V x + ΔV x ) cos Δθ V y + ΔV y ) sin Δθ V x ΔV x V y Δθ. Dela med Δt och låt Δt gå mot noll:
|
|
- Emma Ek
- för 7 år sedan
- Visningar:
Transkript
1 ABS: Tillbakablick Fordonsdynamik med reglering Jan Åslund Associate Professor Dept. Electrical Engineering Vehicular Systems Linköping University Sweden Föreläsning 7 Man kan använda slippet i s = 1 rω V för att avgöra när hjulet är på väg att låsa sig. Ett alternativ är att använda retardationen r ω för att avgöra om hjulet är på väg att låsa sig. Mer avancerade ABS-system använder både i s och r ω för regleringen. Figuren visar en sådan strategi Källa: The utomotive Chassis, G. Genta, L. Morello Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 1 / 39 Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 / 39 ABS ABS: Faser 1 Inbromsningen inleds När accelerationen a r = r ω når gränsen a < 0 hålls bromstrycket kontant. 3 Nedanför när V r = rω når gränsen V l så är hjulet nära att låsa sig och bromstrycket minskas därför. 4 När accelerationen a r = r ω åter når gränsen a < 0 hålls bromstrycket konstant. 5 o.s.v. Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 3 / 39 Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 4 / 39
2 Antispinn: Traction Control Systems Transient beteende Använder ett koordinatsystem som är fit i förhållande till bilen. Figur 5.18 visar bilens läge vid tidpunterna t och t + Δt. Ungefär samma sak som ABS fast tvärtom. Vill undvika att däcket tappar greppet vid acceleration genom att reglera momentet. Vid inbromsning användes bromsarna. Vid acceleration kan man reglera momentet på många sätt bl.a. genom att reglera Första ordningens approimation av hastighetsändringen i -led: V + ΔV ) cos Δθ V y + ΔV y ) sin Δθ V ΔV V y Δθ Dela med Δt och låt Δt gå mot noll: Luftflöde Insprutning Tändning a = dv dt På samma sätt fås i y-led: V y dθ dt = V V y Ω z V y + ΔV y ) cos Δθ + V + ΔV ) sin Δθ V y ΔV y + V Δθ a y = dv y dt + V dθ dt = V y + V Ω z Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 5 / 39 Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 6 / 39 Figur 518 Transient beteende Dynamiska ekvationer; se figur 5.19: Kinematik Däckmodell m V V y Ω z ) = F f cos δ f + F r F yf sin δ f m V y + V Ω z ) = F yr + F yf cos δ f + F f sin δ f I z Ω z = l 1 F yf cos δ f l F yr + l 1 F f sin δ f α f = δ f l 1Ω z + V y V α r = l Ω z V y V F yf = C f α f F yr = C r α r Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 7 / 39 Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 8 / 39
3 Figur 519 Transient beteende Antar nu att F = 0 och efter förenklingar fås: m V Cf + C r y + V y + V 1 mv + l 1C f l C r V Ω z = C f δ f t) l1 C f l C r l I z Ω z + V y + 1 C f + l C r Ω z = l 1 C f δ f t) V V 3 4 Systemet kan skrivas på formen M u + u = Bt) där m 0 a1 a M = = Bt) = 0 I z a 3 a 4 Cf δ f t) l 1 C f δ f t) Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 9 / 39 Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 10 / 39 Stabilitet: Från föreläsning och 4 Stabilitet En bil som har kommit lite snett: Allmänna lösningen örelseriktning u = C 1 epλ 1 t)u 1 + C epλ t)u där egenvärdena λ 1 och λ är lösningarna till den karakteristiska ekvationen detλm + ) = 0 Idag ska vi gå vidare och studera bilens transienta beteende. Antar först att δ f = 0. u och u ges därefter av det linjära ekvationssystemet λ i M + )u i = 0 M u + u = 0 Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 11 / 39 Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 1 / 39
4 Stabilitet Stabilitet Systemet är asymptotiskt stabilt om båda egenvärden ligger i vänster halvplan. Genom att utveckla determinanten i den karakteristiska ekvationen fås detλm + ) = mi z λ + I z a 1 + ma 4 )λ + a 1 a 4 a a 3 ) = 0 Det är lätt att verifiera att koefficienterna mi z och I z a 1 + ma 4 båda är postiva. Detta medför att systemet är asymptotiskt stabilt om och endast om den sista koefficienten a 1 a 4 a a 3 är positiv vilket är ekvivalent med att L + V Wf W r = L + V g C f C r g K us > 0 Enda möjligheten att detta uttryck blir negativt är att d.v.s. bilen är överstyrd och V > K us < 0 gl K us = V crit Det är lätt att utvidga analysen till fallet att styrvinkeln δ f är nollskild. Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 13 / 39 Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 14 / 39 Laterala och longitudinella krafter Figur 139a Vi har hittills studerat laterala och longitudinella krafter separat. Fallet med både laterala och longitudinella krafter är mer komplet. Figur 1.39 visar hur sambandet mellan dessa krafter och avdriftsvinkeln kan se ut. En enkel modell för sambandet mellan F, F y och α är att anta att kurvorna i figuren är ellipser. När vi konstruerar ellipserna utgår vi från att följande är känt: Sambandet mellan F y och α i fallet F = 0. F m i fallet F y = 0. Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 15 / 39 Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 16 / 39
5 Figur 139b Friktionsellipsen: Arbetsgång Arbetsgång: 1) Givet en avdriftsvinkel α beräknas F y då F = 0, t.e. genom att läsa av figur 1.3 eller motsvarande. ) Maimala longitudinella kraften F m i fallet F y = 0 är känd. 3) F m och F y är halvalarna i ellipsen F y /F y ) + F /F m ) = 1 Figur 1.4 illustrerar hur ellipserna ges av F m och kurvan F y α). Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 17 / 39 Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 18 / 39 Figur 13 Figur 14 Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 19 / 39 Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 0 / 39
6 Borstmodellen Tidigare har vi använt borstmodellen för lateral och longitudinella krafter separat. Modellen går lätt att utvidga till det allmänna fallet. Grundläggande idéer: Borstmodellen Longitudinell förskjutning Lateral förskjutning y = Longitudinell kraft med linjär modell: i s 1 i s α 1 i s df d = k ti s 1 i s Lateral kraft med linjär modell df y d = k y α 1 i s Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 1 / 39 Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 / 39 Borstmodellen Borstmodellen Friktionsmodell: I vilozonen: df + d kt i s 1 i s dfy µ W d k y α + µw 1 i s Längden på vilozonen ges av där l c = Om l c / 1 så finns ingen glidzon µw 1 i s ) C s i s ) + C α) C s = k t C = k y Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 3 / 39 Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 4 / 39
7 Borstmodellen: Utan glidzon d d Borstmodellen: Utan glidzon d y d k t i i k y i F = 1 k t i s i s = C s 1 i s 1 i s F y = 1 ky α α = C 1 i s 1 i s Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 5 / 39 Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 6 / 39 Borstmodellen: Med glidzon Borstmodellen: Med glidzon d d d y d I glidzonen gäller att l c I glidzonen gäller att l c df d = µw C s i s Cs i s ) + C α) df y d = µw C α Cs i s ) + C α) Kraften F ges av den skuggade arean under kurvan Kraften F y ges av den skuggade arean under kurvan Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 7 / 39 Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 8 / 39
8 Magic Formula Figur 143 En kurvanpassning som ofta anva nds a r: y ) = D sin C arctan [B E B arctan B)]) Y ) = y ) + Sv = X + Sh Se figur 1.43 Y kan vara lateral kraft, longitudinell kraft eller a tersta llande moment. X kan vara avdriftsvinkel eller longitudinellt slipp. Eempel pa va rden pa konstanterna finns i tabell 1.6 i boken. Empiriska modeller fo r hur konstanterna beror av normalkraften Fz sta r pa sidan 6. Mer information finns i Tyre and Vehicle Dynamics, H.B. Pacejka. Jan A slund Linko ping University) Fordonsdynamik med reglering Fo rela sning 7 9 / 39 Fordonsmodeller i VTIs ko rsimulator Jan A slund Linko ping University) Fordonsdynamik med reglering Jan A slund Linko ping University) Fordonsdynamik med reglering Fo rela sning 7 30 / 39 Fo rela sning 7 3 / 39 Fordonsmodeller i VTIs ko rsimulator Fo rela sning 7 31 / 39 Jan A slund Linko ping University) Fordonsdynamik med reglering
9 Fordonsmodeller i VTIs körsimulator Fordonsmodeller i VTIs körsimulator Återställande momentet är viktigt för att ge rätt känsla i ratten I ejobbet Vehicle Dynamics Testing in dvnced Driving Simulators Using a Single Track Model av Jonas Thellman testades fyra olika modeller. Number Model description 1 ST with linear tyre dynamics ST with Magic formula 3 ST Magic formula/linear tyre dynamics and force lag 4 VTI s vehicle model Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 33 / 39 Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 34 / 39 Fordonsmodeller i VTIs körsimulator Fordonsmodeller i VTIs körsimulator Dubbelt filbyte vid olika hastigheter genomfördes av testförare. Följande tabell visar antal lyckade körningar för de fyra modellerna vid olika hastigheter km/h km/h km/h km/h km/h km/h km/h Följande tabell visar hur realistiska testförarna upplevde att modellerna var: MV STD motsvarar inte alls realistisk och 7 mycket realistisk. Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 35 / 39 Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 36 / 39
10 Fyrhjulsstyrning: 4WS Fyrhjulsstyrning: Vinkelberoende styrning Figuren visar a framhjulsstyrning, b och c fyrhjulsstyrning. Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 37 / 39 Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 38 / 39 Fyrhjulsstyrning: Hastighetsberoende styrning Figuren visar styrvinklarna för hastighetsberoende styrning, δ = KV )δ 1, vid ett transient förlopp. Jan Åslund Linköping University) Fordonsdynamik med reglering Föreläsning 7 39 / 39
Transient beteende. Fordonsdynamik med reglering. Transient beteende. Figur Använder ett koordinatsystem som är fixt i förhållande till bilen.
Transient beteende Använder ett koordinatsystem som är fixt i förhållande till bilen. Fordonsdynamik med reglering Jan Åslund jaasl@isy.liu.se Associate Professor Dept. Electrical Engineering Vehicular
Läs merBästa däcken fram eller bak? Fordonsdynamik med reglering. Kurvtagning: Figur 5.5
Bästa däcken fram eller bak? Fordonsdynamik med reglering Jan Åslund jaasl@isy.liu.se Associate Professor Dept. Electrical Engineering Vehicular Systems Linköping University Sweden Föreläsning 5 Viktig
Läs merTillbakablick: Övning 1.2. Fordonsdynamik med reglering. Stillastående bil. Sidkrafter: Frågeställning 1. R r. R g
Tillbakablick: Övning 1.2 Fordonsdynamik med reglering I c-uppgiften lutar vägen 0.5 grader och räknar man ut krafterna som verkar på bilen när bilen står still så ser det ut så här: Jan Åslund jaasl@isy.liu.se
Läs merTillbakablick: Övning 1.2. Fordonsdynamik med reglering. Stillastående bil. Sidkrafter: Frågeställning 1. R r. R g
Tillbakablick: Övning 1. Fordonsdynamik med reglering I c-uppgiften lutar vägen 0.5 grader och räknar man ut krafterna som verkar på bilen när bilen står still så ser det ut så här: Jan Åslund jaasl@isy.liu.se
Läs merBästa däcken fram eller bak? Fordonsdynamik med reglering. Kurvtagning: Figur 5.5
Bästa däcken fram eller bak? Fordonsdynamik med reglering Jan Åslund jaasl@isy.liu.se Associate Professor Dept. Electrical Engineering Vehicular Systems Linköping University Sweden Föreläsning 5 Viktig
Läs merLongitudinell reglering: Freightliners farthållare. Fordonsdynamik med reglering. Minimera bränsleförbrukning
Longitudinell reglering: Freightliners farthållare Fordonsdynamik med reglering Jan Åslund jaasl@isy.liu.se Associate Professor Dept. Electrical Engineering Vehicular Systems Linköping University Sweden
Läs merIntroduktion: Kurslitteratur. Fordonsdynamik med reglering. Introduktion: Laborationer. Introduktion. Theory of Ground Vehicles, J.Y.
Introduktion: Kurslitteratur Fordonsdynamik med reglering Jan Åslund jaasl@isy.liu.se Associate Professor Dept. Electrical Engineering Vehicular Systems Linköping University Sweden Theory of Ground Vehicles,
Läs merIntroduktion: Kurslitteratur. Fordonsdynamik med reglering. Introduktion: Laborationer. Introduktion. Theory of Ground Vehicles, J.Y.
Introduktion: Kurslitteratur Fordonsdynamik med reglering Jan Åslund jaasl@isy.liu.se Assistant Professor Dept. Electrical Engineering Vehicular Systems Linköping University Sweden Theory of Ground Vehicles,
Läs merBästa däcken fram eller bak? Fordonsdynamik med reglering. Kurvtagning: Figur 5.5
Bästa däcken fram eller bak? Fordonsdynamik med relerin Jan Åslund jaasl@isy.liu.se Associate Professor Dept. Electrical Enineerin Vehicular Systems Linköpin University Sweden Föreläsnin 5 Vikti fråa:
Läs merTentamen. TSFS 02 Fordonsdynamik med reglering 1 november, 2013, kl. 8 12
Tentamen TSFS 02 Fordonsdynamik med reglering 1 november, 2013, kl. 8 12 Hjälpmedel: Miniräknare. Ansvarig lärare: Jan Åslund, 281692. Totalt 50 poäng. Betygsgränser: Betyg 3: 23 poäng Betyg 4: 33 poäng
Läs merVehicle Stability Control ESP. Fordonsdynamik med reglering. Övergripande funktion. Figur 5.24 ESP: Kärt barn har många namn
Vehicle Stability Control ESP Fordonsdynamik med reglering Jan Åslund jaasl@isy liu se Associate Professor Dept. Electrical Engineering Vehicular Systems Linköping University Sweden Föreläsning 8 Kärt
Läs merTentamen. TSFS 02 Fordonsdynamik med reglering 14 januari, 2017, kl. 8 12
Tentamen TSFS 02 Fordonsdynamik med reglering 14 januari, 2017, kl. 8 12 Hjälpmedel: Miniräknare. Ansvarig lärare: Jan Åslund, 281692. Totalt 50 poäng. Betygsgränser: Betyg 3: 23 poäng Betyg 4: 33 poäng
Läs merTentamen. TSFS 02 Fordonsdynamik med reglering 20 oktober, 2008, kl
Tentamen TSFS 02 Fordonsdynamik med reglering 20 oktober, 2008, kl. 14 18 Hjälpmedel: Miniräknare. Ansvarig lärare: Jan Åslund, 281692. Totalt 50 poäng. Betygsgränser: Betyg 3: 23 poäng Betyg 4: 33 poäng
Läs merVehicle Stability Control ESP. Vehicle Dynamics and Control. Övergripande funktion. Figur Kärt barn har många namn
Vehicle Stability Control ESP Vehicle Dynamics and Control Jan Åslund jaasl@isy.liu.se Associate Professor Dept. Electrical Engineering Vehicular Systems Linköping University Sweden Lecture 7 Kärt barn
Läs merTFYA16: Tenta Svar och anvisningar
150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket
Läs merdy dx = ex 2y 2x e y.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 3 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, poäng 005-04-04 Skrivtid: 14 19. Hjälpmedel: Skrivdon,
Läs mer(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:
Läs merundanträngda luften vilket motsvarar Flyft kraft skall först användas för att lyfta samma volym helium samt ballongens tyngd.
FYSIKTÄVLINGEN Finalen - teori 1 maj 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET 1 Vi beräknar först lyftkraften för en ballong Antag att ballongen är sfärisk med diametern 4πr 4π 0,15 0 cm Den har då
Läs merHärled utgående från hastighetssambandet för en stel kropp, d.v.s. v B = v A + ω AB
. Härled utgående från hastighetssambandet för en stel kropp, d.v.s. v B v A + ω AB motsvarande samband för accelerationer: a B a A + ω ω AB + a AB. Tolka termerna i uttrycket för specialfallet plan rörelse
Läs merModeller för dynamiska förlopp
Föreläsning 3 Modeller för dynamiska förlopp 3.1 Aktuella avsnitt i läroboken (.1) Population Models. (.) Equilibrium Solutions and Stability. (.3) Acceleration-Velocity Models. 19 FÖRELÄSNING 3. MODELLER
Läs merSF1626 Flervariabelanalys
1 / 28 SF1626 Flervariabelanalys Föreläsning 2 Hans Thunberg Institutionen för matematik, KTH VT 2018, Period 4 2 / 28 SF1626 Flervariabelanalys Dagens lektion: avsnitt 11.1 11.3 Funktioner från R till
Läs merTentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd
Läs merPreliminär timplanering: Plasmafysik
Vågor, plasmor antenner F700T Preliminär timplanering: Plasmafysik Litteratur: Chen F. F., Plasma physics and controlled fusion, Plenum, nd ed. Etra problem i plasmafysik. X-plasma (Från hemsidan) Pass
Läs mer6.2 Partikelns kinetik - Tillämpningar Ledningar
6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste
Läs merFöreläsning 2. Reglerteknik AK. c Bo Wahlberg. 3 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik
Föreläsning 2 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 3 september 2013 Introduktion Förra gången: Dynamiska system = Differentialekvationer Återkoppling
Läs merTeori för linjära ordinära differentialkvationer med konstanta koefficienter
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016/2017 Teori för linjära ordinära differentialkvationer med konstanta koefficienter 1. FÖRSTA ORDNINGEN Homogena fallet. En homogen linjär
Läs merSF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 533 DEL A Planet H ges av ekvationen 3x y + 5z + a) Bestäm en linje N som är vinkelrät mot H ( p) b) Bestäm en linje L som inte skär planet H ( p)
Läs merTSRT09 Reglerteori. Sammanfattning av föreläsning 9. Cirkelkriteriet. Sammanfattning av föreläsning 9, forts. Amplitudstabilitet hos svängningar
glerteori 27, Föreläsning Daniel Axehill / 23 Sammanfattning av föreläsning 9. Cirkelkriteriet Linjärt system G(s) återkopplat med en statisk olinjäritet f(x) TSRT9 glerteori Föreläsning : Fasplan Daniel
Läs merSF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A (1) Vid lösningen av ekvationssystemet x 1 3x 2 +3x 3 4x 4 = 1, x 2 +x 3 x 4 = 0, 4x 1 +x 2 x 3 2x 4 = 5, kommer man genom Gausselimination
Läs merSF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna
Läs mery = sin 2 (x y + 1) på formen µ(x, y) = (xy) k, där k Z. Bestäm den lösning till ekvationen som uppfyler begynnelsevillkoret y(1) = 1.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 08-47 32 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-2-4 Skrivtid: 5.00 20.00. Hjälpmedel:
Läs merFö relä sning 2, Kö system 2015
Fö relä sning 2, Kö system 2015 Vi ska börja titta på enskilda kösystem som ser ut på följande sätt: Det kan finnas en eller fler betjänare och bufferten kan vara ändlig eller oändlig. Om bufferten är
Läs merSystemteknik/Processreglering F3
Systemteknik/Processreglering F3 Matematisk modellering Tillståndsmodeller Stabilitet Läsanvisning: Process Control: 3.1 3.4 Modellering av processer Dynamiken i våra processer beskrivs typiskt av en eller
Läs merUPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 32 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-10-10 Skrivtid: 9.00 14.00. Hjälpmedel:
Läs mer1 x dx Eftersom integrationskonstanten i (3) är irrelevant, kan vi använda oss av 1/x som integrerande faktor. Låt oss beräkna
Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del, för CTFYS2 och CMEDT3, SF629, den 30 maj 20, kl 8:00 3:00 Svar, uppgift : i sant, ii sant, iii falskt, iv sant, v falskt, vi sant,
Läs merLösningar Heureka 2 Kapitel 7 Harmonisk svängningsrörelse
Lösningar Heureka Kapitel 7 Harmonisk svängningsrörelse Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel 7 7.1 a) Av figuren framgår att amplituden är 0,30 m. b) Skuggan utför en
Läs merÖvningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt
Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer
Läs merLinjär Algebra, Föreläsning 20
Linjär Algebra, Föreläsning 20 Tomas Sjödin Linköpings Universitet Symmetriska avbildningar, repetition F : E E sägs vara symmetrisk om (F (u) v) = (u F (v)) gäller för all u, v i det Euklidiksa rummet
Läs merReglerteori, TSRT09. Föreläsning 10: Fasplan. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet. Torkel Glad Reglerteori 2015, Föreläsning 10
Reglerteori, TSRT09 Föreläsning 10: Fasplan Reglerteknik, ISY, Linköpings Universitet Sammanfattning av föreläsning 9. Nyquistkriteriet 2(25) Im G(s) -1/k Re -k Stabilt om G inte omsluter 1/k. G(i w) Sammanfattning
Läs merMatematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:
Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en
Läs merSTABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER
Armin Halilovic: EXTRA ÖVNINGAR, SF676 STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Innehåll Stabilitet för en kritisk punkt (grundbegrepp) Stabilitet för ett linjärt homogent system
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Väntevärde, varians, standardavvikelse, kvantiler Uwe Menzel, 28 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Väntevärdet X : diskret eller kontinuerlig slumpvariable
Läs merÖvningsuppgifter till introduktionsföreläsningar i matematik
Övningsuppgifter till introduktionsföreläsningar i matematik Detta är ett urval övningar på baskunskaper i matematik för repetition av några delar av gymnasiekurserna. En del övningar kan tyckas annorlunda
Läs mer1 Linjära ekvationssystem. 2 Vektorer
För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant
Läs merExempel :: Spegling i godtycklig linje.
c Mikael Forsberg oktober 009 Exempel :: Spegling i godtycklig linje. abstract:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som går genom origo.
Läs merMA2004 Tillämpad Matematik II, 7.5hp,
MA004 Tillämpad Matematik II, 7.hp, 08-0- Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 0 frågor! Endast Svarsblanketten ska lämnas
Läs mery + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen
UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook
Läs merLösningsförslag/facit till Tentamen. TSFS04 Elektriska drivsystem 5 mars, 2012, kl
Lösningsförslag/facit till Tentamen TSFS04 Elektriska drivsystem 5 mars, 2012, kl. 08.00-12.00 Tillåtna hjälpmedel: TeFyMa, Beta Mathematics Handbook, Physics Handbook, Formelsamling - Elektriska drivsystem
Läs merx 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.
. Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig
Läs merTMV225 Kapitel 3. Övning 3.1
TMV225 Kapitel 3 Övning 3. Bestäm gränsvärdet och bestäm δ som funktion av ε. a) lim 3 [ 2 3 + 5] Vi har givet att 3, och då funktionen är kontinuerlig får vi gränsvärdet ȳ 5 genom att stoppa in. Per definition
Läs merInstitutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.
Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4
Läs merMatematik D (MA1204)
Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och
Läs merTMA 671 Linjär Algebra och Numerisk Analys. x x2 2 1.
MATEMATISKA VETENSKAPER TMA67 8 Chalmers tekniska högskola Datum: 8--8 kl - 8 Examinator: Håkon Hoel Tel: ankn 38 Hjälpmedel: inga TMA 67 Linjär Algebra Numerisk Analys Tentan består av 8 uppgifter, med
Läs merGripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,
Mat-. Grundkurs i matematik Tentamen och mellanförhörsomtagning,..23 Skriv ditt namn, nummer och övriga uppgifter på varje papper! Räknare eller tabeller får inte användas i detta prov! Gripenberg. Skriv
Läs merTMV206: Linjär algebra
Matematiska vetenskaper Lösningsförslag till tentamen Chalmers tekniska högskola 2018-06-07, 14:00 18:00 TMV206: Linjär algera Uppgift 1 Linjerna skär varandra om det finns någon punkt (x,y, z) som uppfyller
Läs merTFYA16: Tenta Svar och anvisningar
180111 TFYA16 1 TFYA16: Tenta 180111 Svar och anvisningar Uppgift 1 a) Svar: 89 cm x = 0 t 3 dt = [ t 3 9 ] 0 = 8 m 89 cm 9 b) Om vi betecknar tågets (T) hastighet relativt marken med v T J, så kan vi
Läs merkonstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b
Lösningsförslag till Tentamen i Inledande matematik för E, (TMV57), 203-0-26. Till denna uppgift skulle endast lämnas svar, men här ges kortfattade lösningar. a) För vilka tal gäller 2 + > cos2 ()? Lösning:
Läs mer1. Bestäm volymen för den parallellepiped som ges av de tre vektorerna x 1 = (2, 3, 5), x 2 = (3, 1, 1) och x 3 = (1, 3, 0).
N-institutionen Mikael Forsberg 06-64 89 6 Prov i matematik Matematik med datalogi, mfl. Linjär algebra mk06a Testtenta. Bestäm volymen för den parallellepiped som ges av de tre vektorerna x = (,, 5),
Läs merLösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola
Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola Tid: Måndagen 5/3-2012 kl: 8.15-12.15. Hjälpmedel: Räknedosa. Bifogad formelsamling. Lösningar: Lösningarna skall vara väl
Läs mer1+v(0)kt. + kt = v(0) . Detta ger sträckan. x(t) = x(0) + v(0) = x(0) + 1 k ln( 1 + v(0)kt ).
. (3 poäng) Antag att en partikel rör sig i ett medium där friktionskraften är proportionell mot kvadraten av hastigheten v(t) R så att dv(t) = k ( v(t) ), t > för en konstant k >. Bestäm v(t) som funktion
Läs merExempel :: Spegling i godtycklig linje.
INNEHÅLL Exempel :: Spegling i godtycklig linje. c Mikael Forsberg :: 6 augusti 05 Sammanfattning:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som
Läs merTSRT09 Reglerteori. Sammanfattning av Föreläsning 1. Sammanfattning av Föreläsning 1, forts. Sammanfattning av Föreläsning 1, forts.
Reglerteori 217, Föreläsning 2 Daniel Axehill 1 / 32 Sammanfattning av Föreläsning 1 TSRT9 Reglerteori Föreläsning 2: Beskrivning av linjära system Daniel Axehill Reglerteknik, ISY, Linköpings Universitet
Läs mer=v sp. - accelerationssamband, Coriolis teorem. Kraftekvationen För en partikel i A som har accelerationen a abs
1 Föreläsning 7: Fiktiva (tröghets-)krafter (kap A) Komihåg 6: Absolut och relativ rörelse för en partikel - hastighetssamband: v abs = v O' + # r 1 42 4 3 rel + v rel =v sp - accelerationssamband, Coriolis
Läs merLösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum:
Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: 004-08- Observera Om tentamensuppgiften är densamma som på den nya kursen MTM3 är uppgiften löst med den metod som är vanligast i denna kurs.
Läs merSF1624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 2010 DEL A
SF624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 200 DEL A ( Betrakta det komplexa talet w = i. (a Skriv potenserna w n på rektangulär form, för n = 2,, 0,, 2. ( (b Bestäm
Läs merTFYA16/TEN2. Tentamen Mekanik. 12 januari :00 13:00. Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa ng.
Linko pings Universitet Institutionen fo r fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Tentamen Mekanik 12 januari 2015 8:00 13:00 Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa
Läs merSvar och anvisningar
170317 BFL10 1 Tenta 170317 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Den enda kraft som verkar på stenen är tyngdkraften, och den är riktad nedåt. Alltså är accelerationen riktad nedåt. b) Vid kaströrelse
Läs mer1. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform,
Lösningsförslag, Matematik 2, E, I, M, Media och T, 2 2 8.. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform, 2 2 2 a 2 2 2 a 2 2-2 2 a 7 7 2 a 7 7-7 2 a +
Läs merx(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen:
Differentialekvationer II Modellsvar: Räkneövning 6 1. Lös det icke-homogena linjära DE-systemet ( ( 0 e x t (t = x(t + 1 3 e t med elimineringsmetoden. Lösning: den explicita formen av DE-systemet är
Läs merÖvningsuppgifter till introduktionsföreläsningar i matematik
Övningsuppgifter till introduktionsföreläsningar i matematik Detta är ett urval övningar på baskunskaper i matematik för repetition av några delar av gymnasiekurserna. En del övningar kan tyckas annorlunda
Läs merLektion 1. Bo Bernhardsson FRT130 Control Theory, Lecture 1
Lektion 1 Kursinnehåll - kursprogram - schema Det praktiska - boken - idag sid 71-101 Mattebakgrund - Spannes Blixtkurs Laplacetransform AK 17 Koppling till tillståndsbeskrivning AK 18 Betoning av transienter
Läs merPreliminärt lösningsförslag
Preliminärt lösningsförslag v4, 9 augusti 4 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 kl 43-93 Hjälpmedel : Inga hjälpmedel
Läs merVälkomna till Reglerteknik Föreläsning 2
Välkomna till Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer
Läs merKursinformation Mekanik f.k. TMMI39
Kursinformation Mekanik f.k. TMMI39 Uppdaterad 202--26 Linköpings universitet tekniska högskolan IEI/mekanik Joakim Holmberg Omfång 30 h föreläsningar och 24 h lektioner i period HT2, hösten 202. Kursansvarig,
Läs mer+ 5a 16b b 5 då a = 1 2 och b = 1 3. n = 0 där n = 1, 2, 3,. 2 + ( 1)n n
Repetition, Matematik I.. Bestäm koefficienten vid 2 i utvecklingen av ( + 2 2 ) 5. 2. Bestäm koefficienten vid 2 i utvecklingen av ( + ) n för n =, 2,,.. Beräkna a 5 5a 2b + 5a 2b 2 5a 2 b + 5a 6b 2b
Läs merVälkomna till TSRT15 Reglerteknik Föreläsning 2
Välkomna till TSRT15 Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer
Läs merFöreläsning 1 Reglerteknik AK
Föreläsning 1 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik, KTH 29 augusti, 2016 2 Introduktion Example (Temperaturreglering) Hur reglerar vi temperaturen i ett hus? u Modell: Betrakta en
Läs merHopp- och nickrörelser. Fordonsdynamik med reglering. Figur 7.7. Studerar det dynamiska systemet i figur 7.7.
Hopp- och nickrörelser Jan Åslund jaasl@isy.liu.se Associate Professor Dept. Electrical Engineering Vehicular Systems Linköping University Sweden Studerar det dynamiska systemet i figur 7.7. m s z + k
Läs merReglerteori, TSRT09. Föreläsning 8: Olinjäriteter och stabilitet. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet
Reglerteori, TSRT09 Föreläsning 8: Olinjäriteter och stabilitet Reglerteknik, ISY, Linköpings Universitet Sammanfattning av föreläsning 7 2(27) H 2 - och H - syntes. Gör W u G wu, W S S, W T T små. H 2
Läs merOlinjära system (11, 12.1)
Föreläsning 2 Olinjära system (11, 121) Introduktion Vad menas med ett olinjärt system? Betrakta ett system där insignalerna u 1 (t) och u 2 (t) ger utsignalerna y 1 (t) respektive y 2 (t), d v s och u
Läs merMer Friktion jämviktsvillkor
KOMIHÅG 6: --------------------------------- Torr friktion: F! µn. Viskös friktion: F = "cv. Extra villkor för jämvikt: risk för glidning eller stjälpning. ---------------------------------- Föreläsning
Läs mer2 Funktioner från R n till R m, linjära, inversa och implicita funktioner
Nr, feb -5, Amelia Funktioner från R n till R m, linjära, inversa och implicita funktioner.1 Funktioner från R n till R m Vi har i tidigare föreläsningar sett olika tolkningar av funktioner från R n till
Läs merSammanfattning av ordinära differentialekvationer
Sammanfattning av ordinära differentialekvationer Joakim Edsjö 1 Institutionen för teoretisk fysik, Uppsala Universitet Telefon: 018-18 32 50 eller 018-18 76 30 19 februari 1995 1 Första ordningens differentialekvationer
Läs merDagens teman. Linjära ODE-system av ordning 1:
Dagens teman Linjära ODE-system av ordning 1: Egenvärdesmetoden. Lösning av homogena system x 1 (t) = a 11 x 1 (t) + + a 1n x n (t) x 2 (t) = a 21 x 1 (t) + + a 2n x n (t) x n (t) = a n1 x 1 (t) + + a
Läs merModul 1: Komplexa tal och Polynomekvationer
Modul : Komplexa tal och Polynomekvationer. Skriv på formen a + bi, där a och b är reella, a. (2 + i)( 2i) 2. b. + 2i + 3i 3 4i + 2i 2. Lös ekvationerna a. (2 i)z = 3 + i. b. (2 + i) z = + 3i c. ( 2 +
Läs mer6.3 Partikelns kinetik - Härledda lagar Ledningar
6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill
Läs mer= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att
Läs merTillämpad biomekanik, 5 poäng Övningsuppgifter
, plan kinematik och kinetik 1. Konstruktionen i figuren används för att överföra rotationsrörelse för stången till en rätlinjig rörelse för hjulet. a) Bestäm stångens vinkelhastighet ϕ& som funktion av
Läs merAnalys på en torus. MatematikCentrum LTH
Analys på en torus Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I den här artikeln ska vi diskutera differentialgeometri på en torus, både inbäddad som en badring i rummet och
Läs merMöjliga lösningar till tentamen , TFYY97
Tal Se kurslitteraturen. Möjliga lösningar till tentamen 069, TFYY97 Tal Det finns oändligt många lösningar till detta tal. En möjlig lösning skulle vara följand. Börja med att titta i -led. Masscentrum
Läs merERE103 Reglerteknik D Tentamen
CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system System- och reglerteknik ERE03 Reglerteknik D Tentamen 207-0-2 08.30-2.30 Examinator: Jonas Fredriksson, tel 359. Tillåtna hjälpmedel: Typgodkänd
Läs mer2x + y + 3z = 4 x + y = 1 x 2y z = 3
ATM-Matematik Pär Hemström 7 6572 Sören Hector 7 4686 Mikael Forsberg 74 42 För studerande i linjär algebra Linjär algebra ma4a 225 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga
Läs merTentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.
Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x
Läs merAnalys av jämviktslägen till differentialekvationer
Analys 360 En webbaserad analyskurs Ordinära differentialekvationer Analys av jämviktslägen till differentialekvationer Anders Källén MatematikCentrum LTH anderskallen@gmail.com Analys av jämviktslägen
Läs merM = c c M = 1 3 1
N-institutionen Mikael Forsberg Prov i matematik Matematik med datalogi, mfl. Linjär algebra ma4a Deadline :: 8 9 4 Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny
Läs merREGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL En tillståndsmodell ges t.ex. av den styrbara kanoniska formen: s 2 +4s +1.
REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL20 Lösningsförslag till tentamen 2009 2 5, kl. 4.00 9.00. (a) Laplacetransform av () ger s 2 Y (s)+4sy (s)+y (s) =U(s), och överföringsfunktionen blir G(s)
Läs merALTERNATIVA KOORDINATSYSTEM -Cylindriska koordinatsystem. De polära koordinaterna r och " kan beskriva rörelsen i ett xyplan,
KOMIHÅG 8: --------------------------------- Rörelsemängd: p = mv, Kinematiska storheter: r ( t), v ( t), a ( t) Kinematiska samband med begynnelsevillkor 1 Föreläsning 9: ALTERNATIVA KOORDINATSYSTEM -Cylindriska
Läs merStabilitet m.a.p. begynnelsedata
Stabilitet m.a.p. begynnelsedata Begreppet stabilitet används i flera olika sammanhang. I kap.9-14 tänker man på black-box system och insignal-utsignalstabilitet begränsad insignal = begränsad utsignal
Läs mer