LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN

Storlek: px
Starta visningen från sidan:

Download "LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN"

Transkript

1 Fysikum FK Fysikexperiment FK Exp. fysik för lärare Laborationsinstruktion (28 september 2010) LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN Mål Idenhärlaborationenskalldubörjamedattställauppenhypotes för hur nedböjningen hos en balk beror på olika storheter som längd, balkens tvärsnittsarea och den böjande kraften. Laborationen går ut på att experimentellt pröva den uppställda hypotesen, dvs om den antagna formeln inom den experimentella noggrannheten beskriver nedböjningen hos balkar. Om hypotesen är korrekt kan två av de fem obekanta konstanterna i formeln för nedböjningen entydigt bestämmas genom dimensionsanalys. Du skall tillsammans med din medlaborant göra en skriftlig rapport samt ge en utförlig muntlig redovisning om ca 30 minuter infö r g r u p p e n och en lärare.

2 .

3 LABORATION 2: Upptäck ett samband balken 1 1 Inledning Varje fast kropp som utsätts för en kraft deformeras i någon mån. Om deformationen är liten, återgår kroppen till sin ursprungliga form när belastningen upphör. Vi säger att deformationen är elastisk. Ettvälbekantexempelärförlängningenavett gummiband då det utsätts för en dragande kraft. Vid en noggrannare analys av en kropps deformation inför man en materialkonstant, den s.k. elasticitetsmodulen (E), som är ett mått på deformationen som funktion av den sträckande kraften per ytenhet. Vi kan komma fram till en mer exakt definition av E genom följande resonemang. Ett material i form av en stav med vilolängden L 0 och tvärsnittsarean A ä r inspänd i ena änden och påverkas i den andra av en dragande kraft F som ger upphov till en förlängning L av staven. Hur beror förlängningen av de inverkande storheterna? Ju större F desto större L, alltså L F. Ju större area A, desto starkare blir staven och desto mindre L, Således L 1/A och ju större vilolängden är, desto större blir L, vilketger L L 0.Dettagörtillsammansatt L FL 0 A eller L L 0 F A Vi har här antagit att exponenten på alla ingående storheter är 1. I uttrycket saknas nu något som talar om hur styvt materialet är. Denna materialegenskap är i detta fall elasticitetsmodulen E och den är sådan, att dess värde är stort för ett styvt material, dvs för liten färlängning. Vi finner alltså resonemangsmässigt att elasticitetsmodulen (även kallad Young s modulus 1 ): E = F A / L L med enheten N/m 2 Detta samband kallas Hookes lag 2. Iresonemangetovaninförselasticitetsmodulenförattbeskriva hur ett material töjs när det utsätts för en sträckande kraft. Erfarenheten visar att elasticitetsmodulen också är viktig för att beskriva material som deformeras på andra sätt. Vi ansätter därför att hur mycket en belastad balk böjs ned också kommer att bero av elasticitetsmodulen. 1 Uppkallad efter Thomas Young ( ), ett engelskt universalgeni, som bl.a. studerade elastiska egenskaper hos fasta kroppar. 2 Efter Robert Hooke ( ), professor, Gresham College, London.

4 2 LABORATION 2: Upptäck ett samband balken 2 Hypotes Betrakta en balk upplagd på två stöd (se figuren i nästa avsnitt). Vi är intresserade av ett uttryck som ger sambandet mellan nedböjningen d och de storheter som inverkar på nedböjningen. Uttrycket skall vara generellt, dvs gälla för rektangulära balkar av godtyckliga dimensioner och material. Närmast till hands är naturligtvis kraften F som orsakar nedböjningen (vi bortser här från balkens egen tyngd). Vidare bör inses att avståndet mellan uppläggningspunkterna L har betydelse och att balkens bredd b och höjd h måste inverka. Slutligen måste ingå något som beskriver materialets styvhet, dvs balkens elastiska egenskaper. Den fysikaliska storhet som skall in i uttrycket är balkens elasticitetsmodul E. Vi antar alltså att följande storheter påverkar nedböjningen: Storhet Beteckning Dimension Elasticitetsmodulen E Pa = N/m 2 =kg/ms 2 Böjande kraft F N=kgm/s 2 Avst. mellan uppl.punkt. A och B L m Tvärsnittets bredd b m Tvärsnittets höjd h m Vi gissar på ett produktsamband och ansätter därför ett uttryck för nedböjningen:. d = K F α L β h γ b δ E ɛ (1) där K antas vara en dimensionslös konstant. Genom att variera en storhet i taget kan vi i princip bestämma exponenterna α till ɛ (härvid antas att exponenterna är ett halv- eller heltal).

5 LABORATION 2: Upptäck ett samband balken 3 3 Experimentuppställning Till vårt förfogande har vi ett stadigt stativ med två ståndare med fasthållare för ca 150 cm långa bandjärn med rektangulär tvärsnittsarea. Experimentuppställningen framgår av figuren nedan:..... L (0, 50 <L<1, 25 m) A Mätklocka B L/2 d F=mg Stativ 1400 mm Uppställning för mätning av en balks nedböjning. En metallstav med rektangulär tvärsnittsarea läggs upp på de två stöden, A och B ifiguren(stavenskallliggafrittöverdetvåskarpaeggarna för att tillåta glidning när staven böjs ner). En kraft (F = mg)anbringaspåmittenavstavenmed hjälp av en vågskål med tyngder, och nedböjningen d mäts upp. För mätning av nedböjningen används en mätklocka med visare. Graderingen tillåter avläsning på 1/100 mm. Mätnoggrannheten kommer dock att bestämmas av den mekaniska hysteresen som beror på friktionens inverkan på systemet (uppläggningsytor, balk, mätklocka). Osäkerheten σ ivarjeenskildmätningavnedböjningenärsåledes obestämd. I anpassningarna kan vi dock använda ett uppskattat medelfel i nedböjningen som kan bestämmas med följande metod. Placera en av balkarna (inte den lättaste och inte den tyngsta) på stativet och mät nedböjningen tio gånger i följd för ett lagom värde pål och med en lagom belastning (samma längd och vikt kan används för alla tio nedböjningar - men ta bort belastningen ochflytta balken ett par mm för varje ny nedbjning). Nedböjningen skall beräknas som skillnaden mellan mätklockans utslag då balken är obelastad och belastad. Vid varje mättillfälle kan man med fördel knacka lite lätt på balkens sida med en penna för att utlösa eventuell latent hysteres (friktion). Var noga med att i fortsättningen utföra denna knackning vid varje mätning. Detta betyder speciellt t.ex. att då balken belastas med allt större tyngder, föregående tyngd först borttages varefter nolläget noteras och därefter bestäms utslaget efter belastning.

6 4 LABORATION 2: Upptäck ett samband balken Följande balkmaterial finns att tillgå (L =150cm): Material Bredd x Höjd i mm E järn 16 x 3 (20, 0 ± 0, 5) N/m 2 järn 19 x 3 järn 20 x 4 järn 20 x 5 järn 25 x 5 järn 25 x 6 järn 25 x 8 järn 25 x 10 järn 30 x 5 järn 30 x 6 järn 30 x 8 järn 40 x 5 järn 40 x 6 mässing 30 x 5 okänd aluminium 25 x 5 okänd aluminium 30 x 5 okänd aluminium 30 x 8 okänd plast 26 x 8 okänd plast 40 x 8 okänd Observera att angivna mått är ungefärliga. Mätbreddochhöjdmedskjutmått (flera gånger på olika ställen) och uppskatta en mätosäkerhet. Behandla balkarna varsamt! Undvik att bocka till dem eller knäcka dem. För att belasta balken finns vikter om ca 50 g och 100 g styck (kontrollväg). Vikterna placeras på en speciell hållare med krok som placeras på balkens ovansida mitt på balken. Den böjande kraften är F = mg,därm ä r v i k t e n s m a s s a o c h g =(9, 8188 ± 0, 0002) m/s 2. 4 Förslag på mätserier Det finns ett stort antal balkar med olika tvärsnitt (se tabellen ovan). Lägg ner lite arbete på att hitta lämpliga mätserier. Nedböjningen som funktion av den böjande kraften går snabbt att göra och vi rekommenderar att du mäter med några olika vikter (behåll sedan denna viktserie under alla mätningar såslipperduvägaom vikterna varje gång) då du studerar de andra måttsambanden. Tips: Om det är nödvändigt att att använda balkar med t.ex. något varierande bredd (då höjden varieras), kan de olika balkbredderna normaliseras genom att anpassa till funktionen d/b δ = f(f, L, h, E) istället(idettafallväljermandet riktiga värdet på parametern δ).

7 LABORATION 2: Upptäck ett samband balken 5 5 Mätningar 1. Gör först en dimensionsanalys av formel (1) för nedböjningen 3.Idettaspeciella fall kan ingen parameter bestämmas direkt. 2. Bestämning av α. Bestäm parametern α genom att mäta nedböjningen d för 5-7 olika belastningar F (=m g) för en av järnbalkarna (gärna en balk med medelbredd och medeltjocklek). Genom dimensionsanalysen ä r n u ä v e n p a - rametern ɛ bestämd. Glöm inte att för varje mätning notera värdet på alla storheter som ingår i formeln för nedböjningen. 3. Bestämning av δ. Välj tre järnbalkar med olika bredder (men med konstant höjd och avstånd mellan stödpunkterna) och bestäm parametern δ. 4. Bestämning av β. Välj en järnbalk och variera L i5stegmellan0,8och 1,2 m, välj b =25(30)mmochh =5(6)mm. 5. Bestämning av γ. Välj ett avstånd i intervallet 0, 8m <L<0, 9m och välj en lämplig kraft F och bestäm nedböjningen för fyra olika höjder h för järnbalkarna med bredden 25 mm eller 30 mm. Vid behov kan du kompensera för att balkarna har olika bredd genom att dividera bort breddberoendet (se tips ovan). 6. Bestämning av E. Välj en balk av ett annat material (mässing, aluminium eller plast). Gör en enkel mätserie genom att belasta den valda balken med 5olikatyngder. Beräknamaterialetselasticitetsmodulmed fel med hjälp av formel (1) och efter det att du bestämt konstanten K ur de andra mätningarna. 6 Mätvärdesbehandling Bestäm en exponent i taget med den uppsättning data där motsvarande storhet varieras. Bestäm t.ex. α genom att anpassa en rät linje till lnd som funktion av ln F :lnd = C + α ln F. Använd den viktade minsta kvadratmetoden. Beräkna ett preliminärt värde på α genom att bara ta hänsyn till felet i ln d. Gör sedan om anpassningen med ett ekvivalent fel (se appendix B) i ln d som ä v e n t a r h ä n s y n t i l l f e l e t i l n F. Värdet på exponenten bör inom felgränsen vara ett hel- eller halvtal. Sätt i fortsättningen exponenten till dettatal. När alla exponenter är bestämda, används alla mätdata för att bestämma konstanten K. Plotta och beräkna ett oviktat medelvärde av K och bestäm felet ur spridningen. 3 Ett exempel på hur man gör en dimensionsanalys finns i Appendix A.

8 6 LABORATION 2: Upptäck ett samband balken 7 Redovisning Här vill vi passa på att ge tips om vilka punkter som skall vara mediredovisningen. Du får gärna tillfoga fler vid behov. Inledning: Dimensionsanalys: Experimentbeskrivning: Mätresultat: Mätvärdesbehandling: Diskussion: Inlämning: Presentation av problemställning m.m. Gör en dimensionsanalys av den ansatta formeln (1). Argumentera för ett visst värde på parametern α. En beskrivning av apparatuppställningen. Snygga tabeller med alla primärvärden och i förekommande fall beräknade värden med fel. Här presenterar du dina data i diagramform, dina anpassningar med resultat, beräkningar och en resultatsammanställning. Gör två grafer för varje anpassning (sida vid sida för att spara papper): en graf där den aktuella storheten på y-axeln med fel (det ekvivalenta felet) plottas som funktion av den oberoende variabeln tillsammans med den anpassade räta linjen och en graf där differensen mellan mätvärdena och den räta linjen plottas. 4 Här skall du bl.a. besvara hur väl den ansatta formeln stämmer med verkligheten. Vad finns det för felkällor? Är det någon av balkarna som avviker från formeln och vad kan detta bero på? De skriftliga rapporterna mejlas i PDF/ODT-format till bsel. 4 Härigenom ser man tydligare små avvikelser (residualen) mellan den mätta storheten med sitt fel och den anpassade funktionen. Grafen kallas residualplott. Notera att den ursprungliga grafen och residualplotten skall ha samma skala på x-axeln.

9 LABORATION 2: Upptäck ett samband balken 7 Utrustning: Ett mätstativ för balkar. Balkar av olika material och med olika dimensioner. En mätklocka för bestämning av nedböjningen. Stativ för fastsättning av mätklockan. En krok med vågskål att hänga på balken. Våg och vikter.

10 8 LABORATION 2: Upptäck ett samband balken Appendix A Dimensionsanalys Vi skall här ge ett enkelt exempel på hur man kan göra en dimensionsanalys. Antag att vi har en massa (m [kg]) som hänger vertikalt i en spiralfjäder med fjäderkonstanten k [N/m]. Massan sättes i svängning och vi ansätter följande hypotes om svängningstiden (T [s]) (perioden): T = A k a m b där A är en dimensionslös konstant. Exponenterna a och b skall bestämmas. Vi sätter upp följande samband mellan enheterna (1 N/m = 1 kgm/s 2 /m = 1 kg/s 2 ): (s) 1 =( kg s 2 )a (kg) b = { (s) 1 =( 1 s 2 ) a (kg) 0 =(kg) a (kg) b = { 1= 2a 0=a + b = { a = 1/2 b =1/2 Perioden kan alltså skrivas: T = A m/k

11 LABORATION 2: Upptäck ett samband balken 9 Appendix B Ekvivalenta fel Antag att vi har en funktion y = f(x) somskallanpassastillettantalmätpunkter (x i,y i ), där vi har mätfel x i och y i både i den oberoende variabeln x och i den beroende variabeln y (se figuren nedan). Det är inte ovanligt att (den relativa) osäkerheten i x många gånger kan vara större än (den relativa) osäkerheten i y. Med minsta kvadratmetoden tar vi normalt bara hänsyn till osäkerheten i y men i detta fall vill vi även inkludera osäkerheten i x. Detta kan enkelt göras genom att se på hur mycket värdet y i ä n d r a s n ä r v ä r d e t x i ä n d r a s. E n e n k e l m e t o d ä r a t t s t u d e r a funktionens derivata (dvs funktionens lutning) i punkten (x i,y i ). Om lutningen i punkten är k i,kommervärdetpåfunktionenf(x) inärhetenav punkten att approximativt variera som f(x) =f(x i )+k i x. Metodenärgenerell och gäller även för icke-linjära funktioner. I denna övning är dock vår anpassade funktion linjär och derivatan har då samma värde (k) i alla punkter. För att bestämma lutningen, dvs värdet på k, görviförstenpreliminäranpassning med de givna felen i variabeln y. Deekvivalentafelenipunkternay i som härrör från felen i x i kan sedan beräknas som k x i. y f(x) k x i x i x Om vi dessutom har mätta (eller uppskattade) fel y i imätvärdenay i adderar vi dessa kvadratiskt till de ekvivalenta felen, dvs y tot,i = ( y i ) 2 +(k x i ) 2 De på detta sätt beräknade felen i variabeln y kan sedan används för att göra en ny (viktad) anpassning av data till funktionen y = f(x).

EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN

EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN FYSIKUM Fysikum 21 mars 2005 Stockholms universitet EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN FYSIKLINJEN ÅK1 Vårterminen 2005 Mål I den här laborationen skall du börja med att ställa

Läs mer

LABORATION 2 UPPTÄCK ETT SAMBAND

LABORATION 2 UPPTÄCK ETT SAMBAND Fysikum FK2002 - Fysikexperiment FK2004 - Exp. fysik för lärare Laborationsinstruktion (28 september 2010) LABORATION 2 UPPTÄCK ETT SAMBAND FJÄDERN Mål Idenhärlaborationenskalldubörjamedattställauppenhypotes

Läs mer

LABORATION 2 UPPTÄCK ETT SAMBAND

LABORATION 2 UPPTÄCK ETT SAMBAND Fysikum FK2002 - Fysikexperiment FK2004 - Exp. fysik för lärare Laborationsinstruktion (28 september 2010) LABORATION 2 UPPTÄCK ETT SAMBAND TÖMNING Mål Idenhärlaborationenskalldubörjamedattställauppenhypotes

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser.

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser. TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER Kurskod F0004T Kursnamn Fysik 1 Datum LP2 10-11 Material Laboration Balkböjning Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning Denna

Läs mer

Termodynamik, våglära och atomfysik (eller rätt och slätt inledande fysikkursen för n1)

Termodynamik, våglära och atomfysik (eller rätt och slätt inledande fysikkursen för n1) Termodynamik, våglära och atomfysik (eller rätt och slätt inledande fysikkursen för n1) Svängande stavar och fjädrar höstterminen 2007 Fysiska institutionen kurslaboratoriet LTH Svängande stavar och fjädrar

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

Lösningar 15 december 2004

Lösningar 15 december 2004 Lösningar 15 december 004 Tentamensskrivning i Fysikexperiment, 5p, för Fy1100 Onsdagen den 15 december 004 kl. 9-13(14). B.S. 1. En behållare för förvaring av bensin har formen av en liggande cylinder

Läs mer

Appendix i instruktionen

Appendix i instruktionen Appendix i instruktionen Läs även Appendix A och Appendix B i instruktionerna till laboration 2 2010-10-05 Fysikexperiment, 7.5 hp 1 1 Linearisering genom logaritmering Ofta förekommer samband av typen:

Läs mer

Labbrapport svängande skivor

Labbrapport svängande skivor Labbrapport svängande skivor Erik Andersson Johan Schött Olof Berglund 11th October 008 Sammanfattning Grunden för att finna matematiska samband i fysiken kan vara lite svårt att förstå och hur man kan

Läs mer

De fysikaliska parametrar som avgör periodtiden för en fjäder

De fysikaliska parametrar som avgör periodtiden för en fjäder De fysikaliska parametrar som avgör periodtiden för en fjäder Teknisk Fysik, Chalmers tekniska högskola, Sverige Robin Andersson Email: robiand@student.chalmers.se Alexander Grabowski Email: alegra@student.chalmers.se

Läs mer

En pendels svängningstid

En pendels svängningstid Använd denna exempelrapport som mall för din rapport. Mer detaljer hittar du i Lathund för rapportskrivning av Merkel, Andersson, Lundquist och Önnegren. Notera att denna exempelrapport beskriver ett mycket

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

Då en homogen jämntjock stav töjs med en kraft F i stavens riktning, beskrivs spänningen σ på ett godtyckligt avstånd från stödpunkten som .

Då en homogen jämntjock stav töjs med en kraft F i stavens riktning, beskrivs spänningen σ på ett godtyckligt avstånd från stödpunkten som . BÖJNING AV EN BALK 1 Inledning Då en homogen jämntjock stav töjs med en kraft F i stavens riktning, beskrivs spänningen σ på ett godtyckligt avstånd från stödpunkten som σσ = FF AA, (1) där A är stavens

Läs mer

Experimentella metoder 2013, Räkneövning 3

Experimentella metoder 2013, Räkneövning 3 Experimentella metoder 2013, Räkneövning 3 Problem 1: Fem studenter mätte längden av ett rum, deras resultat blev 3,30 m, 2,90 m, 3,70 m, 3,50 m, och 3,10 m. Inga uppgifter om mätnoggrannheten är kända.

Läs mer

Lathund fo r rapportskrivning: LATEX-mall. F orfattare Institutionen f or teknikvetenskap och matematik

Lathund fo r rapportskrivning: LATEX-mall. F orfattare Institutionen f or teknikvetenskap och matematik Lathund fo r rapportskrivning: LATEX-mall F orfattare forfattare@student.ltu.se Institutionen f or teknikvetenskap och matematik 31 maj 2017 1 Sammanfattning Sammanfattningen är fristående från rapporten

Läs mer

Belastningsanalys, 5 poäng Töjning Materialegenskaper - Hookes lag

Belastningsanalys, 5 poäng Töjning Materialegenskaper - Hookes lag Töjning - Strain Töjning har med en kropps deformation att göra. Genom ett materials elasticitet ändras dess dimensioner när det belastas En lång kropp förlängs mer än en kort kropp om tvärsnitt och belastning

Läs mer

Laboration 1 Mekanik baskurs

Laboration 1 Mekanik baskurs Laboration 1 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Gravitationen är en självklarhet i vår vardag, de är den som håller oss kvar på jorden. Gravitationen

Läs mer

Övningar till datorintroduktion

Övningar till datorintroduktion Institutionen för Fysik Umeå Universitet Ylva Lindgren Sammanfattning En samling uppgifter att göra i MATLAB, vilka ska utföras enskilt eller i grupp om två. Datorintroduktion Handledare: (it@tekniskfysik.se)

Läs mer

Experimentella metoder 2014, Räkneövning 1

Experimentella metoder 2014, Räkneövning 1 Experimentella metoder 04, Räkneövning Problem : Tio mätningar av en resistans gav följande resultat: Mätning no. Resistans (Ω) Mätning no Resistans (Ω) 0.3 6 0.0 00.5 7 99.98 3 00.0 8 99.80 4 99.95 9

Läs mer

Experimentell metodik

Experimentell metodik Experimentell metodik Storheter, mätetal och enheter En fysikalisk storhet är en egenskap som kan mätas eller beräknas. En storhet är produkten av mätetal och enhet. Exempel 1: Elektronens massa är m =

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 1. Vektorberäkningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall vi träna på

Läs mer

1. Mekanisk svängningsrörelse

1. Mekanisk svängningsrörelse 1. Mekanisk svängningsrörelse Olika typer av mekaniska svängningar och vågrörelser möter oss överallt i vardagen allt från svajande höghus till telefoner med vibrationen påslagen hör till denna kategori.

Läs mer

Något om Dimensionsanalys och Mathematica. Assume period T Cm Α g Β L Γ s 1 kg Α m Β m Γ s 1 kg Α m Β. Identify exponents VL HL kg 0 Α m 0 Β Γ s 1 2 Β

Något om Dimensionsanalys och Mathematica. Assume period T Cm Α g Β L Γ s 1 kg Α m Β m Γ s 1 kg Α m Β. Identify exponents VL HL kg 0 Α m 0 Β Γ s 1 2 Β HH/ITE/BN Dimensionsanalys och Mathematica 1 Något om Dimensionsanalys och Mathematica Bertil Nilsson 2016-08-15 Assume period T Cm Α g Β Γ s 1 kg Α m Β m Γ s 2 s 1 kg Α m Β s 2Β m Γ Identify exponents

Läs mer

Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16.

Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16. Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16. Deluppgift 1: En segelbåt med vinden rakt i ryggen har hissat spinnakern. Anta att segelbåtens mast är ledad i botten, spinnakern drar masttoppen snett

Läs mer

HÅLLFASTHETSLÄRA Hållfasthetslärans grundläggande uppgift är att hjälpa oss att beräkna dimension och form hos en konstruktion så att den vid

HÅLLFASTHETSLÄRA Hållfasthetslärans grundläggande uppgift är att hjälpa oss att beräkna dimension och form hos en konstruktion så att den vid HÅLLFASTHETSLÄRA Hållfasthetslärans grundläggande uppgift är att hjälpa oss att beräkna dimension och form hos en konstruktion så att den vid användning inte går sönder. Detta förutsätter att vi väljer

Läs mer

Belastningsanalys, 5 poäng Balkteori Deformationer och spänningar

Belastningsanalys, 5 poäng Balkteori Deformationer och spänningar Spänningar orsakade av deformationer i balkar En från början helt rak balk antar en bågform under böjande belastning. Vi studerar bilderna nedan: För deformationerna gäller att horisontella linjer blir

Läs mer

Övningsuppgifter till Originintroduktion

Övningsuppgifter till Originintroduktion UMEÅ UNIVERSITET 05-08-01 Institutionen för fysik Ylva Lindgren Övningsuppgifter till Originintroduktion Uppgift 1. I ett experiment vill man bestämma fjäderkonstanten k för en viss fjäder. Med olika kraft

Läs mer

Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av:

Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av: Hållfasthetslära Böjning och vridning av provstav Laboration 2 Utförs av: Habre Henrik Bergman Martin Book Mauritz Edlund Muzammil Kamaly William Sjöström Uppsala 2015 10 08 Innehållsförteckning 0. Förord

Läs mer

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer

Läs mer

Hållfasthetslära Lektion 2. Hookes lag Materialdata - Dragprov

Hållfasthetslära Lektion 2. Hookes lag Materialdata - Dragprov Hållfasthetslära Lektion 2 Hookes lag Materialdata - Dragprov Dagens lektion Mål med dagens lektion Sammanfattning av förra lektionen Vad har vi lärt oss hittills? Hookes lag Hur förhåller sig normalspänning

Läs mer

Fysikaliska Modeller

Fysikaliska Modeller TFYA15 Fysikaliska Modeller Kursansvarig: Magnus Johansson TFYA15 Fysikaliska modeller VT2019 Problemlösning & Modelltänkande Fredrik Karlsson Kommer att behandla VT1: Fysikalisk problemlösning VT2: Klassisk

Läs mer

Lipschitz-kontinuitet

Lipschitz-kontinuitet Kapitel 2 Lipschitz-kontinuitet Vi börjar med att presentera den formella definitionen av gränsvärde och kontinuitet. Vi presenterar sedan en variant av kontinuitet som är lättare att använda och som ger

Läs mer

Projekt: Filmat tornfall med modell av tornet. Benjamin Tayehanpour, Adrian Kuryatko Mihai

Projekt: Filmat tornfall med modell av tornet. Benjamin Tayehanpour, Adrian Kuryatko Mihai Projekt: Filmat tornfall med modell av tornet Benjamin Tayehanpour, Adrian Kuryatko Mihai Abstrakt Detta dokument avhandlar vad som händer när ett torn faller. Såväl elastiska som stela kroppar behandlas.

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 3. Funktioner Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna laboration skall vi träna på att

Läs mer

Kundts rör - ljudhastigheten i luft

Kundts rör - ljudhastigheten i luft Kundts rör - ljudhastigheten i luft Laboration 4, FyL VT00 Sten Hellman FyL 3 00-03-1 Laborationen utförd 00-03-0 i par med Sune Svensson Assisten: Jörgen Sjölin 1. Inledning Syftet med försöket är att

Läs mer

Laborationsintroduktion. FAFA05 och FAFA65

Laborationsintroduktion. FAFA05 och FAFA65 Laborationsintroduktion FAFA05 och FAFA65 höstterminen 2019 Kurslaboratoriet, fysik LTH Laborationsregler Förberedelser Läs i god tid före laborationstillfället igenom laborationsinstruktionen och de teoriavsnitt

Läs mer

y y 1 = k(x x 1 ) f(x) = 3 x

y y 1 = k(x x 1 ) f(x) = 3 x Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för

Läs mer

Rotationsrörelse laboration Mekanik II

Rotationsrörelse laboration Mekanik II Rotationsrörelse laboration Mekanik II Utförs av: William Sjöström Oskar Keskitalo Uppsala 2015 04 19 Sida 1 av 10 Sammanfattning För att förändra en kropps rotationshastighet så krävs ett vridmoment,

Läs mer

Kravgränser. Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng.

Kravgränser. Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng. Kravgränser Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng. Kravgräns för provbetyget E: 17 poäng D: 25 poäng varav 7 poäng på minst

Läs mer

Laboration 1: Gravitation

Laboration 1: Gravitation Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver

Läs mer

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna.

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna. Laborationsregler Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till varje laboration finns ett antal förberedelseuppgifter.

Läs mer

Laboration 1: Gravitation

Laboration 1: Gravitation Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver

Läs mer

PPU408 HT15. Beräkningar stål. Lars Bark MdH/IDT

PPU408 HT15. Beräkningar stål. Lars Bark MdH/IDT Beräkningar stål 1 Balk skall optimeras map vikt (dvs göras så lätt som möjligt) En i aluminium, en i höghållfast stål Mått: - Längd 180 mm - Tvärsnittets yttermått Höjd: 18 mm Bredd: 12 mm Lastfall: -

Läs mer

LABKOMPENDIUM. TFYA76 Mekanik

LABKOMPENDIUM. TFYA76 Mekanik Linköpings universitet IFM, Institutionen för Fysik, Kemi och Biologi Rev. 2014-08-27 LABKOMPENDIUM TFYA76 Mekanik INNEHÅLL: LAB 1: RÖRELSE. 3 Uppgift 1 3 Uppgift 2 5 LAB 2: STÖT 6 2 LAB 1: RÖRELSE Målsättning

Läs mer

5B1147. Envariabelanalys. MATLAB Laboration. Laboration 1. Gränsvärden och Summor

5B1147. Envariabelanalys. MATLAB Laboration. Laboration 1. Gränsvärden och Summor 5B47 MATLAB Laboration Laboration Gränsvärden och Summor joycew@kth.se uvehag@kth.se Innehåll Uppgift a... Problem... Lösning... Grafisk bestämning av gränsvärden... Beräkning av gränsvärden...2 Uppgift

Läs mer

MEKANIK LABORATION 1 REVERSIONSPENDELN. FY2010 ÅK2 vårterminen 2007

MEKANIK LABORATION 1 REVERSIONSPENDELN. FY2010 ÅK2 vårterminen 2007 I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 23 april 2007 MEKANIK LABORATION 1 REVERSIONSPENDELN FY2010 ÅK2 vårterminen 2007 Mål En viktig applikation av en enkel

Läs mer

4 Fler deriveringsregler

4 Fler deriveringsregler 4 Fler deriveringsregler 4. Dagens Teori Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: f(x) = 2x4 x3 + 2x

Läs mer

Andra EP-laborationen

Andra EP-laborationen Andra EP-laborationen Christian von Schultz Magnus Goffeng 005 11 0 Sammanfattning I denna rapport undersöker vi perioden för en roterande skiva. Vi kommer fram till, både genom en kraftanalys och med

Läs mer

Tentamen i Hållfasthetslära AK2 för M Torsdag , kl

Tentamen i Hållfasthetslära AK2 för M Torsdag , kl Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK2 för M Torsdag 2015-06-04, kl. 8.00-13.00 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts

Läs mer

SVÄNGNINGSTIDEN FÖR EN PENDEL

SVÄNGNINGSTIDEN FÖR EN PENDEL Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt

Läs mer

Bestämning av E-modul

Bestämning av E-modul Bestämning av E-modul Tag fram en mätplan och upprätta mätprotokoll, konsultera gärna laborationshandledaren innan mätningarna startar. Dokumentera den experimentella uppställningen. Genomför mätningar.

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Innehåll Material Spänning, töjning, styvhet Dragning, tryck, skjuvning, böjning Stång, balk styvhet och bärförmåga Knäckning Exempel: Spänning i en stång x F A Töjning Normaltöjning

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 17 december 2008 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

Laboration 1: Gravitation

Laboration 1: Gravitation Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver

Läs mer

Tentamen i Hållfasthetslära AK

Tentamen i Hållfasthetslära AK Avdelningen för Hållfasthetslära unds Tekniska Högskola, TH Tentamen i Hållfasthetslära AK1 2017-03-13 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den visas

Läs mer

Tentamen i Hållfasthetslära AK

Tentamen i Hållfasthetslära AK Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK1 2017-08-17 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2 Kapitel.1 101, 10 Exempel som löses i boken. 103 Testa genom att lägga linjalen lodrätt och föra den över grafen. Om den på något ställe skär grafen i mer än en punkt så visar grafen inte en funktion.

Läs mer

NpMa3c vt Kravgränser

NpMa3c vt Kravgränser Kravgränser Provet består av ett muntligt delprov (Del A) och tre skriftliga delprov (Del B, Del C och Del D). Tillsammans kan de ge 66 poäng varav 25 E-, 24 C- och 17 A-poäng. Observera att kravgränserna

Läs mer

F13 Regression och problemlösning

F13 Regression och problemlösning 1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell

Läs mer

Densitet Tabellen nedan visar massan och volymen för olika mängder kopparnubb.

Densitet Tabellen nedan visar massan och volymen för olika mängder kopparnubb. Tid Vi har inte en entydig definition av tid. Tid knytas ofta till förändringar och rörelse. Vi koncentrerar på hur vi mäter tiden. Vi brukar använda enheten sekund för att mäta tiden. Enheten för tid

Läs mer

PPU408 HT15. Beräkningar stål. Lars Bark MdH/IDT

PPU408 HT15. Beräkningar stål. Lars Bark MdH/IDT Beräkningar stål 1 Balk skall optimeras map vikt (dvs göras så lätt som möjligt) En i aluminium, en i höghållfast stål Mått: - Längd 180 mm - Tvärsnittets yttermått Höjd: 18 mm Bredd: 12 mm Lastfall: -

Läs mer

Gamla tentemensuppgifter

Gamla tentemensuppgifter Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi

Läs mer

Belastningsanalys, 5 poäng Tvärkontraktion Temp. inverkan Statiskt obestämd belastning

Belastningsanalys, 5 poäng Tvärkontraktion Temp. inverkan Statiskt obestämd belastning Tvärkontraktion När en kropp belastas med en axiell last i en riktning förändras längden inte bara i den lastens riktning Det sker en samtidig kontraktion (sammandragning) i riktningar tvärs dragriktningen.

Läs mer

Kort om mätosäkerhet

Kort om mätosäkerhet Kort om mätosäkerhet Henrik Åkerstedt 14 oktober 2014 Introduktion När man gör en mätning, oavsett hur noggrann man är, så får man inte exakt rätt värde. Alla mätningar har en viss osäkerhet. Detta kan

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel)

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel) ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en balk utsatt för transversell last q(x) kan beräknas med formeln σ x M y z I y Detta uttryck är relaterat (kopplat) till ett koordinatsystem

Läs mer

a = a a a a a a ± ± ± ±500

a = a a a a a a ± ± ± ±500 4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att

Läs mer

Laboration 1 Nedslagskratrar

Laboration 1 Nedslagskratrar Laboration 1 Nedslagskratrar Den här laborationen är uppdelad i två försök, där man i båda försöken ska släppa stålkulor på en sandbädd, vilket kan ses som en mycket enkel simulering av ett meteoritnedslag.

Läs mer

Ingenjörsmetodik IT & ME 2011 Föreläsning 11

Ingenjörsmetodik IT & ME 2011 Föreläsning 11 Ingenjörsmetodik IT & ME 011 Föreläsning 11 Sammansatt fel (Gauss regel) Felanalys och noggrannhetsanalys Mätvärden och mätfel Medelvärde, standardavvikelse och standardosäkerher (statistik) 1 Läsanvisningar

Läs mer

NpMa2b vt Kravgränser

NpMa2b vt Kravgränser Kravgränser Provet består av ett muntligt delprov (Del A) och tre skriftliga delprov (Del B, Del C och Del D). Tillsammans kan de ge 67 poäng varav 26 E-, 24 C- och 17 A-poäng. Observera att kravgränserna

Läs mer

Hållfasthetslära. HT1 7,5 hp halvfart Janne Carlsson

Hållfasthetslära. HT1 7,5 hp halvfart Janne Carlsson Hållfasthetslära HT1 7,5 hp halvfart Janne Carlsson tisdag 11 september 8:15 10:00 Föreläsning 3 PPU203 Hållfasthetslära Förmiddagens agenda Fortsättning av föreläsning 2 Paus Föreläsning 3: Kapitel 4,

Läs mer

Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod F6T Kursnamn Fysik 3 Datum Material Laborationsrapport svängande skiva Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Labbrapport TCTDA Amanda

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) Tekniska Högskolan i Linköping, IK DEL 1 - (Teoridel utan hjälpmedel) U G I F T E R med L Ö S N I N G A R 1. Ange Hookes lag i en dimension (inklusive temperaturterm), förklara de ingående storheterna,

Läs mer

Föreläsning 17: Jämviktsläge för flexibla system

Föreläsning 17: Jämviktsläge för flexibla system 1 KOMIHÅG 16: --------------------------------- Ellipsbanans storaxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 17: Jämviktsläge för flexibla

Läs mer

3 Deriveringsregler. Vi ska nu bestämma derivatan för dessa fyra funktioner med hjälp av derivatans definition

3 Deriveringsregler. Vi ska nu bestämma derivatan för dessa fyra funktioner med hjälp av derivatans definition 3 Deriveringsregler 3.1 Dagens Teori Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. 3.1.1 Vi är på jakt efter ett mönster

Läs mer

Spänning och töjning (kap 4) Stång

Spänning och töjning (kap 4) Stång Föreläsning 3 Spänning och töjning Spänning och töjning (kap 4) Stång Fackverk Strukturmekanik FM60 Materialmekanik SMA10 Avdelningen för Bggnadskonstruktion TH Campus Helsingborg Balk Ram Spänning (kraftmått)

Läs mer

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 017-0-14 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)

Läs mer

LÄRARHANDLEDNING Harmonisk svängningsrörelse

LÄRARHANDLEDNING Harmonisk svängningsrörelse LÄRARHANDLEDNING Harmonisk svängningsrörelse Utrustning: Dator med programmet LoggerPro LabQuest eller LabPro Avståndsmätare Kraftgivare Spiralfjäder En vikt Stativmateriel Kraftgivare Koppla mätvärdesinsamlaren

Läs mer

Ballistisk pendel laboration Mekanik II

Ballistisk pendel laboration Mekanik II Ballistisk pendel laboration Mekanik II Utförs av: William Sjöström 19940404 6956 Philip Sandell 19950512 3456 Uppsala 2015 05 09 Sammanfattning Ett sätt att mäta en gevärkulas hastighet är att låta den

Läs mer

Introduktion till Biomekanik - Statik VT 2006

Introduktion till Biomekanik - Statik VT 2006 Pass 4 Jämvikt, fortsättning Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Statisk jämvikt (vila) Dynamisk jämvikt (rörelse i konstant hastighet) (ge ex)

Läs mer

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval

Läs mer

Laborationsrapport. Joseph Lazraq Byström, Julius Jensen och Abbas Jafari Q2A. 22 april Ballistisk pendel

Laborationsrapport. Joseph Lazraq Byström, Julius Jensen och Abbas Jafari Q2A. 22 april Ballistisk pendel Laborationsrapport Ballistisk pendel Joseph Lazraq Byström, Julius Jensen och Abbas Jafari Q2A 22 april 2017 1 1 Introduktion Den här laborationen genomförs för att undersöka en pils hastighet innan den

Läs mer

Material, form och kraft, F4

Material, form och kraft, F4 Material, form och kraft, F4 Repetition Kedjekurvor, trycklinjer Material Linjärt elastiskt material Isotropi, ortotropi Mikro/makro, cellstrukturer xempel på materialegenskaper Repetition, kedjekurvan

Läs mer

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers :

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers : FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING 1 februari 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFNDET 1. Enligt energiprincipen är det rörelseenergin som bromsas bort i friktionsarbetet. Detta ger mv sambandet

Läs mer

Sidor i boken f(x) = a x 2 +b x+c

Sidor i boken f(x) = a x 2 +b x+c Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 3/9 2009 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

Allmänt om kraft. * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft.

Allmänt om kraft. * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft. Kraft Allmänt om kraft * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft. * Det finns olika krafter t ex; tyngdkraft, friktionskraft, motkraft. * Krafter kan

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 4/9 2008 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

Lycka till!

Lycka till! Avd. Matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR K OCH B MÅNDAGEN DEN 25 AUGUSTI 2003 KL 14.00 19.00. Examinator: Gunnar Englund, 790 7416. Tillåtna hjälpmedel: Formel- och

Läs mer

Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x.

Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8 Figur : Vi konstaterar följande: Då

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

Bengt Sandell, IFM. Reviderad 2012, Mats Eriksson, IFM

Bengt Sandell, IFM. Reviderad 2012, Mats Eriksson, IFM Experimentell problemlösning Bengt Sandell, IFM Reviderad 2012, Mats Eriksson, IFM Innehåll 1. Introduktion... 1 1.1. Fysik - exakt vetenskap... 1 1.2. Hur erhålls en fysikalisk formel?... 1 1.3. Enhetssystem...

Läs mer

Del A Begrepp och grundläggande förståelse.

Del A Begrepp och grundläggande förståelse. STOCKHOLMS UIVERSITET FYSIKUM Tentamensskrivning i Experimentella metoder, 1 hp, för kandidatprogrammet, år 1 Fredagen den 9 maj 008 kl 9-15. S.H./K.H./K.J.-A./B.S. Införda beteckningar bör förklaras och

Läs mer

Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005

Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005 Laboration Photovoltic Effect Diode I -Characteristics Solide State Physics Farid Bonawiede Michael Litton Johan Mörtberg fabo2@kth.se litton@kth.se jmor2@kth.se 16 maj 25 1 I denna laboration ska vi förklara

Läs mer

Krafter och Newtons lagar

Krafter och Newtons lagar Mekanik I, Laboration 2 Krafter och Newtons lagar Newtons andra lag är det viktigaste hjälpmedel vi har för att beskriva vad som händer med en kropp och med kroppens rörelse när den påverkas av andra kroppar.

Läs mer

LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning

LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.

Läs mer

6 Derivata och grafer

6 Derivata och grafer 6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000

Läs mer