LÅGCYKELUTMATTNING (engelska: LOW CYCLE FATIGUE, LCF)

Storlek: px
Starta visningen från sidan:

Download "LÅGCYKELUTMATTNING (engelska: LOW CYCLE FATIGUE, LCF)"

Transkript

1 LÅGCYKELUTMATTNING (engelska: LOW CYCLE FATIGUE, LCF) Rekapitulation från högcykelutmattning (HCF): Vi skär alltså normalt av Haigh-diagrammet med en linje som gör att vi inte tillåter att bli. Men i en begränsad del av en komponent kan man ha en spänningsamplitud lokalt kommer över. Exempel:, som gör att man Om denna situation kan vi säga två saker: Kort livslängd (därav lågcykelutmattning, LCF) (storleksordning högst ett fåtal 1000 cykler) Den plastiska zonen är (a) liten och (b) vekare än den stora elastiska omgivningen. Den får därför sin töjning i stället för sin spänning styrd av. Vi kan därför lika väl tala om LCF som töjningsutmattning (och analogt kan HCF kallas spänningsutmattning).

2 Dimensionering mot LCF Tidig observation av Coffin och Manson (oberoende av varandra): (1) där är plastisk töjningsamplitud och och är materialparametrar. Typiska värden är och. Eftersom det är svårt (i praktiken t.o.m. omöjligt) att mäta den plastiska töjningsamplituden, uppstår det här ett problem, som gör det svårt att bestämma parametrarna i ekv. (1) och att använda ekv. (1) i praktiskt dimensioneringsarbete. För att få en ekvation motsvarande (1) men uppställd i totala töjningsamplituden istället kan man först konstatera att Wöhlers diagram för sambandet mellan och i HCF kan beskrivas matematiskt med Basquins ekvation (2) där och b är materialparametrar. Typiska värden: och. Om man sedan använder sig av sambanden (3) och (4) så kan man formellt skriva (5) Morrow s ekvation har blivit den ekvation man oftast använder vid dimensionering mot LCF. Den ger i en log-log-presentation följande diagram:

3 I vänstra delen (svarande mot höga resp. låga dominerar Coffin-Manson-termen, medan Basquin-termen dominerar i diagrammets högerdel (låga resp. höga ). I mitten får man en mjuk övergång mellan de båda. Bestämning av. Neubers princip Kom nu ihåg att den töjningsamplitud vi talar om är den lokala töjnigsamplituden inne vid spännings-/töjningskoncntrationen. Har vi möjlighet att t.ex. med en rigorös elastoplastisk FEM-analys beräkna den, så är saken klar, men i många fall kan eller vill man inte göra så. En elastoplastisk FEManalys är avsevärt mer komplicerad och tar också flera gånger längre tid än motsvarande elastiska, och det är ofta önskvärt att slippa den komplikationen. Lyckligtvis finns ett bra sätt att beräkna i en sådan lokal plastisk zon även om man har bara en elastisk globallösning Principen angavs av Neuber (1961) och börjar med att man definierar spänningsoch töjningskoncentrationsfaktorer resp för det elastoplastiska lokaltillståndet. Därmed kan man beräkna lokal spänning resp. töjning i det elastoplastiska lokalområdet: (6) (7) och man får (8) Neubers visade att (9) där är den vanliga elastiska spänningskoncentrationsfaktorn. Vi kan då skriva om (8): (10) vilket brukar kallas Neubers hyperbel. Ekvationen ger alltså sambandet mellan lokal töjning och lokal spänning. Mellan dessa råder naturligtvis samtidigt ett konstitutivsamband, i dessa sammanhang ofta uttryckt som Ramberg-Osgoods ekvation: (11) där och är materialdata. Vi konstaterar till slut att samtliga ekvationer (6) t.o.m. (11) kan användas för amplituder lika väl som för statiska värden. Vidare byter man ibland i ekv. (10) mot (jfr HCF). Den ekvation man då använder blir

4 (12) Ekv. (11) och (12) är alltså ett olinjärt ekvationssystem i och (eller, i LCF-sammanhang, hellre och. Ett enkelt sätt att lösa systemet är att rita de bådas grafer i ett -system och läsa av skärningspunkten: Det avlästa är då den töjningsamplitud som ska användas i t.ex. Morrows ekvation. Sammanfattning: dimensionering mot LCF ( känd) 1 Bestäm 2 ä 3 ä 4 Lägg in Neubers och Ramberg-Osgoods ekvationer i ett -diagram. Skärningspunkten ger. 5 ö

5 Exempel Studera en maskinkomponent enligt figuren. Komponenten är tillverkad av stål SS , för vilket följande data gäller: Grunddata Morrow-data Haigh-data Ramberg-Osgood-data (a) Bestäm genom vanlig HCF-dimensionering hur stort högst får vara. (b) Använd Morrows ekvation för att beräkna utmattningslivslängden beräknade. (c) Låt. Bestäm utmattningslivslängden Lösning (a) Med figurens och tabellens data får vi för belastning med det i (a)

6 (b) Vi har alltså Följ nu receptlistan ovan! Neubers och Ramberg-Osgoods ekvationer enl. 3 och 4 är inlagda i fig. 6. Skärningspunkt. 5 Numerisk lösning (t.ex. grafisk lösning) ger. Obs att Haigh-diagrammet fö ket som regel tolkas som cykler. Vi har alltså bekräftat detta genom att använda Morrows ekvation för den spänningsamplitud som beräknades i (a) med användning av Haigh-diagram. Fig. 6

7 c) Nu är Receptlistan ger Neubers och Ramberg-Osgoods ekvationer enl. 3 och 4 är inlagda i fig. 6. Skärningspunkt. Koll: motsvarande, d.v.s. över sträckgränsen, och vi har lokalt plastiskt tillstånd. 5 Numerisk lösning (t.ex. grafisk lösning) ger

Fatigue Properties in Additive manufactured Titanium & Inconell

Fatigue Properties in Additive manufactured Titanium & Inconell Fatigue Properties in Additive manufactured Titanium & Inconell UTMIS, Jönköping, 6/2-2018 PÄR JOHANNESSON, TORSTEN SJÖGREN Research Institutes of Sweden RISE Safety and Transport Mechanics Research 2015

Läs mer

LÖSNING

LÖSNING TMHL09 2013-05-31.01 (Del I, teori; 1 p.) Strävan i figuren ska ha cirkulärt tvärsnitt och tillverkas av antingen stål eller aluminium. O- avsett vilket material som väljs ska kritiska lasten mot knäckning

Läs mer

2. Förklara vad en egenfrekvens är. English: Explain what en eigenfrequency is.

2. Förklara vad en egenfrekvens är. English: Explain what en eigenfrequency is. Linköpings Universitet, Hållfasthetslära, IEI/IKP TENTAMEN i Mekaniska svängningar och utmattning, TMMI09 2007-10-16 kl 14-18 L Ö S N I N G A R ---- SOLUTIONS 1. Ange sambanden mellan vinkelfrekvens ω,

Läs mer

Återblick på föreläsning 22, du skall kunna

Återblick på föreläsning 22, du skall kunna Återblick på föreläsning 22, du skall kunna beskriva det principiella utseendet för en elastiskplastisk materialmodell beskriva von Mises och Trescas flytvillkor beräkna von Mises och Trescas effektivspänningar

Läs mer

LÖSNING

LÖSNING .01 (Del I, teori; 1 p.) 1. En fast inspänd balk med kontinuerlig massfördelning enligt figuren utför fria svängningar. Visa med enkla skisser hur 1a och 2a egensvängningsmoderna frihetsgraderna ser ut..02

Läs mer

Finita Elementmetoden

Finita Elementmetoden Bilder: Elena Kabo Finita Elementmetoden Anders Ekberg Teknisk mekanik / CHARMEC anders.ekberg@me.chalmers.se Bakgrund Allmängiltighet Geometri Last Material Datorbaserat CAD -> CAE -> CAM Beräkningsintensivt

Läs mer

Mål Likformighet, Funktioner och Algebra år 9

Mål Likformighet, Funktioner och Algebra år 9 Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter

Läs mer

------------ -------------------------------

------------ ------------------------------- TMHL09 2013-10-23.01 (Del I, teori; 1 p.) 1. En balk med kvadratiskt tvärsnitt är tillverkad genom att man limmat ihop två lika rektangulära profiler enligt fig. 2a. Balken belastas med axiell tryckkraft

Läs mer

LÖSNING

LÖSNING .01 1. En balk ska tillverkas genom att man limmar ihop två lika rektangulära profiler, vardera med måttet. Man kan välja att limma antingen enligt alternativ (a) eller alternativ (b) i nedanstående tvärsnittsfigurer.

Läs mer

P R O B L E M

P R O B L E M Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 2008-08-14 kl 8-12 P R O B L E M med L Ö S N I N G A R Del 1 - (Teoridel utan hjälpmedel)

Läs mer

INVERSA FUNKTIONER DEFINITION. (invers funktion) Låt ff vara en funktion av en reell variabel med definitionsmängden DD ff och värdemängden VV ff. Vi säger att funktionen ff är inverterbar om ekvationen

Läs mer

UTMATTNINGSBERÄKNING AV HYDRAULIKKOPPLINGAR

UTMATTNINGSBERÄKNING AV HYDRAULIKKOPPLINGAR i UTMATTNINGSBERÄKNING AV HYDRAULIKKOPPLINGAR Metoder och beräkningar gällande utmattningsteorier FATIGUE CALCULATIONS OF HYDRAULIC QUICK COUPLINGS Method and calculations considering fatigue limits Examensarbete

Läs mer

Hållfasthetslära Lektion 2. Hookes lag Materialdata - Dragprov

Hållfasthetslära Lektion 2. Hookes lag Materialdata - Dragprov Hållfasthetslära Lektion 2 Hookes lag Materialdata - Dragprov Dagens lektion Mål med dagens lektion Sammanfattning av förra lektionen Vad har vi lärt oss hittills? Hookes lag Hur förhåller sig normalspänning

Läs mer

SOLUTION

SOLUTION TMMI09 2013-08-23.01 (Del I, teori; 1 p.) 1. En konsolbalk med en punktmassa påverkas av en störkraft. Den resulterande stationärsvängningens amplitud kan skrivas, där är balkens utböjning vid statisk

Läs mer

EXAMINATION L Ö S N I N G A R ---- S O L U T I O N S

EXAMINATION L Ö S N I N G A R ---- S O L U T I O N S inköpings Universitet, Hållfasthetslära, IEI/IKP Tore Dahlberg TENTAMEN i Mekaniska svängningar och utmattning, TMMI09 2007-03-16 kl 14-18 Ö S N I N G A R ---- SOUTIONS 1. Ange sambanden mellan vinkelfrekvens

Läs mer

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4 Linnéuniversitetet Institutionen för fysik och elektroteknik Elektricitetslära och magnetism - 1FY808 Lab 3 och Lab 4 Ditt namn:... eftersom labhäften far runt i labsalen. 1 Laboration 3: Likström och

Läs mer

Linköpings Universitet Hållfasthetslära, IKP

Linköpings Universitet Hållfasthetslära, IKP Linköpings Universitet Hållfasthetslära, IKP TENTAMEN i Mekaniska svängningar och utmattning, TMMI09 EXAMINATION in Mechanical Vibrations and Fatigue 2004-03-12 kl 8-12 Examinator, tel 28 1116 Tentamen

Läs mer

Hållfasthetslära Sammanfattning

Hållfasthetslära Sammanfattning 2004-12-09 Enaxlig drag/tryck & skjuvning Anders Ekberg Hållfasthetslära Sammanfattning Anders Ekberg Ekvationsnummer hänvisar till Hans Lundh, Grundläggande Hållfasthetslära, Stockholm, 2000 Denna sammanfattning

Läs mer

Tentamen i Hållfasthetslära AK2 för M Torsdag , kl

Tentamen i Hållfasthetslära AK2 för M Torsdag , kl Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK2 för M Torsdag 2015-06-04, kl. 8.00-13.00 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts

Läs mer

Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16.

Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16. Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16. Deluppgift 1: En segelbåt med vinden rakt i ryggen har hissat spinnakern. Anta att segelbåtens mast är ledad i botten, spinnakern drar masttoppen snett

Läs mer

SOLUTION

SOLUTION TMMI09 2012-10-20.01 (Del I, teori; 1 p.) Jämför de två konsolbalkarna (a) och (b). Båda har en punktmassa i höger ände, medan balken själv kan anses masslös.. Hur stort är? ( är egenvinkelfrekvenserna

Läs mer

Dragprov, en demonstration

Dragprov, en demonstration Dragprov, en demonstration Stål Grundämnet järn är huvudbeståndsdelen i stål. I normalt konstruktionsstål, som är det vi ska arbeta med, är kolhalten högst 0,20-0,25 %. En av anledningarna är att stålet

Läs mer

SVÄNGNINGSTIDEN FÖR EN PENDEL

SVÄNGNINGSTIDEN FÖR EN PENDEL Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt

Läs mer

LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel

LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel Lennart Edsberg Nada, KTH December 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 03/04 Laboration 3 3. Torsionssvängningar i en drivaxel 1 Laboration 3. Differentialekvationer

Läs mer

Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25

Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25 Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMHL0, 009-03-13 kl LÖSNINGAR DEL 1 - (Teoridel utan hjälpmedel) 1. Du har en plattstav som utsätts för en

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) Tekniska Högskolan i inköping, IK DE 1 - (Teoridel utan hjälpmedel) NAMN... 1. Vilken typ av ekvation är detta: ε = d u(x) d x Ange vad de ingående storheterna betyder, inklusive deras dimension i SI-enheter.

Läs mer

Sidor i boken KB 6, 66

Sidor i boken KB 6, 66 Sidor i boken KB 6, 66 Funktioner Ordet funktion syftar inom matematiken på en regel som innebär att till varje invärde associeras ett utvärde. Ofta beskrivs sambandet mellan invärde och utvärde med en

Läs mer

LABORATION I HÅLLFASTHETSLÄRA AK1

LABORATION I HÅLLFASTHETSLÄRA AK1 LABORATION I HÅLLFASTHETSLÄRA AK1 Laborationer i hållfasthetslära är obligatoriska moment. I AK1M sker laborationer vid två stationer och arbetet genomförs med fyra teknologer i varje grupp, vilka tillsammans

Läs mer

NpMa2b Muntlig del vt 2012

NpMa2b Muntlig del vt 2012 Till eleven - Information inför den muntliga provdelen Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater

Läs mer

Bedömningsanvisningar

Bedömningsanvisningar Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet

Läs mer

Ellära. Laboration 2 Mätning och simulering av likströmsnät (Thevenin-ekvivalent)

Ellära. Laboration 2 Mätning och simulering av likströmsnät (Thevenin-ekvivalent) Ellära. Laboration 2 Mätning och simulering av likströmsnät (Thevenin-ekvivalent) Labhäftet underskrivet av läraren gäller som kvitto för labben. Varje laborant måste ha ett eget labhäfte med ifyllda förberedelseuppgifter

Läs mer

Räta linjer. Ekvationssystem. Att hitta räta linjens ekvation ifrån olika förutsättningar. 1.1 Hitta en rät linjes ekvation utifrån en ritad graf.

Räta linjer. Ekvationssystem. Att hitta räta linjens ekvation ifrån olika förutsättningar. 1.1 Hitta en rät linjes ekvation utifrån en ritad graf. Översikt inför provet om räta linjer och ekvationssystem Denna finns digitalt med tillhörande länkar på http://www.thelberg.com/ma2b/prov1 eller via QR-koden nedan: Räta linjer Att hitta räta linjens ekvation

Läs mer

PPU408 HT16. Stål, utmattning. Lars Bark MdH/IDT

PPU408 HT16. Stål, utmattning. Lars Bark MdH/IDT PPU408 HT16 Stål, utmattning 1 De flesta haverier som sker i lastbärande konstruktioner orsakas av utmattning. Detta beror bl.a. på att: - hållfastheten vid upprepade belastningar, speciellt vid hög anvisningsverkan

Läs mer

Att använda el. Ellära och Elektronik Moment DC-nät Föreläsning 3. Effekt och Anpassning Superposition Nodanalys och Slinganalys.

Att använda el. Ellära och Elektronik Moment DC-nät Föreläsning 3. Effekt och Anpassning Superposition Nodanalys och Slinganalys. llära och lektronik Moment DC-nät Föreläsning ffekt och Anpassning Superposition Nodanalys och Slinganalys Copyright 8 Börje Norlin Att använda el Sverige Fas: svart Nolla: blå Jord: gröngul Copyright

Läs mer

Bedömningsanvisningar

Bedömningsanvisningar Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet

Läs mer

Matematik CD för TB. x + 2y 6 = 0. Figur 1:

Matematik CD för TB. x + 2y 6 = 0. Figur 1: Kontroll 8 1 Bestäm ekvationen för den linje som går genom punkterna P 1 (,4) och P 2 (9, 2). 2 Bestäm riktningskoefficienten för linjen x + 4y 6 = 0 Bestäm ekvationen för en linje som går genom punkten

Läs mer

Signaler och system, IT3

Signaler och system, IT3 Signaler och system, IT3 Vad är signalbehandling? 1 Detta dokument utgör introduktionsföreläsningen för kursen Signaler och system för IT3 period 2. Kursen utvecklades år 2002 av Mathias Johansson. 1 Vad

Läs mer

Material föreläsning 4. HT2 7,5 p halvfart Janne Carlsson

Material föreläsning 4. HT2 7,5 p halvfart Janne Carlsson Material föreläsning 4 HT2 7,5 p halvfart Janne Carlsson Tisdag 29:e November 10:15 15:00 PPU105 Material Förmiddagens agenda Allmän info Bortom elasticitet: plasticitet och seghet ch 6 Paus Hållfasthetsbegränsad

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2 Kapitel.1 101, 10 Exempel som löses i boken. 103 Testa genom att lägga linjalen lodrätt och föra den över grafen. Om den på något ställe skär grafen i mer än en punkt så visar grafen inte en funktion.

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

Funktioner Exempel på uppgifter från nationella prov, Kurs A E

Funktioner Exempel på uppgifter från nationella prov, Kurs A E Funktioner Exempel på uppgifter från nationella prov, Kurs A E Uppgifter ur Nationella prov Kurs A Ur del II utan räknare: När en frysbox stängs av stiger temperaturen. Följande formel kan användas för

Läs mer

Godisförsäljning. 1. a) Vad blir den totala kostnaden om klassen köper in 10 kg godis? Gör beräkningen i rutan nedan.

Godisförsäljning. 1. a) Vad blir den totala kostnaden om klassen köper in 10 kg godis? Gör beräkningen i rutan nedan. Godisförsäljning För att samla in pengar till en klassresa har Klass 9b på Gotteskolan bestämt sig för att hyra ett bord och sälja godis på Torsbymarten. Det kostar 100 kr att hyra ett bord. De köper in

Läs mer

Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 02/03. Laboration 3 4. Elmotor med resonant dämpare

Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 02/03. Laboration 3 4. Elmotor med resonant dämpare Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 02/03 Laboration 3 4. Elmotor med resonant dämpare 1 Laboration 3. Differentialekvationer Elmotor med

Läs mer

Ekvationslösning genom substitution, rotekvationer

Ekvationslösning genom substitution, rotekvationer Sidor i boken -3, 70-73 Ekvationslösning genom substitution, rotekvationer Rotekvationer Med en rotekvation menas en ekvation, i vilken den obekanta förekommer under ett rotmärke. Observera att betecknar

Läs mer

Material, form och kraft, F4

Material, form och kraft, F4 Material, form och kraft, F4 Repetition Kedjekurvor, trycklinjer Material Linjärt elastiskt material Isotropi, ortotropi Mikro/makro, cellstrukturer xempel på materialegenskaper Repetition, kedjekurvan

Läs mer

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 23 2 5 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

NpMa2b vt Kravgränser

NpMa2b vt Kravgränser Kravgränser Provet består av ett muntligt delprov (Del A) och tre skriftliga delprov (Del B, Del C och Del D). Tillsammans kan de ge 67 poäng varav 26 E-, 24 C- och 17 A-poäng. Observera att kravgränserna

Läs mer

Tangenter till tredjegradsfunktioner

Tangenter till tredjegradsfunktioner Tangenter till tredjegradsfunktioner I bilden intill ser du grafen av en tredjegradsfunktion som har tre nollställen nämligen x = 2, x = 1 och x = -1. Om man ritar en tangent till funktionsgrafen kommer

Läs mer

= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz

= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz Tekniska Högskolan i Linköping, IKP /Tore Dahlberg LÖSNINGAR TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 060601 kl -12 DEL 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en punkt i ett

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)

Läs mer

Lösning: ω e. = k M = EA LM

Lösning: ω e. = k M = EA LM Tekniska Högskolan i inköping, IKP Tore Dahlberg TENTAMEN i Mekaniska svängningar och utmattning, TMMI09, 050318 kl 8-12 DE 1 - (Teoridel utan hjälpmedel) EXAMINATION in Mechanical Vibrations and Fatigue,

Läs mer

TENTAMEN i Hållfasthetslära; grundkurs, TMMI kl 08-12

TENTAMEN i Hållfasthetslära; grundkurs, TMMI kl 08-12 Linköpings Universitet Hållfasthetslära, IK TENTAMEN i Hållfasthetslära; grundkurs, TMMI17 2001-08-17 kl 08-12 Kursen given lp 4, lå 2000/01 Examinator, ankn (013-28) 1116 Tentamen Tentamen består av två

Läs mer

Bedömningsanvisningar

Bedömningsanvisningar NpMab vt 01 Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar

Läs mer

Räta linjens ekvation & Ekvationssystem

Räta linjens ekvation & Ekvationssystem Räta linjens ekvation & Ekvationssstem Uppgift nr 1 Lös ekvationssstemet eakt = 3 + = 28 Uppgift nr 2 Lös ekvationssstemet eakt = 5-15 + = 3 Uppgift nr 8 Lös ekvationssstemet eakt 9-6 = -69 5 + 11 = -35

Läs mer

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)?

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)? I figuren ser vi grafen till funktionen f(x) x + Inritad finns dels en sekant, som skär kurvan i punkterna ( 1, 7) oc (4, ). Dessutom finns en tangent som tangerar kurvan i (, 10) Sekantens riktningskoefficient

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR ABSOLUTBELOPP Några exempel som du har gjort i gymnasieskolan: a) = b) 0 =0 c) 5 = 5 Alltså x 0 et av ett tal x är lika med själva talet x om talet är positivt eller lika med 0 et av x är lika med det

Läs mer

Praktisk beräkning av SPICE-parametrar för halvledare

Praktisk beräkning av SPICE-parametrar för halvledare SPICE-parametrar för halvledare IH1611 Halvledarkomponenter Ammar Elyas Fredrik Lundgren Joel Nilsson elyas at kth.se flundg at kth.se joelni at kth.se Martin Axelsson maxels at kth.se Shaho Moulodi moulodi

Läs mer

y = x x = Bestäm ekvationen för en linje där k = 2 och som går genom punkten ( 1, 3). 2/0/0

y = x x = Bestäm ekvationen för en linje där k = 2 och som går genom punkten ( 1, 3). 2/0/0 Del A: Digitala verktyg är tillåtna. Skriv dina lösningar på separat papper. 1) En TV reparatörs arbete kostar kronor, där antalet arbetstimmar. y = 200 + 150x x = a) Ange och tolka den linjära funktionens

Läs mer

Eurokod 3 del 1-2 Brandteknisk dimensionering av stålkonstruktioner

Eurokod 3 del 1-2 Brandteknisk dimensionering av stålkonstruktioner Eurokod 3 del 1-2 Brandteknisk dimensionering av stålkonstruktioner Peter Karlström, Konkret Rådgivande Ingenjörer i Stockholm AB Allmänt EN 1993-1-2 (Eurokod 3 del 1-2) är en av totalt 20 delar som handlar

Läs mer

ANDRAGRADSKURVOR Vi betraktar ekvationen

ANDRAGRADSKURVOR Vi betraktar ekvationen ANDRAGRADSKURVOR Vi betraktar ekvationen Ax + Bxy + Cy + Dx + Fy + G 0 (ekv) där minst en av A,B, eller C är skild från 0 En andragradskurva är mängden av alla punkter vilkas koordinater satisfierar en

Läs mer

16. Max 2/0/ Max 3/0/0

16. Max 2/0/ Max 3/0/0 Del III 16. Max 2/0/0 Godtagbar ansats, visar förståelse för likformighetsbegreppet, t.ex. genom att bestämma en tänkbar längd på sidan med i övrigt godtagbar lösning med korrekt svar (8 cm och 18 cm)

Läs mer

Belastningsanalys, 5 poäng Tvärkontraktion Temp. inverkan Statiskt obestämd belastning

Belastningsanalys, 5 poäng Tvärkontraktion Temp. inverkan Statiskt obestämd belastning Tvärkontraktion När en kropp belastas med en axiell last i en riktning förändras längden inte bara i den lastens riktning Det sker en samtidig kontraktion (sammandragning) i riktningar tvärs dragriktningen.

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

Matrismetod för analys av stångbärverk

Matrismetod för analys av stångbärverk KTH Hållfasthetslära, J aleskog, September 010 1 Inledning Matrismetod för analys av stångbärverk Vid analys av stångbärverk är målet att bestämma belastningen i varje stång samt att beräkna deformationen

Läs mer

Utmattningsdimensionering med FEM kriterier och metodik. Mårten Olsson, KTH Hållfasthetslära och Sven Norberg, Scania CV AB

Utmattningsdimensionering med FEM kriterier och metodik. Mårten Olsson, KTH Hållfasthetslära och Sven Norberg, Scania CV AB Utmattningsdimensionering med FEM kriterier och metodik Mårten Olsson, KTH Hållfasthetslära och Sven Norberg, Scania CV AB Denna presentation handlar om kriterier FAST utmattningsanalys med FAST FAST =

Läs mer

Uppgift 1-7. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.

Uppgift 1-7. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal. Del B Del C Provtid Hjälpmedel Uppgift 1-7. Endast svar krävs. Uppgift 8-14. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består av

Läs mer

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x = UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

Del A TEORI (max 40 p) OBS! Del A inlämnas innan Del B uthämtas.

Del A TEORI (max 40 p) OBS! Del A inlämnas innan Del B uthämtas. Tentamen i INGENJÖRSGEOLOGI OCH GEOTEKNIK för W4 1TV445. Miljö- och vattenteknik, åk 4 Del A TEORI (max 40 p) OBS! Del A inlämnas innan Del B uthämtas. datum tid Sal: Tillåtna hjälpmedel: Räknedosa Ritmateriel

Läs mer

Tentamen i Hållfasthetslära AK

Tentamen i Hållfasthetslära AK Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK1 2017-04-18 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den

Läs mer

CW263BT. Badrumsvåg. Manual

CW263BT. Badrumsvåg. Manual CW263BT Badrumsvåg Manual Innehållsförteckning 1. Specifikationer... 3 2. Batteri... 4 3. Drift/Funktion... 4 3. Indikation... 5 4. ios Enheter... 5 5. Android Enheter Installation... 10 6. Andra Instuktioner

Läs mer

Avsnitt 2, introduktion.

Avsnitt 2, introduktion. KTHs Sommarmatematik Introduktion 2:1 2:1 Bråkstreck Avsnitt 2, introduktion. Gemensamt bråkstreck. Två fall: Ingen gemensam faktor i nämnarna (Ex: ) Se Exempel 1 Gemensam faktor i nämnarna (Ex: ) Se Exempel

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR ABSOLUTBELOPP Några eempel som du har gjort i gymnasieskolan: a) b) c) 5 5 Alltså et av ett tal är lika med själva talet om talet är positivt eller lika med et av är lika med det motsatta talet om är negativt

Läs mer

Linköpings Universitet 2010-12-14 IFM - Kemi Yt- och Kolloidkemi - NKEC21 NOP/Kontaktvinkel_10.doc. Lab. 1 Mätning av ytspänning och kontaktvinkel

Linköpings Universitet 2010-12-14 IFM - Kemi Yt- och Kolloidkemi - NKEC21 NOP/Kontaktvinkel_10.doc. Lab. 1 Mätning av ytspänning och kontaktvinkel Linköpings Universitet 2010-12-14 IFM - Kemi Yt- och Kolloidkemi - NKEC21 NOP/Kontaktvinkel_10.doc Lab. 1 Mätning av ytspänning och kontaktvinkel Mätning av ytspänning. Många olika metoder finns för att

Läs mer

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp MAA7 Derivatan 2. Funktionens egenskaper 2.1 Repetition av grundbegerepp - Det finns vissa begrepp som återkommer i nästan alla kurser i matematik. Några av dessa är definitionsmängd, värdemängd, största

Läs mer

f(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100

f(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100 8 Skissa grafer 8.1 Dagens Teori När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera.

Läs mer

Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna.

Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna. Vid bedömning av ditt arbete med uppgift nummer 17 kommer läraren att ta hänsyn till: Hur väl du beräknar och jämför trianglarnas areor Hur väl du motiverar dina slutsatser Hur väl du beskriver hur arean

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

Fler uppgifter på andragradsfunktioner

Fler uppgifter på andragradsfunktioner Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har

Läs mer

MA 1202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs.

MA 1202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs. MA 202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs. Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för tillämpningar och vald studieinriktning

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.

Läs mer

SAMMANFATTNING TATA41 ENVARIABELANALYS 1

SAMMANFATTNING TATA41 ENVARIABELANALYS 1 SAMMANFATTNING TATA4 ENVARIABELANALYS LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 04 Senast reviderad: 05-06-0 Författare: Viktor Cheng INNEHÅLLSFÖRTECKNING Diverse knep...3

Läs mer

Matematik C Uppdrag 3

Matematik C Uppdrag 3 Matematik C Uppdrag 3 Välkommen till ditt tredje uppdrag i Matematik C! Spara och arbeta med dina studieuppdrag: Spara först ned studieuppdraget som Ma1203_u3_[förnamn]_[efternamn] (t.ex. Ma1203_u3_Anders_Andersson

Läs mer

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 1.1Introduktion Introduktion Avsnitt 1 handlar till att börja med om hantering av bråkstreck. Samtidigt ges exempel och övningar

Läs mer

Övningstentamen i MA2003 Tillämpad Matematik I, 7.5hp

Övningstentamen i MA2003 Tillämpad Matematik I, 7.5hp Övningstentamen i MA Tillämpad Matematik I,.hp Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av frågor! Endast Svarsblanketten ska lämnas

Läs mer

Makroekonomi Övningar REVIDERAD MED HÄNSYN TAGET TILL KURSENS LÅGA KUNSKAPER I. Gäller Kap

Makroekonomi Övningar REVIDERAD MED HÄNSYN TAGET TILL KURSENS LÅGA KUNSKAPER I. Gäller Kap Makroekonomi Övningar REVIDERAD MED HÄNSYN TAGET TILL KURSENS LÅGA KUNSKAPER I GRUNDLÄGGANDE MATEMATIK Gäller Kap 11-13. 2011-09-13 Juan Carlos Estibill Ht-2011 Se Kursinformation BILAGA: ÖVNINGAR KRAV:

Läs mer

H1009, Introduktionskurs i matematik Armin Halilovic

H1009, Introduktionskurs i matematik Armin Halilovic H009, Introduktionskurs i matematik Armin Halilovic ABSOLUTBELOPP Några exempel som du har gjort i gymnasieskolan: a) b) 0 =0 c) 5 5 Alltså x Absolutbeloppet av ett tal x är lika med själva talet x om

Läs mer

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER 1. Figuren visar grafen till funktionen f där f(x) = x 3 3x 2. I punkter där xkoordinaterna är 1 respektive 3 är tangenter till

Läs mer

Linjer och plan (lösningar)

Linjer och plan (lösningar) Linjer och plan (lösningar) 0. Enligt mittpunktsformeln (med O i just origo) OM = ³ OA + OB a) b) ((, 0, ) + (,, )) = (0,, ) µ +, +, z + z 0. Enligt tngdpunktsformeln (med O i just origo) ³ OA + OB + OC

Läs mer

Repetition ekvationer - Matematik 1

Repetition ekvationer - Matematik 1 Repetition ekvationer - Matematik 1 Uppgift nr 1 I en 2-barnsfamilj är alla tillsammans 107 år. Sonen är 7 år yngre än dottern. Mamman är 4 år äldre än pappan. Pappan är 4 gånger äldre än dottern. Hur

Läs mer

M0038M Differentialkalkyl, Lekt 4, H15

M0038M Differentialkalkyl, Lekt 4, H15 M0038M Differentialkalkyl, Lekt 4, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 28 Lekt 3 Om f (x) = 2 x 2 och g(x) = x + 2, bestäm nedanstående funktion och dess definitionsmängd.

Läs mer

Fordringar i EN och EN för att undvika sprödbrott Bo Lindblad, Inspecta Sweden AB

Fordringar i EN och EN för att undvika sprödbrott Bo Lindblad, Inspecta Sweden AB Fordringar i EN 13445 och EN 13480 för att undvika sprödbrott Bo Lindblad, Inspecta Sweden AB 1 Sprödbrott i tryckkärl 2 Sprödbrott i ventil av gjuten aluminium 3 Typiskt för ett sprödbrott Ingen nämnvärd

Läs mer

28 Lägesmått och spridningsmått... 10

28 Lägesmått och spridningsmått... 10 Marjan Repetitionsuppgifter Ma2 1(14) Innehåll 1 Lös ekvationer exakt................................... 2 2 Andragradsfunktion och symmetrilinje........................ 2 3 Förenkla uttryck.....................................

Läs mer

Repetition kapitel 1, 2, 5 inför prov 2 Ma2 NA17 vt18

Repetition kapitel 1, 2, 5 inför prov 2 Ma2 NA17 vt18 Repetition kapitel,, 5 inför prov Ma NA7 vt8 Prov tisdag 5/6 8.00-0.00 Algebra När man adderar eller subtraherar uttryck, så räknar man ihop ensamma siffror för sig, x-termer för sig, och eventuella x

Läs mer

Uppgifter 9 och 10 är för de som studerar byggteknik

Uppgifter 9 och 10 är för de som studerar byggteknik INLÄMNINGSPPGIFT MATEMATIK OCH MATEMATISK STATISTIK, HF003 007/08 ( DIFFERENTIAL EKVATIONER ) armin@sth.kth.se www.sth.kth.se/armin tel 08 790 80 Inlämningsuppgift består av två uppgifter. Individuellt

Läs mer

Laboration 1 Elektriska kretsar Online fjärrstyrd laborationsplats Blekinge Tekniska Högskola (BTH)

Laboration 1 Elektriska kretsar Online fjärrstyrd laborationsplats Blekinge Tekniska Högskola (BTH) Laboration 1 Elektriska kretsar Online fjärrstyrd laborationsplats Blekinge Tekniska Högskola (BTH) Likspänningsexperiment Namn: Elektriska kretsar Online fjärrstyrd laborationsplats Blekinge Tekniska

Läs mer

Samtidig visning av alla storheter på 3-fas elnät

Samtidig visning av alla storheter på 3-fas elnät Samtidig visning av alla storheter på 3-fas elnät Med nätanalysatorerna från Qualistar+ serien visas samtliga parametrar på tre-fas elnätet på en färgskärm. idsbaserad visning Qualistar+ visar insignalerna

Läs mer

Att fjärrstyra fysiska experiment över nätet.

Att fjärrstyra fysiska experiment över nätet. 2012-05-11 Att fjärrstyra fysiska experiment över nätet. Komponenter, t ex resistorer Fjärrstyrd labmiljö med experiment som utförs i realtid Kablar Likspänningskälla Lena Claesson, Katedralskolan/BTH

Läs mer