockslag för inlämning Utbildningsprogram Bordnummer 1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Torsdag 17 mars 2016, kl. 8.00-11.00 Plats: Fyrislundsgatan 80, sal 1 Ansvarig lärare:
Sammanfattning TSRT mars 2017
Sammanfattning TSRT2 3 mars 207 Innehåll Överföringsfunktion 4 2 Stegsvar, :a och 2:a ordningens system 4 2. Första ordningens system...................... 4 2.2 2:a ordningens system, poler.....................
Reglerteori. Föreläsning 5. Torkel Glad
Reglerteori. Föreläsning 5 Torkel Glad Föreläsning 1 Torkel Glad Januari 2018 2 Sammanfattning av Föreläsning 4 Kalmanlter Optimal observatör Kräver stokastisk modell av störningarna Kräver lösning av
Reglering av inverterad pendel
Reglerteknik grk Lab 3 Reglering av inverterad pendel Denna version: 9 mars 2012 REGLERTEKNIK Namn: Personnr: AUTOMATIC LINKÖPING CONTROL Datum: Godkänd: Innehåll 1 Inledning 1 2 Systembeskrivning 3 3
ÖVNINGSTENTAMEN Modellering av dynamiska system 5hp
ÖVNINGSTENTAMEN Modellering av dynamiska system 5hp Tid: Denna övn.tenta gås igenom 25 maj (5h skrivtid för den riktiga tentan) Plats: Ansvarig lärare: Bengt Carlsson Tillåtna hjälpmedel: Kurskompendiet
TENTAMEN I TSRT91 REGLERTEKNIK
SAL: TER2 TENTAMEN I TSRT9 REGLERTEKNIK TID: 29--7 kl. 8: 3: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 3-28393 BESÖKER SALEN: cirka
TENTAMEN I REGLERTEKNIK I
TENTAMEN I REGLERTEKNIK I SAL: TER2 TID: 6 mars 2, klockan 8-3 KURS: TSRT9, Reglerteknik I PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD): 9 ANSVARIG
Reglerteknik AK. Tentamen 27 oktober 2015 kl 8-13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 27 oktober 205 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
Figur 2: Bodediagrammets amplitudkurva i uppgift 1d
Lösningsförslag till tentamen i Reglerteknik Y (för Y och D) (TSRT) 008-06-0. (a) Vi har systemet G(s) (s3)(s) samt insignalen u(t) sin(t). Systemet är stabilt ty det har sina poler i s 3 samt s. Vi kan
En allmän linjär återkoppling (Varför inför vi T (s)?)
TSRT9 Reglerteknik Föreläsning 3 Inger Erlander Klein REGLERTEKNIK Avdelningen för Reglerteknik Institutionen för systemteknik inger.erlander.klein@liu.se Tel: 28665 Kontor: B-huset ingång 23-25 www.control.isy.liu.se/student/tsrt9/vt/
Flervariabel reglering av tanksystem
Flervariabel reglering av tanksystem Datorövningar i Reglerteori, TSRT09 Denna version: oktober 2008 1 Inledning Målet med detta dokument är att ge möjligheter att studera olika aspekter på flervariabla
TSRT09 Reglerteori. Sammanfattning av föreläsning 5: RGA, IMC. Föreläsning 6. Sammanfattning av föreläsning 5: LQG. Föreläsning 6: LQ-reglering
Reglerteori 7, Föreläsning 6 Daniel Axehill / 4 Sammanfattning av föreläsning 5: RGA, IMC TSRT9 Reglerteori Föreläsning 6: LQ-reglering Daniel Axehill Reglerteknik, ISY, Linköpings Universitet RGA mäter
Reglerteknik AK, Period 2, 2013 Föreläsning 12. Jonas Mårtensson, kursansvarig
Reglerteknik AK, Period 2, 213 Föreläsning 12 Jonas Mårtensson, kursansvarig Sammanfattning Systembeskrivning Reglerproblemet Modellering Specifikationer Analysverktyg Reglerstrukturer Syntesmetoder Implementering
ERE103 Reglerteknik D Tentamen
CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system System- och reglerteknik ERE03 Reglerteknik D Tentamen 207-0-2 08.30-2.30 Examinator: Jonas Fredriksson, tel 359. Tillåtna hjälpmedel: Typgodkänd
Reglerteknik AK Tentamen
Reglerteknik AK Tentamen 20-0-7 Lösningsförslag Uppgift a Svar: G(s) = Uppgift b G c (s) = G(s) = C(sI A) B + D = s. (s+)(s+2) Slutna systemets pol blir s (s + )(s + 2). G o(s) + G o (s) = F (s)g(s) +
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 24-4-22 Sal () TER2,TER3,TERF (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in
TENTAMEN Reglerteknik I 5hp
OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller Reglerteknik I 5hp för F4/IT4/STS3. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans med
Reglerteknik AK, Period 2, 2013 Föreläsning 6. Jonas Mårtensson, kursansvarig
Reglerteknik AK, Period 2, 213 Föreläsning 6 Jonas Mårtensson, kursansvarig Senaste två föreläsningarna Frekvensbeskrivning, Bodediagram Stabilitetsmarginaler Specifikationer (tids-/frekvensplan, slutna/öppna
TENTAMEN I REGLERTEKNIK TSRT03, TSRT19
TENTAMEN I REGLERTEKNIK TSRT3, TSRT9 TID: 23 april 29, klockan 4-9 KURS: TSRT3, TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, 7-339 BESÖKER SALEN: 5.3, 7.3 KURSADMINISTRATÖR:
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Torsdag 5 december 206, kl. 3.00-6.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Fredrik Olsson, tel. 08-47 7840. Fredrik kommer och svarar på frågor
Fjärde upplagan och tredje upplagan (båda 2006)
Hans Norlander, IT-inst., Uppsala universitet, 2007-01-25 Reglerteknik Grundläggande teori Torkel Glad och Lennart Ljung En jämförelse mellan fjärde upplagan (2006) och tredje (2006) respektive andra upplagan
Föreläsning 3. Reglerteknik AK. c Bo Wahlberg. 9 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik
Föreläsning 3 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 9 september 2013 Introduktion Förra gången: PID-reglering Dagens program: Stabilitet Rotort
TENTAMEN: DEL B Reglerteknik I 5hp
TENTAMEN: DEL B Reglerteknik I 5hp Tid: Torsdag 20 oktober 20, kl. 4.00-7.00 Plats: Gimogatan 4, sal Ansvarig lärare: jartan Halvorsen, kommer och svarar på frågor ungefär kl 5.30. Tillåtna hjälpmedel:
REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl
REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen 2013 05 31, kl. 8.00 13.00 Hjälpmedel: Kursboken i Reglerteknik AK (Glad, Ljung: Reglerteknik eller motsvarande) räknetabeller, formelsamlingar
TSIU61: Reglerteknik. Sammanfattning av kursen. Gustaf Hendeby.
TSIU61: Reglerteknik Föreläsning 12 Sammanfattning av kursen Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 12 Gustaf Hendeby HT1 2017 1 / 56 Innehåll föreläsning 12: 1. Reglerproblemet 2. Modellbygge
AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 3 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET
Martin Enqvist Överföringsfunktioner, poler och stegsvar Reglerteknik Institutionen för systemteknik Linköpings universitet Repetition: Reglerproblemet 3(8) Repetition: Öppen styrning & återkoppling 4(8)