20 Integralkalkyl i R 3

Storlek: px
Starta visningen från sidan:

Download "20 Integralkalkyl i R 3"

Transkript

1 Nr,9maj-,Amelia Integralkalkl i R 3 VI kommer härnäst att studera integraler av tredimensionella vektorfält: F(,, ) = (P (,, ), Q(,, ), R(,, )). Vi generaliserar kurvintegraler och Greens formel från R till R 3. Vi kommer att studera två tper av integraler på R 3,somiviss mån motsvarar kurvintegraler i planet. en ena är kurvintegraler i R 3. Om kurvan är sluten och vektorfältet snällt så kan en sådan kurvintegral omvandlas till en tintegral på en ta vars kant är kurvan. etta är tokes sats, som alltså är en ganska direkt tredimensionell motsvarighet till Greens formel i planet. I det fall vektorfältet är konservativt kan en sådan kurvintegral beräknas mcket enkelt om dess potential är känd (U(slutpunkt) U(startpunkt)), just som i R. en andra tpen är en integral av en funktion över alla punkter som ligger på en ta i R 3. ådana integraler kallas tintegraler. Här är vi intresserade av en vektorfältets komponent vinkelrätt mot tan, inte tangentiellt. enna speciella tp av tintegral kallas en flödesintegral. ummeras vektorfältets vinkelräta komponent över tan kan den beräknas som en dubbelintegral. Är tan sluten och vektorfältet snällt kan denna tintegral omvandlas till en trippelintegral över volmen. et är Gauss sats. För denna integral finns ingen motsvarighet till potentialmetoden. Vi börjar att studera denna senare tp.. Flödesintegraler Vi studerar här vektorfält från R 3 till R 3, som kan betecknas med F(,, ), med de tre komponenterna P, Q och R, alltså F(,, ) =(P (,, ),Q(,, ),R(,, )). Vi ska studera fältet inte i hela R 3 utan på en regulär ta i R 3, som ges av en parametrisering med två variabler r(u, v), t en ta har två dimensioner (en kurva är endimensionell och har ju en parameter)... Normalriktning till en ta Vi betraktar en reguljär ta r(u, v), dvs r : = (u, v) = (u, v) = (u, v) som också kan skrivas r(u, v) =((u, v).(u, v),(u, v)). Parametrarna u och v tillhör mängden = {a u b, c v d} (en rektangel i uv-planet). I varje punkt av tan finns det en normerad normalriktning bn. "Normerad" betder att den har längd, dvs bn =, "normal" att den är vinkelrät mot tan. Normalriktningen beror givetvis på punkten, den är funktion av, och, dvsbn = bn(,, ). Vi vet redan att r u r v är en normal till tan i punkten

2 r(u, v), dock kanske inte normerad. Normerar vi den har vi alltså en normerad normal: bn = r u r v r u r v. Vi vill att normalen beror kontinuerligt på punkten på tan. åledes: när vi rubbar punkten ska normalen ändras kontinuerligt (inte plötsligt mcket på en gång). å är det om tan är regulär, dvs r(u, v) har kontinuerliga derivator... Orienterade tor Vi vill också att avbildningen (u, v) bn skavaraenfunktion. etkräveratt tan är orienterbar. efinition av detta begrepp är just att denna avbildning är en funktion. et betder geometriskt att tan har två sidor. Ett eempel på en reguljär kurva som inte är orienterbar är ett Möbiusband. Tag en pappersremsa och tejpa ihop den till en ring, men vänd först ena änden ett halvt varv. enna ta har bara en sida. Prova att måla ena sidan röd. å kommer man att komma över till motsatta sidan så "båda" sidorna blir röda den har bara en sida. Här är inte avbildningen (u, v) bn en funktion t går vi runt ett varv till samma punkt så får avbildningen bn motsatt riktning. et betder att avbildningen (u, v) bn inte är väldefinierad. En orienterbar ta är dessutom orienterad när vi bestämt oss för vilken sida normalvektorn pekar åt. å kan vi tala om en utsida, som är den riktning normalen pekar åt, och en insida, som är den andra...3 lutna tor Z EnkroppärenbegränsadmängdiR 3 med positiv volm ( ddd > ). Vanligen begränsas en kropp av reguljära tor. En sluten ta i R 3 är en ta som är begränsningsta för en kropp. et är en ta som inte har någon kant. Ett eempel är en sfär ({ + + =}). En halvsfär (e.: { + + =, }) är inte någon sluten ta t den har en kant ({ + =, =}), som är cirkelformad. Om vi lägger till bottenta till sfären får vi en sluten ta ({ + + =, } { +, =}). K

3 En sfär en sluten ta. En halvsfär är inte sluten. en har kant. På liknande sätt är en öppen clinder inte sluten, men med ändtor är den sluten. En flaska utan kapsl är inte sluten, men med kapsl är den sluten. En sluten ta som innehåller en vätska släpper inte ut den hur den än vrids i rummet. et gör inte en ta som inte är sluten. lutenhet är ett grundläggande och naturligt geometriskt begrepp. En annan definition av sluten ta är att den delar rummet i två delar, på så sätt att om två punkter på var sida av tan förbinds med en kurva så måste kurvan skära tan någonstans. Är den inte sluten så finns det alltid någon kurva mellan två punkter som inte skär tan. "luten ta" är ett begrepp som är analogt med "sluten kurva" i planet. Analogt med att lägga till kurvdelar så att en kurva blir sluten, kan man lägga till tstcken så att en ta blir sluten...4 Vektorfält och flöden Ett flöde, av vätska, gas, elektoner eller annat, kan beskrivas med ett vektorfält: F(,, ) =(P (,, ),Q(,, ),R(,, )). å anger värdet F ienpunkt (,, ) hastighetsvektorn för en partikel i punkten. Vi kommer att studera hur mcket flöde som sker genom en ta. å bidrar ett flöde som sker parallellt med tan inte alls till flödet genom tan. Flödets komponent vinkelrätt mot tan är den del av flödet som vi är intresserade av, och storleken av denna vinkelräta komponent är F bn. Här är bn en normerad vektor vinkelrät mot tan. Allt detta inträffar i en viss punkt (,, ) på tan. När vi lägger ihop flödet i alla punkter får vi en intergral. Vi har sett att arean av en buktig ta är r u r v dudv där = {a u b, c v d} är de tillåtna parametervärdena för den reguljära tan (för en sfär, eempelvis, har vi { θ π, ϕ π}). Arean av ett telement är således r u r v dudv, så totala födet genom detta element 3

4 är Men eftersom {} F bn r u r v dudv. { } flöde area bn = r u r v r u r v får vi flödet r u r v F r u r v r u r v dudv, där vi kan förkorta bort r u r v. et ger flödet F (r u r v) dudv, och summerar vi över hela tan har vi F (r u r v) dudv. efinition Flödesintegralen av vektorfältet F över den orienterade tan r(u, v) =((u, v),(u, v),(u, v)), där (u, v) = {a u b, c v d}, är integralen F (r u r v) dudv. Liksom en kurvintegral kan en tintegral skrivas på flera olika sätt. I skrivsättet F (r u r v) dudv = F bn d är tan utan parameterframställning. Notera att är ett område i parameterplanet (u, v), området hör ihop med parameterframställningen. Vidare är bn en normerad normal vektor, och d är telementet. På grund av likheten bn = r u r v r u r v, se ovanstående kalkl, måste telementet vara d= r u r v dudv. Ibland bakas även normalriktningen in i d, vilket ger d, som är ett "vektord". å har vi d = r u r vdudv. et ger de tre skrivsätten för en flödesintegral: F (r u r v) dudv = F bnd = F d. 4

5 Observera att efter insättning av en parameterframställning för tan är integralen en ordinär dubbelintegral över u och v på ett rektangulärt integrationsområde. Om inte tan skulle vara orienterad skulle den vara obestämd med avseende på tecken, t om vi bter parameterframställning så vi bter från bn till bn så bter integralen tecken. Vi har beskrivit flödesintegralen i termer av ett massflöde F, men denna definition är en matematisk definition och således oberoende av om de ingående funktionerna representerar massflöden eller något annat.om nämnts i definitionen kallas den också ofta tintegral... Jämförelse med kurvintegraler etta kan jämföras med de tre sätten att skriva en kurvintegral, Z Z a Z F dr= F((t),(t),(t))r (t)dt = P (, )d + Q(, )d), Γ b et mittersta skrivsättet är här definitionen av kurvintegral. är är en parameterframställning av Γ given, som ger en ordinär enkelintegral att beräkna. et högra är praktiskt för där anges vektorfältet på ett enkelt sätt. et vänstra är kortast och praktiskt om man lägger till och drar ifrån kurvdelar. Vi har två tterligerare metoder att beräkna en kurvintegral. Om kurvan är sluten och F väldefinierat överallt innanför området så kan Greens formel användas. Om fältet F är konservativt har det en potential, och integralen kan beräknas genom att beräkna denna potential ( U(slutpunkt) U(startpunkt)). För en tintegal finns det en analogi till Greens formel, som vi kommer till i nästa avsnitt. Motsvarigheten kallas Gauss sats eller divergenssatsen...6 Yta som är en graf Om tan är en graf = f(, ) har vi den naturliga parameterframställningen (,, f(, )), tvikandåanvända och som parametrar. Vi har i samband med arean av en buktig ta beräknat r r i detta fall: Γ r r =( f, f ). en naturliga parameterframställningen ger tdligen en uppåtriktad normal på tan, eftersom -komponenten av normalen r r är. Med F(,, ) =(P (,, ),Q(,, ),R(,, )) blir då tintegralens skalärpodukt F r r = (P, Q, R) ( f, f) = Pf Qf + R. å har vi således, med insättning av = f(, ) som gäller på tan: F d = ( P (,, f(, ))f Q(,, f(, ))f+r(,, f(, )))dd.

6 etta är en form av tintegralen som kan användas när tan är en funktionsgraf, och då tans normalriktning är i positiv -led.. Flödesintegraler lösta eempel Eempel (d) Bestäm flödesintegralen till vektorfältet F(,, ) =(,, + ) över den del av tan = som svarar mot och. Ytans orientering bestäms av att normalen har positiv -komponent. Lösning: Här är tan en graf f(, ) =, så vi har en naturlig parameterframställning för tan: (,, ), med och Ytan (,, ), då,. Insättning av =, som gäller på tan, ger vektorfältets värden F(,, ) = (,, +) just på tan. Vi har också f = och f =. å: F d = = = ( Pf Qf + R)dd ( + +)dd Z Z dd = [ ] =. var: F d =. Eempel 3 (b) Bestäm tintegralen till vektorfältet F(,, ) =(,, ) ut ur halvklotet + +,. Lösning: Ytan är här halvklotets ta, dvs den buktiga tan + + =, tillsammans med den plana tan, +. 6

7 Ytan. Ytan. Vi har alltså F d = F d+ F d, analogt med hur vi kunde dela upp kurvintegraler i olika integraler för olika kurvstcken. På har vi en parametrisering med sfäriska koordinater med r =. vs =cosϕ sin θ =sinϕ sin θ =cosθ. Volmelementet med sfäriska koordinater är r sin θdθdϕ, så med r =får vi telementet d =sinθdθdϕ (faktorn sin θ kan också beräknas med r ϕ r θ ). Normerad normalriktning i en punkt på en sfärisk ta är en riktning från origo med längden. et betder att bn är samma vektor som ortsvektorn till en punkt på tan: bn =(cosϕsin θ, sin ϕ sin θ, cos θ). 7

8 Ortsvektor till (,, ). Normal i (,, ) samma vektor! Vektorfältet F(,, ) =(,, ) tar på denna ta värdena F =(cosϕsin θ,, ) (insättning av =cosϕsin θ). Eftersom vi har ett halvklot har θ övre gränsen π. Vi får då F bnd = = {trig. formler} = Z π Z π Z π Z π Z π (cos ϕ sin θ,, ) (cos ϕ sin θ, sin ϕ sin θ, cos θ) sin θdθdϕ { } { } { } F d cos ϕ sin θ sin θdθdϕ = {en vanlig dubbelintegral} ( cos θ)sinθdθ Z π = [ cos θ + 3 cos3 θ] π [ϕ + = ( + 3 )π = π 3. n ( + cos ϕ)dϕ sin ϕ]π Vi beräknar härnäst kurvintegralen över. Här har vi normal b =(,, ). Minustecknet på grund av att normalen ska vara utåtriktad från halvklotets inre. På denna del av begränsningstan betder det en nedåtriktad normal. etta är denna tas orientering. En parametrisering av cirkeln har vi i polära koordinater och =, dvs (r cos θ, r sin θ, ). Vektorfältet i dessa punkter är F(,, ) = (,, ) {sätt in parametriseringen} = (r cos θ,, ). å F bn = (r cos θ,, ) (,, ) =. 8

9 Här har fältet (r cos θ,, ) endast en komponent i -riktningen, som är ortogonal mot tans normalriktning (,, ). å har vi inget flöde genom tan, vilket motsvaras av att integranden F bn är noll. Alltså: F d =. et ger F d = F d+ F d var: F d = π 3. = π 3 += π 3. Eempel 4 (e) Bestäm tintegralen till vektorfältet F(,, ) =grad r genom tan given av + + =, 4, med normal som bildar spetsig vinkel med -aeln. Lösning: ätter vi in =4i ekvationen får vi skärningskurvan mellan de två torna Planet =4och kalotten som är tan. et är + +4 =, dvs + =9. 9

10 Vi har en 3, 4, -triangel i skärningen med -planet. å kan tan beskrivas med polära koordinater, med största θ-vinkel arctan 3 4. Polära koordinater ger här ( cos ϕ sin θ, sinϕsin θ, cosθ), t radien är. Vi har grad = ( p r + +, p + +, p + + ) = (,...) ={p.s.s. i och } ( + + ) 3 = (,, ). ( + + ) 3 ( + + ) 3 ( + + ) 3 På tan har vi + + =, så ( + + ) 3 = () 3 = 3 = 3 =. På tan har då vektorfältet värdena 4 grad r (,, ) = = ( cos ϕ sin θ, sinϕ sin θ, cosθ) = (cos ϕ sin θ, sin ϕ sin θ, cos θ). kalärprodukten i flödesintegralen är då (cos ϕ sin θ, sin ϕ sin θ, cos θ) (cos ϕ sin θ, sin ϕ sin θ, cos θ) =. Normerad normal i punkten ( cos ϕ sin θ, sinϕ sin θ, cosθ) är (cos ϕ sin θ, sin ϕ sin θ, cos θ),

11 och telementet är d =sinθdθdϕ, t r =. å flödesintegralen är F d = ( ) sin θdϕdθ = [cosθ] arctan 3 4 Z π { cos(arctan 3 4 ) är 4 } = π(4 ) = π. dθ =π(cos(arctan 3 4 ) ) Här är arctan 3 4 vinkeln i en rätvinklig triangel med katetrar 3 och 4. å är hpotenusan, så cosinus för vinkeln är 4. åledes: cos(arctan 3 4 )= 4. var: F d = π.

Integranden blir. Flödet ges alltså av = 3

Integranden blir. Flödet ges alltså av = 3 Lektion 7, Flervariabelanals den 23 februari 2 6.4.2 Använd Gauss sats för att beräkna flödet av ut ur sfären med ekvationen där a >. Flödet ut ur sfären ges av F e e + 2 e e + e 2 + 2 + 2 a 2 F d, som

Läs mer

23 Konservativa fält i R 3 och rotation

23 Konservativa fält i R 3 och rotation Nr 23, 7 maj -5, Amelia 2 23 Konservativa fält i R 3 och rotation 23. Potential 23.. Två dimensioner (2D) I två dimensioner definierade vi ett vektorfält som konservativt om kurvintegralen av fältet endast

Läs mer

3 Parameterframställningar

3 Parameterframställningar 3 arameterframställningar Från och med nästa kapitel kommer mcket av vårt fokus ligga på olika integraluttrck med vektorvärda funktioner. Vi kommer eempelvis studera integreringen av vektorfält både längs

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF66 Flervariabelanals Lösningsförslag till tentamen --9 EL A. En kulle beskrivs approximativt av funktionen 5 hx, ) + 3x + i lämpliga enheter där hx, ) är höjden. Om du befinner dig i punkten,, ) på kullen,

Läs mer

18 Kurvintegraler Greens formel och potential

18 Kurvintegraler Greens formel och potential Nr 8, 6 april -5, Amelia 8 Kurvintegraler Greens formel och potential 8. Greens formel Vi studerar i detta avsnitt kurvor i planet, i R. En kurvintegral är som vi sett en integral på en kurva i planet.

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF66 Flervariabelanalys Lösningsförslag till tentamen 4-3-7 EL A. Betrakta funktionen f, y y. a Beräkna riktningsderivatan av f i punkten, i den riktning som ges av vektorn 4, 3. p b Finns det någon riktning

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 216-6-7 DEL A 1. Låt S vara ellipsoiden som ges av ekvationen x 2 + 2y 2 + 3z 2 = 5. (a) Bestäm en normalvektor till S i en punkt (x, y, z ) på S.

Läs mer

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer). Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och

Läs mer

Flervariabelanalys I2 Vintern Översikt föreläsningar vecka 6. ( ) kommer vi att studera ytintegraler, r r dudv

Flervariabelanalys I2 Vintern Översikt föreläsningar vecka 6. ( ) kommer vi att studera ytintegraler, r r dudv Flervariabelanalys I Vintern 11 Översikt föreläsningar vecka 6 tintegraler Givet en yta i rummet och en funktion f x, y,z f dsdär ds är det så kallade ytelementet. ( ) kommer vi att studera ytintegraler,

Läs mer

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Onsdagen den 15 mars 2017

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Onsdagen den 15 mars 2017 Institutionen för matematik SF626 Flervariabelanals Bedömningskriterier till tentamen Onsdagen den 5 mars 207 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad

Läs mer

15 Multipelintegraler, sfäriska koordinater, volymberäkningar

15 Multipelintegraler, sfäriska koordinater, volymberäkningar Nr 5, 9 april -5, Amelia 5 Multipelintegraler, sfäriska koordinater, volmberäkningar 5. Multipelintegraler et finns många tillämpningar där fler än tre variabler är aktuella. I statistik kan vi vilja undersöka

Läs mer

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Onsdagen den 5 mars 7 DEL A. I nedanstående rätvinkliga koordinatsystem är varje ruta en enhet lång. (a) Bestäm de rymdpolära

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig

Läs mer

Tentamen: Lösningsförslag

Tentamen: Lösningsförslag Tentamen: Lösningsförslag Fredag 9 juni 7 8:-: SF67 Flervariabelanalys Inga hjälpmedel är tillåtna. Ma: poäng. poäng Bestäm samtliga horisontella tangentplan till ytan z y y + y +. Lösning: Tangentplanet

Läs mer

Problem inför KS 2. Problem i matematik CDEPR & CDMAT Flervariabelanalys. KTH -matematik

Problem inför KS 2. Problem i matematik CDEPR & CDMAT Flervariabelanalys. KTH -matematik KTH -matematik Problem i matematik EPR & MAT Flervariabelanalys Problem inför KS.. Låt F(, y, z) + y 3z + och G(, y, z) 3 + y 3 4z +. Visa att i en omgivning av punkten (,, ) definieras genom ekvationerna

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 24-8-2 DEL A. Bestäm och skissera definitionsmängden till funktionen fx, y) = x 2 + y 2 + 2x 4y + + x. Är definitionsmängden kompakt? 4 p) Lösning.

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.

Läs mer

Integraler av vektorfält Mats Persson

Integraler av vektorfält Mats Persson Föreläsning 1/8 Integraler av vektorfält Mats Persson 1 Linjeintegraler Exempel: En partikel rör sig längs en kurva r(τ) under inverkan av en kraft F(r). i vill då beräkna arbetet som kraften utövar på

Läs mer

SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017

SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017 Institutionen för matematik SF66 Flervariabelanalys Tentamen Onsdagen den 5 mars 7 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

TATA44 ösningar till tentamen 13/01/ ) Paraboloiden z = 2 x 2 y 2 skär konen z = x 2 + y 2 då x 2 + y 2 = 2 x 2 y 2. Med

TATA44 ösningar till tentamen 13/01/ ) Paraboloiden z = 2 x 2 y 2 skär konen z = x 2 + y 2 då x 2 + y 2 = 2 x 2 y 2. Med TATA44 ösningar till tentamen 1/1/211. 1. Paraboloiden z 2 x 2 y 2 skär konen z x 2 + y 2 då x 2 + y 2 2 x 2 y 2. Med ρ x 2 + y 2 då är ρ 2 + ρ 2 vilket ger ρ + 2ρ 1. åledes är ρ 1 ty ρ. Vi betecknar den

Läs mer

21 Flödesintegraler och Gauss sats

21 Flödesintegraler och Gauss sats Nr 2, maj -5, Amelia 2 2 Flödesintegraler och Gauss sats 2. DivergensochGausssats 2.. Flöden genom slutna ytor I detta avsnitt beräknar vi flödesintgraler på slutna ytor. Låt oss tänka oss en vind, som

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

x f x + y f y x. 2 Funktionen f(x, y) uppfyller alltså given differentialekvation.

x f x + y f y x. 2 Funktionen f(x, y) uppfyller alltså given differentialekvation. SF1626 Flervariabelanalys Svar och lösningsförslag till Tentamen 14 mars 211, 8. - 13. 1) Visa att funktionen f, y) = y4 y ) 2 +2 sin är en lösning till differentialekvationen f + y f y = 2f. Lösning:

Läs mer

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken

Läs mer

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Tisdagen den 7 juni 2016 SF1626 Flervariabelanalys Bedömningskriterier till tentamen Tisdagen den 7 juni 2016 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det

Läs mer

f(x, y) = ln(x 2 + y 2 ) f(x, y, z) = (x 2 + yz, y 2 x ln x) 3. Beräkna en vektor som är tangent med skärningskurvan till de två cylindrarna

f(x, y) = ln(x 2 + y 2 ) f(x, y, z) = (x 2 + yz, y 2 x ln x) 3. Beräkna en vektor som är tangent med skärningskurvan till de två cylindrarna ATM-Matematik Mikael Forsberg 734-41 3 31 För studenter i Flervariabelanalys Flervariabelanalys mk1b 13 8 Skrivtid: 9:-14:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A SF669 Matematisk och numerisk anals II Lösningsförslag till tentamen 7-3-5 DEL A. I nedanstående rätvinkliga koordinatsstem är varje ruta en enhet lång. (a) Bestäm de rmdpolära (sfäriska) koordinaterna

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanals Lösningsförslag till tentamen 24-5-26 DEL A. Skissera definitionsmängden till funktionen f (,) 2 ln(2 ). Är definitionsmängden kompakt? (4 p) Lösning. Termen 2 är definierad när

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016 Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y

Läs mer

Integraler av vektorfalt. Exempel: En partikel ror sig langs en kurva r( ) under inverkan av en kraft F(r). Vi vill

Integraler av vektorfalt. Exempel: En partikel ror sig langs en kurva r( ) under inverkan av en kraft F(r). Vi vill Forelasning 6/9 ntegraler av vektorfalt Linjeintegraler Exempel: En partikel ror sig langs en kurva r( ) under inverkan av en kraft F(r). i vill da berakna arbetet som kraften utovar pa partikeln. Mellan

Läs mer

5 Gauss sats. div. dv = A V. Noterbart är att V AdV = A ˆNdS, dvs Gauss sats, har strukturella likheter med b df

5 Gauss sats. div. dv = A V. Noterbart är att V AdV = A ˆNdS, dvs Gauss sats, har strukturella likheter med b df 5 Gauss sats Betrakta ett vektorfält A. i låter en sluten ta, med utåtriktad normal ˆN, begränsa ett område. Antag nu att A är kontinuerligt deriverbart i hela. Under dessa premisser gäller Gauss sats

Läs mer

1 Några elementära operationer.

1 Några elementära operationer. Föreläsning Några elementära operationer. Ett skalärfält är en reellvärd eller komplexvärd funktion Φ(x, y, z). Ett vektorfält är en vektorvärd funktion A(x, y, z). I ett kartesiskt koordinatsystem kan

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan

Läs mer

SF1626 Flervariabelanalys Tentamen 14 mars 2011,

SF1626 Flervariabelanalys Tentamen 14 mars 2011, SF1626 Flervariabelanalys Tentamen 14 mars 2011, 08.00-13.00 Skrivtid: 5 timmar Inga tillåtna hjälpmedel Eaminator: Hans Thunberg Tentamen består av nio uppgifter som vardera ger maimalt fyra poäng. På

Läs mer

Övningstenta: Lösningsförslag

Övningstenta: Lösningsförslag Övningstenta: Lösningsförslag Onsdag 5 mars 7 8:-: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. (4 poäng) Bestäm tangentplanet i punkten (,, ) till ytan z f(x, y) där f(x, y) x 4

Läs mer

6. Räkna ut integralen. z dx dy dz,

6. Räkna ut integralen. z dx dy dz, Institutionen för Matematik, TH Flervariabelanalys SF626. Tentamen den 23 november 29 kl. 8-3 Tillåtet hjälpmedel är Beta Mathematics Handbook. Tydliga lösningar med fullständiga meningar och utförliga

Läs mer

11 Dubbelintegraler: itererad integration och variabelsubstitution

11 Dubbelintegraler: itererad integration och variabelsubstitution Nr, april -5, Amelia ubbelintegraler: itererad integration och variabelsubstitution. Itererad integration tterligare eempel Eempel (97k) Beräkna ( ) och ( ). ( 8) dd om begränsas av, 5 3.75.5.5.5.5 3.75

Läs mer

Tentan , lösningar

Tentan , lösningar UPPALA UNIVERITET MATEMATIKA INTITUTIONEN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 2008 Tentan 2008-12-16, lösningar 1. Avgör om det finns någon punkt på ytan (x 1) 2 + 2(y 1) 2 + 2z 8 som är

Läs mer

Lektionsblad 9, tis 16/2 2010

Lektionsblad 9, tis 16/2 2010 Lektionsblad 9, tis 16/2 2010 Först en gång till optimering med bivillkor. Lös uppgifterna 4.25 (om du har problem med denna väldigt typiska uppgift, så studera även lösningen till 4.24), 4.26 (nästan

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 26 maj, 2014

SF1626 Flervariabelanalys Tentamen Måndagen den 26 maj, 2014 SF1626 Flervariabelanals Tentamen Måndagen den 26 maj, 214 Skrivtid: 14:-19: Tillåtna hjälpmedel: inga Eaminator: Mattias Dahl Tentamen består av nio uppgifter som vardera ger maimalt fra poäng. Del A

Läs mer

Flervariabelanalys E2, Vecka 5 Ht08

Flervariabelanalys E2, Vecka 5 Ht08 Omfattning och innehåll Flervariabelanalys E2, Vecka 5 Ht08 15.1 Vektorfält och skalärfält 15.2 Konservativa vektorfält (t.o.m. exempel 5) 15.3 Kurvintegraler 15.4 Kurvintegral av vektorfält 15.5 Ytor

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 15-8- EL A 1. Betrakta funktionen f som är definierad i området där x + y genom f(x, y, z) x z x + y. (a) Beräkna gradienten f(x, y, z). (1 p) (b)

Läs mer

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Måndagen den 16 mars 2015 SF1626 Flervariabelanalys Bedömningskriterier till tentamen Måndagen den 16 mars 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).

Läs mer

(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z

(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z UPPAA UNIVERITET Matematiska institutionen Abrahamsson, 4715, 7-57 (tyf, 47119, 77-517) Prov i matematik IT, K, X, W, EI, MI, NVP samt fristående kurs. Flerdimensionell analys och Analys MN 5-1-9 krivtid:

Läs mer

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2 Lösningsförslag till tentamen TMA3 Flervariabelanalys E2 23--6 kl. 8.3 2.3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Adam Andersson, telefon: 73 88 3 Hjälpmedel: bifogat

Läs mer

Inlämningsuppgift nr 2, lösningar

Inlämningsuppgift nr 2, lösningar UPPALA UNIVRITT MATMATIKA INTITUTIONN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 8 Inlämningsuppgift nr, lösningar. Visa att ekvationen x + x(y ) + (y ) + z + sin(yz) definierar z som en funktion

Läs mer

Lösningar till Matematisk analys 4,

Lösningar till Matematisk analys 4, Lösningar till Matematisk analys 4, 05054. a Sätt a k k + k +, b k k e /k Serien k a k är positiv. Vi har att och c k k! 4 k k! för k,,... a k k + k + k k för stora k k och mera precist att / a k k k +

Läs mer

SF1626 Flervariabelanalys Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1626 Flervariabelanalys Tentamen 18 augusti 2011, Svar och lösningsförslag SF166 Flervariabelanalys entamen 18 augusti 11, 14. - 19. Svar och lösningsförslag 1) Låt fx, y) = xy lnx + y ). I vilken riktning är riktningsderivatan till f i punkten 1, ) som störst, och hur stor är

Läs mer

Tentamen: Lösningsförslag

Tentamen: Lösningsförslag Tentamen: Lösningsförslag Onsdag 5 mars 7 8:-3: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. 4 poäng Avgör om följande gränsvärde existerar och beräkna gränsvärdet om det existerar:

Läs mer

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm

Läs mer

f(x, y) = ln(x 2 + y 2 + 1). 3. Hitta maximala arean för en rektangel inskriven i en ellips på formen x 2 a 2 + y2

f(x, y) = ln(x 2 + y 2 + 1). 3. Hitta maximala arean för en rektangel inskriven i en ellips på formen x 2 a 2 + y2 TM-Matematik Mikael Forsberg Matematik med datalogi, mfl. Flervariabelanalys mk12b Övningstenta vt213 nr1 Skrivtid: 5 timmar. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar hristian Forssén, Institutionen för fysik, halmers, Göteborg, verige ep 6, 217 3. Integraler Det mesta av detta material förutsätts vara

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE , kl

Tentamen i Flervariabelanalys F/TM, MVE , kl Tentamen i Flervariabelanalys F/TM, MVE35 26-4-2, kl. 4-8 Hjälpmedel: Inga, ej räknedosa. Telefon: anknytning 5325 Telefonvakt: Edvin Wedin För godkänt krävs minst 2 poäng. Betyg 3: 2-29.5 poäng, betyg

Läs mer

1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 26-3-2 DEL A. Låt D vara fyrhörningen med hörn i punkterna, ), 6, ),, 5) och 4, 5). a) Skissera fyrhörningen D och beräkna dess area. p) b) Bestäm

Läs mer

= 0 genom att införa de nya

= 0 genom att införa de nya UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik ES, IT, W Flervariabelanals 9 1 19 Skrivtid: 8 13. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer.

Läs mer

A = D. r s r t dsdt. [(1 + 4t 2 ) 3/2 1]dt (1) där det sista steget fås genom variabelbytet u = 1 + 4s 2. Integralen. (1 + 4t 2 ) 3/2 dt

A = D. r s r t dsdt. [(1 + 4t 2 ) 3/2 1]dt (1) där det sista steget fås genom variabelbytet u = 1 + 4s 2. Integralen. (1 + 4t 2 ) 3/2 dt TATA44 Lösningar till tentamen 27/8/2..) Arean A av ytstycket ges av formeln A r s r t dsdt där : s t, t. En enkel räkning ger r s r t ( 2s 2 cos t, 2s 2 sin t, s) av vilket det följer att A s2 + 4s 4

Läs mer

TMV036/MVE350 Analys och Linjär Algebra K Kf Bt KI, del C

TMV036/MVE350 Analys och Linjär Algebra K Kf Bt KI, del C MATEMATIK Hjälpmedel: Inga Chalmers tekniska högskola atum: 23-3-5 kl. 8.3 2.3 Tentamen Telefonvakt: Elin Solberg tel. 73-8834 TMV36/MVE35 Analys och Linjär Algebra K Kf Bt KI, del C Tentan rättas och

Läs mer

1.1 Stokes sats. Bevis. Ramgard, s.70

1.1 Stokes sats. Bevis. Ramgard, s.70 1 Föreläsning 7 1.1 tokes sats ats 1 åt vara en yta i R med randen. Vi antar att orienteringen på och är vald på ett sådant sätt att om man går längs i den valda riktningen då ligger till vänster (på vänstersidan).

Läs mer

Tentamensskrivning, Kompletteringskurs i matematik 5B1114. Onsdagen den 18 december 2002, kl

Tentamensskrivning, Kompletteringskurs i matematik 5B1114. Onsdagen den 18 december 2002, kl Institutionen för Matematik TH irsti Mattila Tentamensskrivning, ompletteringskurs i matematik 5B4 Onsdagen den 8 december, kl 8.-. Preliminära betgsgränser för, 4 och 5 är 8, 4 och 54 poäng. Inga hjälpmedel

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 16-8-18 DEL A 1 Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x oc y = x Beräkna x-koordinaten

Läs mer

AB2.5: Ytor och ytintegraler. Gauss divergenssats

AB2.5: Ytor och ytintegraler. Gauss divergenssats AB2.5: Ytor och ytintegraler. Gauss divergenssats Ytor på parameterform Låt xyz vara ett cartesiskt koordinatsystem i rummet. En yta på parameterform ges av tre ekvationer x = x(u, v), y = y(u, v), z =

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015

SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Torsdagen den 2 augusti 215 Skrivtid: 8:-1: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Tentamen TMA043 Flervariabelanalys E2

Tentamen TMA043 Flervariabelanalys E2 Tentamen TMA43 Flervariabelanalys E2 22-- kl. 8.3 2.3 Eaminator: Johan Jonasson, Matematiska vetenskaper, halmers Telefonvakt: Fredrik Lindgren, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan

Läs mer

Lektion 1. Kurvor i planet och i rummet

Lektion 1. Kurvor i planet och i rummet Lektion 1 Kurvor i planet och i rummet Innehål Plankurvor Rymdkurvor Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation

Läs mer

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende.

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende. Institutionen för matematik KTH MOELLTENTAMEN Tentamensskrivning, år månad dag, kl. x. (x + 5).. 5B33, Analytiska metoder och linjär algebra. Uppgifterna 5 svarar mot varsitt moment i den kontinuerliga

Läs mer

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z)

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z) Kap. 15.1 15.2, 15.4, 16.3. Vektorfält, integralkurva, konservativa fält, potential, linjeintegraler av vektorfält, enkelt sammanhängande område, oberoendet av vägen, Greens formel. A 1701. Undersök om

Läs mer

Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A

Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Tisdagen den januari 7 DEL A. En partikel rör sig så att positionen efter starten ges av (x, y, z (t cos t, t sin t, t

Läs mer

Vi har. x (xy2 ) + y ( yz2 ) + z (zx2 ) = y 2 z 2 + x 2 = x 2 + y 2 z 2, xy 2 yz 2 zx 2

Vi har. x (xy2 ) + y ( yz2 ) + z (zx2 ) = y 2 z 2 + x 2 = x 2 + y 2 z 2, xy 2 yz 2 zx 2 Lektion 6, Flervariabelanals den februari 6.. Beräkna div F och rot F av F e + e. Divergensen och rotationen ges av div F F,,,, + + + +, rot F F,,,, e e e z, +,,,. rot F F,, e e e z z, z, z z z, + z, z

Läs mer

Flervariabelanalys E2, Vecka 6 Ht08

Flervariabelanalys E2, Vecka 6 Ht08 Flervariabelanalys E2, Vecka 6 Ht08 Omfattning 6., 6.3-6.5 Innehåll: Gradient, divergens, rotation, Greens sats/formel, divergenssatsen i två och tre dimensioner, tokes sats tma043 V6, Ht08 bild Mål: För

Läs mer

Tentamen MVE035 Flervariabelanalys F/TM

Tentamen MVE035 Flervariabelanalys F/TM entamen MVE35 Flervariabelanals F/M 17-8- kl. 14. 18. Examinator: Peter Hegart, Matematiska vetenskaper, Chalmers elefonvakt: Peter Hegart, telefon: 766377873 alt. Ankn. 535, Anna Rehammar Hjälpmedel:

Läs mer

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z. Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del, flervariabel, för F1. Tentamen onsdag 7 maj 9, 1.-19. 1. Låt F (x, y, z) sin(x + y z) + x + y + 6z. a)

Läs mer

Lösning till kontrollskrivning 1A

Lösning till kontrollskrivning 1A KTH Matematik Olle Stormark Lösning till kontrollskrivning 1A i SF1626 Flervariabelanalys för E, vt 28. Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 5 poäng sammanlagt. 1. Funktionen f(x,

Läs mer

x ( f u 2y + f v 2x) xy = 24 och C = f

x ( f u 2y + f v 2x) xy = 24 och C = f Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016 Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015 SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt

Läs mer

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag SF1646 Analys i flera variabler Tentamen 18 augusti 11, 14. - 19. Svar och lösningsförslag (1) Låt f(x, y) = xy ln(x + y ). I vilken riktning är riktningsderivatan till f i punkten (1, ) som störst, och

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 15-6-4 DEL A 1. Funktionen f är definierad på området som ges av olikheterna x > 1/ och y > genom f(x, y) ln(x 1) + ln(y) xy x. (a) Förklara vad det

Läs mer

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1. Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 21 mars 2016

SF1626 Flervariabelanalys Tentamen Måndagen den 21 mars 2016 Institutionen för matematik SF626 Flervariabelanalys Tentamen Måndagen den 2 mars 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

Tavelpresentation. Grupp 6A. David Högberg, Henrik Nordell, Harald Hagegård, Caroline Bükk, Emma Svensson, Emil Levén

Tavelpresentation. Grupp 6A. David Högberg, Henrik Nordell, Harald Hagegård, Caroline Bükk, Emma Svensson, Emil Levén Tavelpresentation Grupp 6A avid Högberg, Henrik Nordell, Harald Hagegård, Caroline Bükk, Emma Svensson, Emil Levén 3 mars 2017 1 Potentialfält Vi har tidigare introducerat vektorfält i planet som funktioner

Läs mer

Outline. TMA043 Flervariabelanalys E2 H09

Outline. TMA043 Flervariabelanalys E2 H09 Outline TMA043 Flervariabelanalys E2 H09 Matematiska vetenskaper halmers Göteborgs universitet tel. (arb) 772 35 57 epost: carl-henrik.fant@chalmers.se 7 oktober 2009 1 Flervariabelanalys E2, Vecka 5 Ht09

Läs mer

Föreläsning 16, SF1626 Flervariabelanalys

Föreläsning 16, SF1626 Flervariabelanalys Föreläsning 16, SF1626 Flervariabelanalys Haakan Hedenmalm (KTH, Stockholm) 5 december 2017 KTH Rekommenderade uppgifter: 16.1: 3, 7, 11. 16.2: 9, 15, 17. Gradient, divergens, och rotation Gradienten Om

Läs mer

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt. 1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.

Läs mer

yz dx + x 2 ydy+ x 2 dz, (0, 0, 0) (1, 1, 1) (0, 0, 0) (1, 0, 0) (1, 1, 0) (0, 0, 0) (1, 1, 1) z = xy y = x 2 x(t) =y(t) =z(t) =t, 0 t 1

yz dx + x 2 ydy+ x 2 dz, (0, 0, 0) (1, 1, 1) (0, 0, 0) (1, 0, 0) (1, 1, 0) (0, 0, 0) (1, 1, 1) z = xy y = x 2 x(t) =y(t) =z(t) =t, 0 t 1 γ z d d dz, γ,,,,,,,,,,,,,,,, z t t zt t, t P z t Q t R t P tq trz t dt t t t t dt t t r t,,, t P t Qt, Rt t P tq trz t dt,,,, r,t,, t P t, Qt t, Rt dt P tq trz t dt,,,, tdt r,,t, t P t t, Qt Rt P tq trz

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till modelltentamen DEL A

SF1669 Matematisk och numerisk analys II Lösningsförslag till modelltentamen DEL A Institutionen för matematik SF1669 Matematisk och numerisk analys II Lösningsförslag till modelltentamen DEL A 1. Betrakta funktionen fx, y = x + y och området D som ges av olikheterna x, y och x + y 1.

Läs mer

Tentamen TMA044 Flervariabelanalys E2

Tentamen TMA044 Flervariabelanalys E2 Tentamen TMA44 Flervariabelanalys E 4--3 kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, halmers Telefonvakt: Elin Solberg, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan från

Läs mer

22 Vektoranalys och flödesintegraler

22 Vektoranalys och flödesintegraler Nr, maj -5, Amelia ektoranalys och flödesintegraler. Mera om gradient ( ), divergens ( ) och rotation ( ) Notera att ett vektorfält är en funktion R 3 R 3 (fetstil F) medan ett skalärt fält är en funktion

Läs mer

dx x2 y 2 x 2 y Q = 2 x 2 y dy, P dx + Qdy. Innan vi kan använda t.ex. Greens formel så måste vi beräkna de vanliga partiella derivatorna.

dx x2 y 2 x 2 y Q = 2 x 2 y dy, P dx + Qdy. Innan vi kan använda t.ex. Greens formel så måste vi beräkna de vanliga partiella derivatorna. Uppgift Beräkna kurvintegralen + d där är kurvan = från (, ) till (4, ). Lösning Här har vi ett fält F =(P, Q), där d, () så integralen är på formen P = +, Q = d, P d + Qd. Innan vi kan använda t.e. Greens

Läs mer

Övning 6, FMM-Vektoranalys, SI1140

Övning 6, FMM-Vektoranalys, SI1140 Övning 6, FMM-ektoranalys, I114 ˆ 6. Beräkna integralen där A dr A x 2 ay + z) ) e x + y 2 az ) e y + z 2 ax + y) ) e z och är den kurva som utgör skärningslinjen mellan cylindern { x a) 2 + y 2 a 2 och

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017

SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017 Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den januari 27 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

Tentamen i Flervariabelanalys, MVE , π, kl

Tentamen i Flervariabelanalys, MVE , π, kl Tentamen i Flervariabelanalys, MVE35 216-3-14, π, kl. 14.-18. Hjälpmedel: Inga, ej räknedosa. Telefon: anknytning 5325 Telefonvakt: Raad Salman För godkänt krävs minst 2 poäng. Betyg 3: 2-29 poäng, betyg

Läs mer

i punkten ( 1,2,3). b) Bestäm riktningsderivatan av f i punkten ( 1,2) ut ur Scandinavium genom tak och yttervägg [Scandinaviums tak är ytan ( x, y,

i punkten ( 1,2,3). b) Bestäm riktningsderivatan av f i punkten ( 1,2) ut ur Scandinavium genom tak och yttervägg [Scandinaviums tak är ytan ( x, y, Tentamensskrivning i flervariabelanals F (MVE05) och reell matematisk anals F, delb (TMA975), 006-0-0, kl 80-0 i V Telefon: Johan Jansson, tel 076-7860 Låt f (, = 6 a) Ange en ekvation för tangentplanet

Läs mer

TMV036 Analys och Linjär Algebra K Kf Bt, del C

TMV036 Analys och Linjär Algebra K Kf Bt, del C MATEMATIK Hjälpmedel: Inga Chalmers tekniska högskola Datum: -- kl 4 8 Tentamen Telefonvakt: Richard Lärkäng tel 3-8834 TMV36 Analys och Linjär Algebra K Kf Bt, del C Tentan rättas och bedöms anonymt Skriv

Läs mer