LABORATION 2 UPPTÄCK ETT SAMBAND

Storlek: px
Starta visningen från sidan:

Download "LABORATION 2 UPPTÄCK ETT SAMBAND"

Transkript

1 Fysikum FK Fysikexperiment FK Exp. fysik för lärare Laborationsinstruktion (28 september 2010) LABORATION 2 UPPTÄCK ETT SAMBAND FJÄDERN Mål Idenhärlaborationenskalldubörjamedattställauppenhypotes för hur svängningsfrekvensen hos en spiralfjäder beror på olika storheter som fjädertrådens diameter, antal varv som fjädern har, spiralens medeldiameter och andra storheter. Laborationen gårut på att experimentellt pröva den uppställda hypotesen, dvs om den antagna formeln inom den experimentella noggrannheten beskriver svängningsfrekvensen hos spiralfjädrar i allmänhet. Om hypotesen ä r k o r r e k t k a n t v å a v d e f e m o b e k a n t a k o n s t a n t e r n a i f o r m e l n för frekvensen entydigt bestämmas genom dimensionsanalys. Du skall tillsammans med din medlaborant göra en skriftlig rapport samt ge en utförlig muntlig redovisning om ca 30 minuter infö r g r u p p e n och en lärare.

2 .

3 LABORATION 2: Upptäck ett samband fjädern 1 1 Inledning Varje fast kropp som utsätts för en kraft deformeras i någon mån. Om deformationen är liten, återgår kroppen till sin ursprungliga form när belastningen upphör. Vi säger att deformationen är elastisk. Ett välbekant exempel är förlängningen av en spiralfjäder då den utsätts för en dragande kraft. Förlängningen är i detta fall proportionell mot den dragande kraften och fjädern återgår till sin ursprungliga längd när kraften tas bort. Vid en noggrannare analys av fjäderns deformation inser man att fjädern deformeras genom att trådmaterialet skjuvas, imotsatstilltöjningför en tråd som belastas i sin längdriktning. Man inför en materialkonstant, den s.k. skjuvmodulen (G), som är ett mått på deformationen som funktion av den skjuvande kraften per ytenhet. Vi kan komma fram till en mer exakt definition av G genom följande resonemang. Ett material i form av ett rätblock utsätts för en tangentiell kraft som ansätts på rätblockets översida med arean A (se figuren nedan) Figur 1: Skjuvning en vinkel γ. Rätblocket defomeras i kraftens riktning genom att sidoytorna (fram och bakkant) kommer att vridas en liten vinkel γ. Hur beror vinkeldeformationen på de ingående storheterna? Ju större F per ytenhet, desto större vinkeldeformation γ, alltså γ F A Iuttrycketsaknasnågotsomtalaromhur styvt materialetär. Dennamaterialegenskap är i detta fall skjuvmodulen G (skjuv- eller torsionsmodul, eng. shear modulus ) och den är sådan, att dess värde är stort för ett styvt material, dvs för liten vridning. Vi finner alltså att skjuvmodulen G = F A Detta samband är en form av Hookes lag 1. / γ med enheten Pa = N/m 2 1 Efter Robert Hooke ( ), professor, Gresham College, London.

4 2 LABORATION 2: Upptäck ett samband fjädern 2 Hypotes Betrakta en fjäder (i denna laboration arbetar vi med fjädrar i form av helixar) som som hängs upp i en krok och belastas med en tyngd. Sträcks fjädern ut och därefter släpps kommer den att börja svänga med en viss karakteristisk frekvens f. Från mekaniken vet vi att denna frekvens bestäms av fjäderkonstanten k som i sin tur beror på fjäderns geometri och materialegenskaper. Vi är här intresserade av ett uttryck som ger sambandet mellan svängningstiden T = 1/f och de storheter som beskriver fjädern. Uttrycket skall vara generellt, dvs gälla för alla fjädrar (som är elastiska) med godtyckliga dimensioner och av olika material. Vi antar att de storheter som kan påverka svängningstiden är den svängande massan M, (funderaöverhurfjädernsegen massa kan räknas in i den svängande massan), spiralfjäderns (medel-)lindningsdiameter D och tråddiametern d. Vidare bör antalet lindningsvarv ingå (fjädern sträcks ut en sträcka som är proportionell mot antalet lindningsvarv och tyngdens rörelse blir mer dämpad ju längre fjäderns sträcks ut). Slutligen måste ingå något som beskriver materialets styvhet, dvs fjäderns elastiska egenskaper. Den fysikaliska storhet som skall in här är fjädermaterialets skjuvmodul G. Vi antar alltså att följande storheter påverkar svängningstiden: Storhet Beteckning Dimension Skjuvmodulen G Pa = N/m 2 =kg/ms 2 Massan M kg Spiralens medeldiameter D m Spiralens tråddiameter d m Antalet lindningsvarv N och vi ansätter följande samband:. T = K D α d β M γ N δ G ɛ (1) där K är en dimensionslös konstant. Exponenterna α till ɛ antas vara halv- eller heltal.

5 LABORATION 2: Upptäck ett samband fjädern 3 3 Experimentuppställning Till vårt förfogande har vi en stadigt tvärbalk med hål fö r a t t h ä n g a f j ä d r a r n a i. Balken läggs på bordet så att änden med hålet sticker ut och fixeras med hjälp av ett par kraftiga tvingar. Experimentuppställningen framgår av figuren nedan: M Figur 1. Uppställning för mätning av en spiralfjäders svängningstid. Fjädern hängs upp i ena änden av balken och belastas med en massa M. Svängningstiden T för systemet mäts med hjälp av lampa med fotocell och en elektronisk tidtagare/räknare. Gaffeln med fotocellen sätts fast i ett stativ. Idenvertikala, raka delen av fjädern finns en remsa som användas för att skugga fotocellen (se till att den sitter fast och är horisontell - saknas den så gör en ny).

6 4 LABORATION 2: Upptäck ett samband fjädern 4 Mätapparaturens funktion Sladden från givaren kopplas till startlådan. En koaxkabel går från startlådan till räknaren. Startlådans funktion: Varje gång givarens fotocell skuggas, alstras i startlådan enpulssom normalt stannar i lådan. När du trycker på startknappen, leds nästa puls (från givaren) vidare till räknaren som startas som ett stoppur. Efterföljande pulser från givaren stannar i startlådan tills antalet stämmer med det förvalda antalet perioder. Stämmer antalet går nästa puls till räknaren och tidmätningen avslutas. För denna laboration välj inställningen för 5 pulser. Upprepa tidmätningen fem gånger för varje uppsättning så att du kan uppskatta ett fel i tidmätningen. Frekvens/periodräknaren: Se till att grundinställningen för räknaren är: POWER ON, PER, 100 KHZ, TRIGG LEVEL i mellanläge, och ATT X20. Vid datatagning, sätt fjädern i svängning och se till att en flagga på fjädern omväxlande skymmer fotocellen - men inte passerar fotocellen (i vilket falla räknaren registrerar två pulser). Tryck på RESET (det kan ibland behövas flera tryckningar, eventuellt måste TRIGG LEVEL justeras), och sedan på startlådans START-knapp. Efter 5 hela svängningar anges totaltiden (i ms) på räknarens display. 5 Förslag på mätserier Tyvärr är antalet fjädrar begränsat (se tabell omstående sida) och det kan vara svårt att hitta lämpliga mätserier. Ett litet trick kan dock användas här. Så fort en exponent har bestämts, t.ex. α i D α,kanfjädrarmednågotavvikandediametrar D normaliseras genom att studera funktionen T/D α = f(d, M, N, G) istället. På samma sätt, om exponenten δ i N δ bestämts, görs övriga mätdata oberoende av N- beroendet genom att studera funktionen T/N δ = f(d, d, M, G) ellert/d α /N δ = f(d, M, G), etc. 2 Detta trick utökar totala antalet möjliga mätkombinationer (det ä r p r e c i s d e n m e t o d d u a n v ä n d e r s e n a r e f ö r a t t b e s t ä m m a d en återstående, okända konstanten K). 2 Observera att halv- eller heltalsvärden på exponenterna skall användas här.

7 LABORATION 2: Upptäck ett samband fjädern 5 6 Fjädermaterial Alla fjädrar är av samma material (fjäderstål med skjuvmodulen G =(6, 7 ± 0, 1) N/m 2 ). De fjädrar som finns att tillgå är listade i nedanstående tabell (tabellen har kompletterats med fjädrar lånade från KTH). d =tråddiameter,n =antalspiralvarv,d ytter =spiralensytterdiameter(återfinns på märkningen av fjädern), samt medeldiameter D medel = D ytter d. Tabellen nedan visar de fjädrar som är tillgängliga. Med hjälp av denna kan du iförvägförsökaläggauppenstrategifördinamätningar. Fjäder d N D ytter D medel # mm varv mm mm F1a-b F , F2a-b F3a-c 4 9, F4a-b 4 14, F F6a-b 3 6, F7 3 6, F8a-d F9a-b 4 11, F F F ,5 67,5 62,5 F13a-c F14a-c 6 15, KTH KTH 2a-b KTH ,5 61,5 KTH 4a-b 5 8, Angivna mått är ungefärliga! Du måste därför noga mäta upp alla dimensioner och uppskatta mätfelen. Glöm inte att väga fjädrarna, deras massa används för att korrigera den svängande massan. Behandla fjädrarna varsamt! Fjädrarna får inte belastas så att de i viloläge har mer än dubbla sin ursprungliga form. Sträcks fjädrarna mer deformeras dom.

8 6 LABORATION 2: Upptäck ett samband fjädern 7 Mätningar 1. Gör först en dimensionsanalys av formel (1) för svängningstiden och bestäm parametrarna γ och ɛ. 3 Det återstår nu att bestämma de tre andra parametrarna. Börja med δ. Glöm inte att för varje mätning notera värdet på alla storheter som ingår i formeln för svängningstiden. 2. Bestämning av δ. Välj ut några lämpliga fjädrar (med samma diametrar D och d) menmedolikavarvtaln. Bestäm svängningstiden för varje N. Du kan sedan välja att bestämma parametern α eller parametern β enligt punkt 3 nedan. Välj sedan endera av nedanstående alternativ: 3a. Bestämning av α. Välj en lämplig kombination av fjädrarna och bestäm svängningstiden för varje diameter D. Beräknaβ genom dimensionsanalys. 3b. Bestämning av β. Välj en lämplig kombination av fjädrarna och bestäm svängningstiden för varje diameter d. Beräknaα genom dimensionsanalys. 4. Verifiera beroendet av γ. Kontrolleravärdetpåparameternγ som erhölls vid dimensionsanalysen genom att välja en fjäder och bestäm svängningstiden T för 5 olika massor M. Kompenseraförfjädernsegenmassa. 5. Beräkning av en okänd fjäders svängningstid. Mät svängningstiden för en helt annan, klenare typ av fjäder. Du får antaga att samma värdepåskjuvmodulen G kan användas. Beräkna svängningstiden med hjälp av formel 1 och dina experimentella värden på alla parametrar och jämför med det uppmätta värdet blir du imponerad? 8 Mätvärdesbehandling Bestäm en exponent i taget med den uppsättning data där motsvarande storhet varieras. Bestäm t.ex. γ genom att anpassa en rät linje till lnt som funktion av ln M: ln T = C + γ ln M. Använd den viktade minsta kvadratmetoden. Beräkna ett preliminärt värde på γ genom att bara ta hänsyn till felet i ln T. Gör sedan om anpassningen med ett ekvivalent fel (se appendix B) i ln T som ä v e n t a r h ä n s y n t i l l f e l e t i l n M. Värdet på exponenten bör inom felgränsen vara ett hel- eller halvtal. Sätt i fortsättningen exponenten till detta tal. När alla exponenter är bestämda, används alla mätdata för att bestämma konstanten K. PlottaK-värdena och beräkna ett oviktat medelvärde av K och bestäm felet ur spridningen. 3 Ett exempel på hur man gör en dimensionsanalys finns i Appendix A.

9 LABORATION 2: Upptäck ett samband fjädern 7 9 Redovisning Här vill vi passa på att ge tips om vilka punkter som skall vara mediredovisningen. Du får gärna tillfoga fler vid behov. Inledning: Presentation av problemställning m.m. Dimensionsanalys: Gör en dimensionsanalys av den ansatta formeln (1) och bestäm parametrarna γ och ɛ. Experimentbeskrivning: En beskrivning av apparatuppställningen. Mätresultat: Snygga tabeller med alla primärvärden och i förekommande fall beräknade storheter med fel. Mätvärdesbehandling: Här presenterar du dina data i diagramform, dina anpassningar med resultat, beräkningar och en resultatsammanställning. Gör två grafer för varje anpassning (sida vid sida för att spara papper): en graf där den aktuella storheten på y-axeln med fel (det ekvivalenta felet) plottas som funktion av den oberoende variabeln tillsammans med den anpassade räta linjen och en graf där differensen mellan mätvärdena och den räta linjen plottas. 4 Diskussion: Här skall du bl.a. besvara hur väl den ansatta formeln, hypotesen stämmer med verkligheten. Vad finns det för felkällor? Är det någon av fjädrarna som avviker från formeln och vad kan detta bero på? Inlämning: Utrustning: De skriftliga rapporterna mejlas i PDF/ODT-format till bsel. Tvärbalk för upphängning av fjädrarna. Stadiga tvingar för fasthållning av tvärbalk. Fjädrar av olika dimensioner. Mätgaffel med fotocell och elektronikbox. Frekvens/periodtidmätare. Våg och vikter. Skjutmått. 4 Härigenom ser man tydligare små avvikelser (residualen) mellan den mätta storheten med sitt fel och den anpassade funktionen. Grafen kallas residualplott. Notera att den ursprungliga grafen och residualplotten skall ha samma skala på x-axeln.

10 8 LABORATION 2: Upptäck ett samband fjädern Appendix A Dimensionsanalys Vi skall här ge ett enkelt exempel på hur man kan göra en dimensionsanalys. Antag att vi har en massa (m [kg]) som hänger vertikalt i en spiralfjäder med fjäderkonstanten k [N/m]. Massan sättes i svängning och vi ansätter följande hypotes om svängningstiden (T [s]) (perioden): T = A k a m b där A är en dimensionslös konstant. Exponenterna a och b skall bestämmas. Vi sätter upp följande samband mellan enheterna (1 N/m = 1 kgm/s 2 /m = 1 kg/s 2 ): (s) 1 =( kg s 2 )a (kg) b = { (s) 1 =( 1 s 2 ) a (kg) 0 =(kg) a (kg) b = { 1= 2a 0=a + b = { a = 1/2 b =1/2 Perioden kan alltså skrivas: T = A m/k

11 LABORATION 2: Upptäck ett samband fjädern 9 Appendix B Ekvivalenta fel Antag att vi har en funktion y = f(x) somskallanpassastillettantalmätpunkter (x i,y i ), där vi har mätfel x i och y i både i den oberoende variabeln x och i den beroende variabeln y (se figuren nedan). Det är inte ovanligt att (den relativa) osäkerheten i x många gånger kan vara större än (den relativa) osäkerheten i y. Med minsta kvadratmetoden tar vi normalt bara hänsyn till osäkerheten i y men i detta fall vill vi även inkludera osäkerheten i x. Detta kan enkelt göras genom att se på hur mycket värdet y i ä n d r a s n ä r v ä r d e t x i ä n d r a s. E n e n k e l m e t o d ä r a t t s t u d e r a funktionens derivata (dvs funktionens lutning) i punkten (x i,y i ). Om lutningen i punkten är k i,kommervärdetpåfunktionenf(x) inärhetenav punkten att approximativt variera som f(x) =f(x i )+k i x. Metodenärgenerell och gäller även för icke-linjära funktioner. I denna övning är dock vår anpassade funktion linjär och derivatan har då samma värde (k) i alla punkter. För att bestämma lutningen, dvs värdet på k, görviförstenpreliminäranpassning med de givna felen i variabeln y. Deekvivalentafelenipunkternay i som härrör från felen i x i kan sedan beräknas som k x i. y f(x) k x i x i x Om vi dessutom har mätta (eller uppskattade) fel y i imätvärdenay i adderar vi dessa kvadratiskt till de ekvivalenta felen, dvs y tot,i = ( y i ) 2 +(k x i ) 2 De på detta sätt beräknade felen i variabeln y kan sedan används för att göra en ny (viktad) anpassning av data till funktionen y = f(x).

LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN

LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN Fysikum FK2002 - Fysikexperiment FK2004 - Exp. fysik för lärare Laborationsinstruktion (28 september 2010) LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN Mål Idenhärlaborationenskalldubörjamedattställauppenhypotes

Läs mer

EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN

EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN FYSIKUM Fysikum 21 mars 2005 Stockholms universitet EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN FYSIKLINJEN ÅK1 Vårterminen 2005 Mål I den här laborationen skall du börja med att ställa

Läs mer

LABORATION 2 UPPTÄCK ETT SAMBAND

LABORATION 2 UPPTÄCK ETT SAMBAND Fysikum FK2002 - Fysikexperiment FK2004 - Exp. fysik för lärare Laborationsinstruktion (28 september 2010) LABORATION 2 UPPTÄCK ETT SAMBAND TÖMNING Mål Idenhärlaborationenskalldubörjamedattställauppenhypotes

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

Lösningar 15 december 2004

Lösningar 15 december 2004 Lösningar 15 december 004 Tentamensskrivning i Fysikexperiment, 5p, för Fy1100 Onsdagen den 15 december 004 kl. 9-13(14). B.S. 1. En behållare för förvaring av bensin har formen av en liggande cylinder

Läs mer

De fysikaliska parametrar som avgör periodtiden för en fjäder

De fysikaliska parametrar som avgör periodtiden för en fjäder De fysikaliska parametrar som avgör periodtiden för en fjäder Teknisk Fysik, Chalmers tekniska högskola, Sverige Robin Andersson Email: robiand@student.chalmers.se Alexander Grabowski Email: alegra@student.chalmers.se

Läs mer

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser.

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser. TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER Kurskod F0004T Kursnamn Fysik 1 Datum LP2 10-11 Material Laboration Balkböjning Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning Denna

Läs mer

Termodynamik, våglära och atomfysik (eller rätt och slätt inledande fysikkursen för n1)

Termodynamik, våglära och atomfysik (eller rätt och slätt inledande fysikkursen för n1) Termodynamik, våglära och atomfysik (eller rätt och slätt inledande fysikkursen för n1) Svängande stavar och fjädrar höstterminen 2007 Fysiska institutionen kurslaboratoriet LTH Svängande stavar och fjädrar

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

Övningar till datorintroduktion

Övningar till datorintroduktion Institutionen för Fysik Umeå Universitet Ylva Lindgren Sammanfattning En samling uppgifter att göra i MATLAB, vilka ska utföras enskilt eller i grupp om två. Datorintroduktion Handledare: (it@tekniskfysik.se)

Läs mer

Experimentella metoder 2013, Räkneövning 3

Experimentella metoder 2013, Räkneövning 3 Experimentella metoder 2013, Räkneövning 3 Problem 1: Fem studenter mätte längden av ett rum, deras resultat blev 3,30 m, 2,90 m, 3,70 m, 3,50 m, och 3,10 m. Inga uppgifter om mätnoggrannheten är kända.

Läs mer

En pendels svängningstid

En pendels svängningstid Använd denna exempelrapport som mall för din rapport. Mer detaljer hittar du i Lathund för rapportskrivning av Merkel, Andersson, Lundquist och Önnegren. Notera att denna exempelrapport beskriver ett mycket

Läs mer

Appendix i instruktionen

Appendix i instruktionen Appendix i instruktionen Läs även Appendix A och Appendix B i instruktionerna till laboration 2 2010-10-05 Fysikexperiment, 7.5 hp 1 1 Linearisering genom logaritmering Ofta förekommer samband av typen:

Läs mer

Labbrapport svängande skivor

Labbrapport svängande skivor Labbrapport svängande skivor Erik Andersson Johan Schött Olof Berglund 11th October 008 Sammanfattning Grunden för att finna matematiska samband i fysiken kan vara lite svårt att förstå och hur man kan

Läs mer

Belastningsanalys, 5 poäng Töjning Materialegenskaper - Hookes lag

Belastningsanalys, 5 poäng Töjning Materialegenskaper - Hookes lag Töjning - Strain Töjning har med en kropps deformation att göra. Genom ett materials elasticitet ändras dess dimensioner när det belastas En lång kropp förlängs mer än en kort kropp om tvärsnitt och belastning

Läs mer

Övningsuppgifter till Originintroduktion

Övningsuppgifter till Originintroduktion UMEÅ UNIVERSITET 05-08-01 Institutionen för fysik Ylva Lindgren Övningsuppgifter till Originintroduktion Uppgift 1. I ett experiment vill man bestämma fjäderkonstanten k för en viss fjäder. Med olika kraft

Läs mer

Laboration 1 Mekanik baskurs

Laboration 1 Mekanik baskurs Laboration 1 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Gravitationen är en självklarhet i vår vardag, de är den som håller oss kvar på jorden. Gravitationen

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

Lathund fo r rapportskrivning: LATEX-mall. F orfattare Institutionen f or teknikvetenskap och matematik

Lathund fo r rapportskrivning: LATEX-mall. F orfattare Institutionen f or teknikvetenskap och matematik Lathund fo r rapportskrivning: LATEX-mall F orfattare forfattare@student.ltu.se Institutionen f or teknikvetenskap och matematik 31 maj 2017 1 Sammanfattning Sammanfattningen är fristående från rapporten

Läs mer

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer

Läs mer

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007 I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 3 april 007 MEKANIK LABORATION KOPPLADE SVÄNGNINGAR FY010 ÅK Vårterminen 007 Mål Laborationen avser att ge allmän insikt

Läs mer

Experimentell metodik

Experimentell metodik Experimentell metodik Storheter, mätetal och enheter En fysikalisk storhet är en egenskap som kan mätas eller beräknas. En storhet är produkten av mätetal och enhet. Exempel 1: Elektronens massa är m =

Läs mer

Laboration 1: Gravitation

Laboration 1: Gravitation Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver

Läs mer

SVÄNGNINGSTIDEN FÖR EN PENDEL

SVÄNGNINGSTIDEN FÖR EN PENDEL Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt

Läs mer

Laboration 1: Gravitation

Laboration 1: Gravitation Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver

Läs mer

Föreläsning 17: Jämviktsläge för flexibla system

Föreläsning 17: Jämviktsläge för flexibla system 1 KOMIHÅG 16: --------------------------------- Ellipsbanans storaxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 17: Jämviktsläge för flexibla

Läs mer

Något om Dimensionsanalys och Mathematica. Assume period T Cm Α g Β L Γ s 1 kg Α m Β m Γ s 1 kg Α m Β. Identify exponents VL HL kg 0 Α m 0 Β Γ s 1 2 Β

Något om Dimensionsanalys och Mathematica. Assume period T Cm Α g Β L Γ s 1 kg Α m Β m Γ s 1 kg Α m Β. Identify exponents VL HL kg 0 Α m 0 Β Γ s 1 2 Β HH/ITE/BN Dimensionsanalys och Mathematica 1 Något om Dimensionsanalys och Mathematica Bertil Nilsson 2016-08-15 Assume period T Cm Α g Β Γ s 1 kg Α m Β m Γ s 2 s 1 kg Α m Β s 2Β m Γ Identify exponents

Läs mer

y y 1 = k(x x 1 ) f(x) = 3 x

y y 1 = k(x x 1 ) f(x) = 3 x Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för

Läs mer

Andra EP-laborationen

Andra EP-laborationen Andra EP-laborationen Christian von Schultz Magnus Goffeng 005 11 0 Sammanfattning I denna rapport undersöker vi perioden för en roterande skiva. Vi kommer fram till, både genom en kraftanalys och med

Läs mer

LÄRARHANDLEDNING Harmonisk svängningsrörelse

LÄRARHANDLEDNING Harmonisk svängningsrörelse LÄRARHANDLEDNING Harmonisk svängningsrörelse Utrustning: Dator med programmet LoggerPro LabQuest eller LabPro Avståndsmätare Kraftgivare Spiralfjäder En vikt Stativmateriel Kraftgivare Koppla mätvärdesinsamlaren

Läs mer

Kundts rör - ljudhastigheten i luft

Kundts rör - ljudhastigheten i luft Kundts rör - ljudhastigheten i luft Laboration 4, FyL VT00 Sten Hellman FyL 3 00-03-1 Laborationen utförd 00-03-0 i par med Sune Svensson Assisten: Jörgen Sjölin 1. Inledning Syftet med försöket är att

Läs mer

4 Fler deriveringsregler

4 Fler deriveringsregler 4 Fler deriveringsregler 4. Dagens Teori Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: f(x) = 2x4 x3 + 2x

Läs mer

Laboration 1: Gravitation

Laboration 1: Gravitation Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver

Läs mer

1. Mekanisk svängningsrörelse

1. Mekanisk svängningsrörelse 1. Mekanisk svängningsrörelse Olika typer av mekaniska svängningar och vågrörelser möter oss överallt i vardagen allt från svajande höghus till telefoner med vibrationen påslagen hör till denna kategori.

Läs mer

FÖRBÄTTRING AV EN MUSFÄLLA*

FÖRBÄTTRING AV EN MUSFÄLLA* STATENS STANDARDISERINGS- RAPPORT KOMMISSION FÖR HUSHÅLLSARTIKLAR april 2012 FÖRBÄTTRING AV EN MUSFÄLLA* av Homos Humus Husmus Sammanfattning Syftet med detta arbete var att förbättra den trådlindade musfällan.

Läs mer

Laborationsintroduktion. FAFA05 och FAFA65

Laborationsintroduktion. FAFA05 och FAFA65 Laborationsintroduktion FAFA05 och FAFA65 höstterminen 2019 Kurslaboratoriet, fysik LTH Laborationsregler Förberedelser Läs i god tid före laborationstillfället igenom laborationsinstruktionen och de teoriavsnitt

Läs mer

LABKOMPENDIUM. TFYA76 Mekanik

LABKOMPENDIUM. TFYA76 Mekanik Linköpings universitet IFM, Institutionen för Fysik, Kemi och Biologi Rev. 2014-08-27 LABKOMPENDIUM TFYA76 Mekanik INNEHÅLL: LAB 1: RÖRELSE. 3 Uppgift 1 3 Uppgift 2 5 LAB 2: STÖT 6 2 LAB 1: RÖRELSE Målsättning

Läs mer

Laboration 1 Nedslagskratrar

Laboration 1 Nedslagskratrar Laboration 1 Nedslagskratrar Den här laborationen är uppdelad i två försök, där man i båda försöken ska släppa stålkulor på en sandbädd, vilket kan ses som en mycket enkel simulering av ett meteoritnedslag.

Läs mer

Gamla tentemensuppgifter

Gamla tentemensuppgifter Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi

Läs mer

Grundläggande om krafter och kraftmoment

Grundläggande om krafter och kraftmoment Grundläggande om krafter och kraftmoment Text: Nikodemus Karlsson Original character art by Esa Holopainen, http://www.verikoirat.com/ Krafter - egenskaper och definition Vardaglig betydelse Har med påverkan

Läs mer

Fysikaliska Modeller

Fysikaliska Modeller TFYA15 Fysikaliska Modeller Kursansvarig: Magnus Johansson TFYA15 Fysikaliska modeller VT2019 Problemlösning & Modelltänkande Fredrik Karlsson Kommer att behandla VT1: Fysikalisk problemlösning VT2: Klassisk

Läs mer

Rotationsrörelse laboration Mekanik II

Rotationsrörelse laboration Mekanik II Rotationsrörelse laboration Mekanik II Utförs av: William Sjöström Oskar Keskitalo Uppsala 2015 04 19 Sida 1 av 10 Sammanfattning För att förändra en kropps rotationshastighet så krävs ett vridmoment,

Läs mer

a = a a a a a a ± ± ± ±500

a = a a a a a a ± ± ± ±500 4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att

Läs mer

Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av:

Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av: Hållfasthetslära Böjning och vridning av provstav Laboration 2 Utförs av: Habre Henrik Bergman Martin Book Mauritz Edlund Muzammil Kamaly William Sjöström Uppsala 2015 10 08 Innehållsförteckning 0. Förord

Läs mer

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom

Läs mer

MEKANIK LABORATION 1 REVERSIONSPENDELN. FY2010 ÅK2 vårterminen 2007

MEKANIK LABORATION 1 REVERSIONSPENDELN. FY2010 ÅK2 vårterminen 2007 I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 23 april 2007 MEKANIK LABORATION 1 REVERSIONSPENDELN FY2010 ÅK2 vårterminen 2007 Mål En viktig applikation av en enkel

Läs mer

Lösningar och kommentarer till uppgifter i 2.2

Lösningar och kommentarer till uppgifter i 2.2 Lösningar och kommentarer till uppgifter i 2.2 2202 Beräkna Detta ger f(3 + h) f(3) då f(x) x 2 (3 + h) 2 3 2 h 2 + 6h 6 + h 6 h 0 Vi har därmed bestämt riktningskoefficienten (k-värdet) för tangenten

Läs mer

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna.

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna. Laborationsregler Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till varje laboration finns ett antal förberedelseuppgifter.

Läs mer

Hållfasthetslära. HT1 7,5 hp halvfart Janne Carlsson

Hållfasthetslära. HT1 7,5 hp halvfart Janne Carlsson Hållfasthetslära HT1 7,5 hp halvfart Janne Carlsson tisdag 11 september 8:15 10:00 Föreläsning 3 PPU203 Hållfasthetslära Förmiddagens agenda Fortsättning av föreläsning 2 Paus Föreläsning 3: Kapitel 4,

Läs mer

Krafter och Newtons lagar

Krafter och Newtons lagar Mekanik I, Laboration 2 Krafter och Newtons lagar Newtons andra lag är det viktigaste hjälpmedel vi har för att beskriva vad som händer med en kropp och med kroppens rörelse när den påverkas av andra kroppar.

Läs mer

Ingenjörsmetodik IT & ME 2011 Föreläsning 11

Ingenjörsmetodik IT & ME 2011 Föreläsning 11 Ingenjörsmetodik IT & ME 011 Föreläsning 11 Sammansatt fel (Gauss regel) Felanalys och noggrannhetsanalys Mätvärden och mätfel Medelvärde, standardavvikelse och standardosäkerher (statistik) 1 Läsanvisningar

Läs mer

NATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del

NATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT

Läs mer

Tentamen i Mekanik II

Tentamen i Mekanik II Institutionen för fysik och astronomi F1Q1W2 Tentamen i Mekanik II 30 maj 2016 Hjälpmedel: Mathematics Handbook, Physics Handbook och miniräknare. Maximalt 5 poäng per uppgift. För betyg 3 krävs godkänd

Läs mer

Tentamen i Teknisk-Vetenskapliga Beräkningar

Tentamen i Teknisk-Vetenskapliga Beräkningar Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström Tentamen i Teknisk-Vetenskapliga Beräkningar Tentamensdatum: 005-03- Skrivtid: 9-5 Hjälpmedel: inga Om problembeskrivningen i något fall

Läs mer

Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005

Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005 Laboration Photovoltic Effect Diode I -Characteristics Solide State Physics Farid Bonawiede Michael Litton Johan Mörtberg fabo2@kth.se litton@kth.se jmor2@kth.se 16 maj 25 1 I denna laboration ska vi förklara

Läs mer

Projekt: Filmat tornfall med modell av tornet. Benjamin Tayehanpour, Adrian Kuryatko Mihai

Projekt: Filmat tornfall med modell av tornet. Benjamin Tayehanpour, Adrian Kuryatko Mihai Projekt: Filmat tornfall med modell av tornet Benjamin Tayehanpour, Adrian Kuryatko Mihai Abstrakt Detta dokument avhandlar vad som händer när ett torn faller. Såväl elastiska som stela kroppar behandlas.

Läs mer

Lipschitz-kontinuitet

Lipschitz-kontinuitet Kapitel 2 Lipschitz-kontinuitet Vi börjar med att presentera den formella definitionen av gränsvärde och kontinuitet. Vi presenterar sedan en variant av kontinuitet som är lättare att använda och som ger

Läs mer

Densitet Tabellen nedan visar massan och volymen för olika mängder kopparnubb.

Densitet Tabellen nedan visar massan och volymen för olika mängder kopparnubb. Tid Vi har inte en entydig definition av tid. Tid knytas ofta till förändringar och rörelse. Vi koncentrerar på hur vi mäter tiden. Vi brukar använda enheten sekund för att mäta tiden. Enheten för tid

Läs mer

F13 Regression och problemlösning

F13 Regression och problemlösning 1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) Tekniska Högskolan i Linköping, IK DEL 1 - (Teoridel utan hjälpmedel) U G I F T E R med L Ö S N I N G A R 1. Ange Hookes lag i en dimension (inklusive temperaturterm), förklara de ingående storheterna,

Läs mer

Svängningar. Innehåll. Inledning. Litteraturhänvisning. Förberedelseuppgifter. Svängningar

Svängningar. Innehåll. Inledning. Litteraturhänvisning. Förberedelseuppgifter. Svängningar Svängningar Innehåll Inledning Inledning... 1 Litteraturhänvisning... 1 Förberedelseuppgifter... 1 Utförande Det dämpade men odrivna systemet... 3 Det drivna systemet... 4 Observation av ett urval av svängande

Läs mer

Chalmers Tekniska Högskola och Mars 2003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson. Svängningar

Chalmers Tekniska Högskola och Mars 2003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson. Svängningar Chalmers Tekniska Högskola och Mars 003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson Svängningar Introduktion I mekanikkurserna arbetar vi parallellt med flera olika metoder

Läs mer

Uppgift 1: När går en glödlampa sönder?

Uppgift 1: När går en glödlampa sönder? Uppgift 1: När går en glödlampa sönder? Materiel: Glödlampa, strömkälla, motstånd samt dator försedd med analog/digital omvandlare och tillhörande programvara för datainsamling. Beskrivning: Kanske tycker

Läs mer

Läsanvisningar till kapitel 4 i Naturlig matematik

Läsanvisningar till kapitel 4 i Naturlig matematik Läsanvisningar till kapitel 4 i Naturlig matematik Avsnitt 4.1 I kapitel 4 kommer du att möta de elementära funktionerna. Dessa är helt enkelt de vanligaste funktionerna som vi normalt arbetar med. Här

Läs mer

Fler uppgifter på andragradsfunktioner

Fler uppgifter på andragradsfunktioner Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har

Läs mer

1 Dimensionsanalys och π-satsen.

1 Dimensionsanalys och π-satsen. Dimensionsanalys och π-satsen. Då man örsöker ställa upp en matematisk modell ör något ysikaliskt enomen skall man alltid göra dimensionsanalys. Dimensionsanalys handlar om att undersöka hur givna ysikaliska

Läs mer

Material, form och kraft, F4

Material, form och kraft, F4 Material, form och kraft, F4 Repetition Kedjekurvor, trycklinjer Material Linjärt elastiskt material Isotropi, ortotropi Mikro/makro, cellstrukturer xempel på materialegenskaper Repetition, kedjekurvan

Läs mer

Sidor i boken f(x) = a x 2 +b x+c

Sidor i boken f(x) = a x 2 +b x+c Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +

Läs mer

Bestämning av E-modul

Bestämning av E-modul Bestämning av E-modul Tag fram en mätplan och upprätta mätprotokoll, konsultera gärna laborationshandledaren innan mätningarna startar. Dokumentera den experimentella uppställningen. Genomför mätningar.

Läs mer

Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x.

Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8 Figur : Vi konstaterar följande: Då

Läs mer

LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v

LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v Fysikum FK4005 - Fristående kursprogram Laborationsinstruktion (1 april 2008) LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v Mål Denna laboration är uppdelad i två delar. I den första bestäms C p /C

Läs mer

MEKANIK II 1FA102. VIK detta blad om bladen med dina lösningar. Se till så att tentamensvakterna INTE häftar samman lösningsbladen.

MEKANIK II 1FA102. VIK detta blad om bladen med dina lösningar. Se till så att tentamensvakterna INTE häftar samman lösningsbladen. UPPSALA UNIVERSITET Inst för fysik och astronomi Allan Hallgren TENTAMEN 08-08 -29 MEKANIK II 1FA102 SKRIVTID: 5 timmar, kl 8.00-13.00 Hjälpmedel: Nordling-Österman: Physics Handbook Råde-Westergren: Mathematics

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:

Läs mer

LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M

LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M TANA21+22/ 5 juli 2016 LAB 1. FELANALYS 1 Inledning I laborationerna används matrishanteringsprogrammet MATLAB. som genomgående använder dubbel precision vid beräkningarna. 1.1 Innehåll Du ska 1. bestämma

Läs mer

20 Gamla tentamensuppgifter

20 Gamla tentamensuppgifter 20 Gamla tentamensuppgifter 20.1 Lätta avdelningen Övning 20.1 Beräkna f 0 ( 3) för f(x) = 3x2 2x + 1 med jälp av derivatans definition. Lösning: Här är det allmänna uttrycket för derivatans definition

Läs mer

Koppla spänningsproben till spolen.

Koppla spänningsproben till spolen. LÄRARHANDLEDNING Induktion Materiel: Utförande: Dator med programmet LoggerPro Mätinterfacet LabQuest eller LabPro spänningsprobe spolar (300, 600 och 1200 varv), stavmagnet plaströr och kopparrör (ca

Läs mer

Lösningar och kommentarer till uppgifter i 2.3

Lösningar och kommentarer till uppgifter i 2.3 Lösningar och kommentarer till uppgifter i 2.3 2303 d) TB: Jaha, nu gäller det att kunna sina deriveringsregler. Polynom kommer man alltid ihåg hur de ska deriveras. f(x) = 4x 2 + 5x 3 ger derivatan f

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod F6T Kursnamn Fysik 3 Datum Material Laborationsrapport svängande skiva Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Labbrapport TCTDA Amanda

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 04-05-0 DEL A. Planet P innehåller punkterna (,, 0), (0, 3, ) och (,, ). (a) Bestäm en ekvation, på formen ax + by + cz + d = 0, för planet P. (

Läs mer

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4 Linnéuniversitetet Institutionen för fysik och elektroteknik Elektricitetslära och magnetism - 1FY808 Lab 3 och Lab 4 Ditt namn:... eftersom labhäften far runt i labsalen. 1 Laboration 3: Likström och

Läs mer

Modellering av en Tankprocess

Modellering av en Tankprocess UPPSALA UNIVERSITET SYSTEMTEKNIK EKL och PSA 2002, AR 2004, BC2009 Modellering av dynamiska system Modellering av en Tankprocess Sammanfattning En tankprocess modelleras utifrån kända fysikaliska relationer.

Läs mer

Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.

Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. 1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter kursen och/eller

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 17 februari

Tentamen för kursen. Linjära statistiska modeller. 17 februari STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 17 februari 2010 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312,

Läs mer

Introduktion. Torsionspendel

Introduktion. Torsionspendel Chalmers Tekniska Högskola och Göteborgs Universitet November 00 Fysik och teknisk fysik Kristian Gustafsson och Maj Hanson (Anpassat för I1 av Göran Niklasson) Svängningar Introduktion I mekanikkursen

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

LABORATION 1 TYNGDACCELERATIONEN

LABORATION 1 TYNGDACCELERATIONEN Fysikum FK3001 - Experimentella metoder FK2002 - Fysikexperiment FK2004 - Experimentell fysik för lärare Laborationsinstruktion (10 augusti 2010) LABORATION 1 TYNGDACCELERATIONEN Mål I denna övning skall

Läs mer

Belastningsanalys, 5 poäng Tvärkontraktion Temp. inverkan Statiskt obestämd belastning

Belastningsanalys, 5 poäng Tvärkontraktion Temp. inverkan Statiskt obestämd belastning Tvärkontraktion När en kropp belastas med en axiell last i en riktning förändras längden inte bara i den lastens riktning Det sker en samtidig kontraktion (sammandragning) i riktningar tvärs dragriktningen.

Läs mer

Numerisk lösning till den tidsberoende Schrödingerekvationen.

Numerisk lösning till den tidsberoende Schrödingerekvationen. Numerisk lösning till den tidsberoende Schrödingerekvationen. Det är enbart i de enklaste fallen t ex när potentialen är sträckvis konstant som vi kan lösa Schrödingerekvationen analytiskt. I andra fall

Läs mer

NpMa3c vt Kravgränser

NpMa3c vt Kravgränser Kravgränser Provet består av ett muntligt delprov (Del A) och tre skriftliga delprov (Del B, Del C och Del D). Tillsammans kan de ge 66 poäng varav 25 E-, 24 C- och 17 A-poäng. Observera att kravgränserna

Läs mer

6 Derivata och grafer

6 Derivata och grafer 6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000

Läs mer

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel)

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel) ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en balk utsatt för transversell last q(x) kan beräknas med formeln σ x M y z I y Detta uttryck är relaterat (kopplat) till ett koordinatsystem

Läs mer

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning).

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning). STOCHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Mekanik FyU01 och FyU03 Måndag 3 oktober 2005 kl. 9-15 Införda beteckningar skall definieras och uppställda ekvationer motiveras, detta gäller även när

Läs mer

Tentamen Fysikaliska principer

Tentamen Fysikaliska principer Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm NFYA02/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 2016 8:00 12:00 Tentamen består

Läs mer

Ballistisk pendel laboration Mekanik II

Ballistisk pendel laboration Mekanik II Ballistisk pendel laboration Mekanik II Utförs av: William Sjöström 19940404 6956 Philip Sandell 19950512 3456 Uppsala 2015 05 09 Sammanfattning Ett sätt att mäta en gevärkulas hastighet är att låta den

Läs mer

Fel- och störningsanalys

Fel- och störningsanalys Fel- och störningsanalys 1 Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

Gunga med Galileo matematik för hela kroppen

Gunga med Galileo matematik för hela kroppen Ann-Marie Pendrill Gunga med Galileo matematik för hela kroppen På en lekplats eller i en nöjespark finns möjlighet att påtagligt uppleva begrepp från fysik och matematik med den egna kroppen. Med hjälp

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 4/9 2008 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

Laboration: Roterande Referenssystem

Laboration: Roterande Referenssystem INSTITUTIONEN FöR FYSIK OCH ASTRONOMI Laboration: Roterande Referenssystem Laborationsinstruktionen innehåller teori, diskussioner och beskrivningar av de experiment som ska göras. Mål: Att få erfarenhet

Läs mer

SKALNING OCH RESONANS

SKALNING OCH RESONANS SKALNING OCH RESONANS INGEMAR NÅSELL Abstract. Dessa föreläsningsanteckningar kompletterar Avsnitten 3.8 och 3.9 i kursboken av Boyce och diprima. De behandlar ett av de viktigaste avsnitten i kursen,

Läs mer