Vågrörelselära och optik

Storlek: px
Starta visningen från sidan:

Download "Vågrörelselära och optik"

Transkript

1 Denna vecka 1 Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 2

2 Harmonisk Svängning Experiment Ett experiment som hjälper oss att hitta en matematisk beskrivning av harmonisk svängning: 3 Harmonisk Svängning Experiment Slutsats: Harmonisk svängning kan beskrivas av funktionen x = A sin(bt + C) om t är tiden och A, B och C är konstanter som beskriver rörelsen. 4

3 Harmonisk Svängning Funktionen x x = A sin(bt + C) eller x = A cos(bt + C π/2) x : Vertikal förflyttning. Enhet: meter t : Tid. Enhet: sekund A : Amplitud (maximal förflyttning). Enhet: meter B = ω : Vinkel frekvens (antal svängningar per sekund gånger 2π). Enhet: Radianer per sekund C = φ : Fas vinkel (bestämmer läget vid tiden = 0). Enhet: radianer 5 Harmonisk Svängning f och T x x = A sin(ωt + φ ) eller x = A cos(ωt + φ) T: Period = tiden det tar för massan att åka upp och ner. Enhet: sekund f: Frekvens = Antalet perioder per sekund. Enhet: 1/sekund = Hz x f = 1 / T Formelsamling ω = 2πf t 6

4 Harmonisk Svängning fas vinkel x = A sin(ωt + φ ) eller x = A cos(ωt + φ) Fas vinkeln (φ) bestämmer läget vid tiden = 0. För då gäller: x = Asin(φ ) eller x = Acos(φ) x x x t t t X= A sin(ωt) X = A cos(ωt - π/2) X= A cos(ωt) X = A sin(ωt + π/2) X= A cos(ωt + π) X = A sin(ωt - π/2) 7 Harmonisk Svängning v och a Vi har nu en matematisk beskrivning av läget (den vertikala förflyttningen). Vad är hastigheten och accelerationen? 8

5 Harmonisk Svängning Sammanfattning 9 Harmonisk Svängning Fjädern & Krafter Fjädrar, Hookes lag & Krafter 10

6 Harmonisk Svängning Fjädern Formelsamling k = fjäderkonstanten beskriver hur styv fjädern är 11 Harmonisk Svängning Krafter 12

7 Harmonisk Svängning: Fjädern Vertikal svängning Gravitationen drar ut fjädern till ett nytt jämviktsläge. Horisontell svängning Detta är inte fallet om fjädern är horisontell. Svängningarna blir emellertid de samma! 13 Harmonisk Svängning Krafter x = 0 F total = 0 a x = 0 x > 0 F total < 0 a x < 0 x < 0 F total > 0 a x > 0 14

8 Harmonisk Svängning Krafter 15 Harmonisk Svängning Krafter Gamla formler: a x = -ω 2 x Ny formel: Kombinera: Formelsamling -ω 2 = -k/m Frekvensen beror av två saker: 1. Fjäderkonstanten 2. Massan 16

9 Harmonisk Svängning Krafter Man kan se på svängningarna på ett annat sätt: Detta är en differential ekvation som har lösningen: 17 Harmonisk Svängning Vertikal svängning Vertikal svängning 18

10 Harmonisk Svängning Vertikal svängning Vertikal svängning Gravitationen drar ut fjädern till ett nytt jämviktsläge. Horisontell svängning Detta är inte fallet om fjädern är horisontell. 19 Harmonisk Svängning Vertikal svängning Utan svängningar: Hur mycket drages fjädern ut? 20

11 Harmonisk Svängning Vertikal svängning Med svängningar: Summera krafterna! 21 Harmonisk Svängning Vertikal svängning Newton s andra lag: Denna differential ekvation har följande lösning: 22

12 Harmonisk Svängning Observera: f och T beror enbart på k och m. Inte på amplituden! m ökar k ökar A ökar 23 Harmonisk Svängning Differential ekvationen som beskriver rörelsen: Formelsamling 24

13 Harmonisk Svängning Energi Energi och harmoniska svängningar 25 Harmonisk Svängning Energi Total mekaniska energin är konstant E t E p E k 26

14 Harmonisk Svängning Energi E p = ½kx 2 = ½kA 2 cos 2 (ωt+φ) E k = ½mv 2 = ½mω 2 A 2 sin 2 (ωt+φ) = ½kA 2 sin 2 (ωt+φ) E t = E p + E k = ½kA 2 [cos 2 (ωt+φ) + sin 2 (ωt+φ)] = ½kA 2 Formelsamling 27 Harmonisk Svängning Energi Energins tidsberoende beskrivs av kvadraten av sinus funktioner E t E p E k E t = E p + E k = ½kA 2 E p = ½kx 2 =½kA 2 cos 2 (ωt+φ) E k = ½mv 2 =½kA 2 sin 2 (ωt+φ) 28

15 Vågrörelselära och optik Kapitel 15 Mekaniska vågor 29 Mekaniska vågor: Transversella vågor Transversella vågor 30

16 Mekaniska vågor: Transversella vågor Transversell våg: Mediumet rör sig i transversell riktning mot vågens färdriktning Mekaniska vågor: Transversella vågor En speciell transversell våg är den sinusformade vågen: ν y A x -A 32

17 Mekaniska vågor: Transversella vågor Transversella sinus vågor y våghastigheten ν x Varje punkt på vågen rör sig upp och ner som en harmonisk svängning med perioden T. våglängden 33 Mekaniska vågor: Transversella vågor Definitioner: y våghastigheten ν x våglängden 34

18 Mekaniska vågor: Longitudinella vågor Longitudinella vågor 35 Mekaniska vågor: Longitudinella vågor Longitudinella vågor: Mediumet rör sig i vågens rörelseriktning. 36

19 Mekaniska vågor: Longitudinella vågor Longitudinella sinus vågor ν våghastigheten Amplitude y x Varje punkt på vågen rör sig sidledes som en harmonisk svängning med perioden T. 37 Mekaniska vågor: Longitudinella vågor Vad är våglängden (λ) för en sinus våg? ν Vad är våghastigheten (ν)? ν = λ / T λ 38

20 Mekaniska vågor: Vågfunktionen Vågfunktionen 39 Höjden av vågen som funktion av avståndet x: Mekaniska vågor: Vågfunktionen Höjden av vågen som funktion av tiden t: Vågfunktionen y(x,t): Vågfunktionen beskriver höjden av vågen som funktion av både avstånd och tid. 40

21 Mekaniska vågor: Vågfunktionen + om vågen rör sig i den negativa x riktningen 41 Mekaniska vågor: Vågfunktionen Amplitud: A ν = λ / T f = 1 / T Vågtal: Formelsamling Vinkelfrekvens: ν = λ / T = (2π/k) / (2π/ω) = ω / k 42

22 Mekaniska vågor: Sammanfattning Vågfunktionen: Hastighet och acceleration: Vågekvationen: Våghastighet: ν = λ / T = ω / k 43 Mekaniska vågor Våg hastighet Våg hastighet och sträng egenskaper 44

23 Mekaniska vågor Våg hastighet Våghastigheten beror på två saker: Spännkraften Strängens massa per längdenhet Mer generellt: 45 Mekaniska vågor Reflektioner Reflektion av vågor 46

24 Reflektion av en våg Mekaniska vågor Reflektioner Randvillkor Ställningen orsakar en motriktad kraft som inverterar vågen. 47 Mekaniska vågor Reflektioner Vågfunktionen av två vågor ges typiskt av summan av de två individuella vågfunktionerna. Detta kallas för superpositions principen! Denna princip gäller när vågekvationen för vågorna är linjär dvs den innehåller bara funktionen y(x,t) till första ordningen. Sinusvågor t.ex. följer superpositions principen för deras vågekvation är linjär: 48

25 Mekaniska vågor: Stående vågor Stående vågor 49 Mekaniska vågor: Stående vågor 50

26 Mekaniska vågor: Stående vågor Vid olika tidpunkter 51 Mekaniska vågor: Stående vågor Superposition av två vågor: Trigonometri: + = Y(x,t)=A[-cos(kx)cos(ωt)+sin(kx)sin(ωt) +cos(kx)cos(ωt)+sin(kx)sin(ωt)] = 52

27 Mekaniska vågor: Stående vågor 53 Vågfunktion: Mekaniska vågor: Stående vågor Vad är hastigheten och accelerationen? Hastighet: Acceleration: 54

28 Mekaniska vågor: Sträng instrument Sträng instrument Octobas fiol 55 Mekaniska vågor: Sträng instrument Strängar med längden L som har noder i båda ändar: Formelsamling λ = ν / f = 2L / n f 1, f 2, f 3. Harmoniska frekvenser f 1 : Grundfrekvensen f 2, f 3, f 4. Övertoner 56

29 Mekaniska vågor: Sträng instrument Formelsamling Lång sträng: Tjock sträng: Stor spännkraft: Låg frekvens Låg frekvens Hög frekvens 57 Vågrörelselära och optik Kapitel 16 - Ljud 58

30 Ljud & Tryckvågor Ljud som tryckvågor 59 Ljud & Tryckvågor Longitudinell sinus våg Formelsamling Amplitud y x 60

31 Ljud & Tryckvågor En kolv rör sig in och ut: Luft molekylernas rörelse: y x Trycket: p x 61 Bulk modulen Ljud & Tryckvågor Mått på hur svårt det är att pressa ihop ett material Definition av bulk modulen: Enhet: N/m 2 Tryckändringen som orsakas av en volymändring: 62

32 Ljud & Tryckvågor Δp = -B ΔV/V y x p x Formelsamling 63 Ljud Hastighet Ljud hastigheten 64

33 Ljud Hastighet Allmänt: Sträng: Vätska: Fasta material: Gas: Formelsamling F: Spänn kraft μ: Massa per längdenhet B: Bulk modulen ρ: Densiteten Y: Young modulen ρ: Densiteten B: Bulk modulen ρ: Densiteten 65 Mekaniska vågor Effekt Effekt av en mekanisk våg på en sträng 66

34 Mekaniska vågor Effekt Vågens effekt (P): Den momentana hastigheten med vilken energi transporteras av vågen. (P = energi per tidsenhet) Unit: W or J/s Allmänt för effekt: Vågens effekt (P): y är den enda riktningen där hastigheten inte är noll 67 Mekaniska vågor Effekt x Våg på en sträng Förhållandet mellan kraften i y-riktningen till kraften i x-riktningen ges av strängens lutning som ges a derivatan: x x 68

35 Mekaniska vågor Effekt Vågens effekt: 69 Mekaniska vågor Effekt Vågens effekt: & Formelsamling 70

36 Mekaniska vågor Effekt Effekt av en ljudvåg 71 Ljud Effekt Vågens effekt (P): Tryckfunktionen (p): Vågfunktionen (y): Tryck = kraft per ytenhet Vågeffekt per ytenhet: Effekt per m 2 Tryck 72

37 Ljud Effekt Vågeffekt per ytenhet: Formelsamling 73 Ljud Effekt Effekt allmänt: Våg effekt - sträng: Våg effekt - ljud: Formelsamling Formelsamling 74

38 Mekaniska vågor Intensitet Intensitet av en mekanisk våg 75 Mekaniska vågor Intensitet Våg intensitet (I): Medeleffekten som passerar en yta vinkelrät mot vågens riktning. (I = effekt per ytenhet). Unit: W/m 2 Formelsamling Medeleffekten av en våg på en sträng (P av ): Unit: W or J/s Medeleffekten av en ljudvåg (P av ): Unit: W or J/s I = 76

39 Ljud Intensitet Tryck funktionen: Tryck amplituden: Intensiteten är proportionell mot kvadraten på tryck amplituden. Formelsamling Formelsamling 77 Mekaniska vågor Intensitet Intensiteten genom en sfär med radien r 1 av Sfär med radien r 1 Sfär med radien r 2 Om man bortser från effektförluster Källa med medeleffekten P av 78

40 Ljud Decibel Decibel skalan Saturn V raket: 220 decibel Krakatoa: 310 decibel 79 Ljud Decibel Intensitetsnivån (β) med decibel (db) som enhet: 0 / Formelsamling I 0 = W/m 2 är en referensnivå. I 0 = gränsen för mänskligt hörande (approximativt). β = 0 db för I = I 0 β = 120 db för I = 1 W/m 2 80

41 Ljud Stående våg Ljud och stående våg 81 Ljud Stående våg Stående våg i en öppen pipa: Atmosfärstryck Förflyttnings anti-nod Tryck-nod Anti-nod Anti-nod 82

42 Ljud Stående våg Stående våg i en stängd pipa: Atmosfärstryck Förflyttnings anti-nod Tryck-nod 83 Ljud Stående våg Orgelpipa: Luftström underifrån. tid = 0 tid = T/2 Stående våg: Uppstår om lufthastighet och pipans längd är valda korrekt. Mynning: Pipan är öppen i bottnen och detta ger en tryck-nod (förflyttnings anti-nod). Luftström: Går varierande in i pipan och ut genom mynningen. 84

43 Ljud Stående våg Jämför öppen-öppen med öppen-stängd pipa: Avståndet mellan två noder är λ/2! 85 Formelsamling 85 Ljud Doppler effekt Doppler effekt 86

44 Ljud Doppler effekt Tiden det tar för en ljudvåg att nå lyssnaren (L) blir längre om källan (S) rör sig bort. L S f s λ ν ν s L Om källan (S) rör sig mot lyssnaren (L) tar det kortare tid för ljudvågen att nå lyssnaren. λ behind längre λ in front kortare 87 Mer komplicerat: Ljud Doppler effekt Lyssnaren rör på sig också Allmänt gäller: Vågen närmar sig L med ν + ν L ändring av frekvensen 88

45 Ljud Doppler effekt Denna formel fungerar alltid om positiv riktning av hastigheten är definierad från lyssnaren mot källan! Formelsamling positiv riktning positiv riktning L S S L L S S L L S S L L S S L 89 Ljud chockvåg Chockvåg ν: Ljudhastigheten ν s : Planets hastighet ν s > ν Chockvåg bildas (inte bara när ν s = ν) ν s > ν Ingen ljudvåg framför planet 90

46 Ljud chockvåg En konisk chockvåg bildas när planet flyger fortare än ljudhastigheten. En serie av circulära vågtoppar från planet interfererar konstruktivt längs en linje som ges av vinkeln α. ν: Ljudhastigheten ν s : Planets hastighet Planets hastighet i Machtal: Ν Μ s Formelsamling 1 91 Vågrörelselära och optik Kapitel 32 Elektromagnetiska vågor 92

47 Elektromagnetiska vågor Maxwells ekvationer Den elektromagnetiska vågen består av ett elektriskt och ett magnetiskt fält. B 93 Elektromagnetiska vågor Maxwells ekvationer Elektromagnetiska vågor skapas av laddade partiklar som är i rörelse. En elektromagnetisk våg kan transportera energi i vakuum (men inte en mekanisk våg). En elektromagnetisk våg kan skapas av en urladdningskondensator: När laddningarna åker upp och ner i gnistgapet skapas ett magnetisk fält i horisontal planet. Det varierande magnet fältet generar ett vertikalt elektriskt fält. Fältet är starkast 90 grader mot laddningarnas rörelse och noll i samma riktning som laddningarnas rörelse. Det magnetiska och elektriska fälten utbreder sig i rymden som en elektromagnetisk våg. 94

48 Elektromagnetiska vågor Det elektromagnetiska spektrumet λ = c / f 95 Elektromagnetiska vågor Vågfronter: ytor med konstant fas 96

49 Elektromagnetiska vågor Vågfronter beror på avståndet till källan 97 Elektromagnetiska vågor Elektromagnetiska vågor är transversella eftersom E- och B-fälten är vinkelräta mot utbredningsriktningen. En plan våg är en våg med konstant frekvens vars vågfronter är oändliga parallella plan med konstant topp-till-topp-amplitud. B Vid en viss punkt och tid har alla E och B- vektorerna i planet samma storlek. Fullständiga plana vågor existerar inte eftersom endast en våg med oändlig utsträckning kan vara plan. Men många vågor är approximativt plana vågor i ett lokaliserat område i rymden. 98

50 Elektromagnetiska vågor För plana elektromagnetiska vågor kan man hitta relationer mellan storleken på det magnetiska och elektriska fältet från två av Maxwells ekvationer: Formelsamling ε = Permittiviteten = Ett mediums förmåga att ha ett elektriskt fält i sig. μ = Permeabilitet = Ett mediums förmåga att ha ett magnetiskt fält i sig. 99 Elektromagnetiska vågor Ljushastigheten från Maxwells ekvationer: = 8.85 x F/m = 1.26 x 10-6 N/A 2 Formelsamling 100

51 Elektromagnetiska vågor Vågfunktionen Vågfunktionen B 101 Elektromagnetiska vågor Vågfunktionen Den elektromagnetiska vågfunktionen för sinusformade vågor inte samma k (det ena är en riktningsvektor och den andra vågtalet)

52 Elektromagnetiska vågor Vågfunktionen Amplituden: E max = c B max Vågtalet: c= λ / T f = 1 / T Vinkelfrekvensen: c= λ / T = (2π/k) / (2π/ω) = ω / k 103 Jämför vågfunktioner Mekaniska vågor Formelsamling Elektromagnetiska vågor Amplitud: A Amplitud: E max = c B max Vågtal: Vågtal: Vinkelfrekvens: ν = λ / T = ω / k Vinkelfrekvens: c= λ / T = ω / k 104

53 Elektromagnetiska vågor Vågfunktionen I ett dielektrisk material är ljushastigheten mindre än c! Elektromagnetiska vågor i materia: Dielektrisk konstant K = ε / ε 0 Relative permeabilitet K m = μ / μ Elektromagnetiska vågor Vågfunktionen Elektromagnetiska vågor i vakuum Elektromagnetiska vågor i materia Permabilitet Permittivitet Brytnings index Dielektrisk konstant Relativ permeabilitet K = ε/ε 0 K m = μ/μ 0 106

54 Elektromagnetiska vågor Effekt och intensitet Effekt och intensitet Blå Laser Effekt = 1 W 107 Elektromagnetiska vågor Effekt och intensitet Energitäthet (u): Energi per volymenhet p.g.a. ett elektriskt och magnetiskt fält Enhet: J/m 3 Effekt (P): Den momentana hastighet med vilken energi överförs längs en våg. Enhet: W or J/s Poynting vektorn (S): Energi som överförs per tidsenhet per ytenhet = Effekt per ytenhet. Enhet: W/m 2 Intensitet (I): Genomsnittlig effekt per ytenhet genom en yta som är vinkelrät mot vågriktning = medelvärdet av S. Enhet: W/m 2 108

55 Elektromagnetiska vågor Effekt och intensitet Formelsamling Energitäthet (energi per volymsenhet) från elektromagnetiskt fält: B + B 2 = ε 0 μ 0 E 2 där Energi E-fält Energi B-fält Sammanfattning: De elektriska och magnetiska fälten bär på samma mängd energi. Energitätheten varierar med position och tid. 109 Elektromagnetiska vågor Effekt och intensitet Energi överföring = energi som överförs per tidsenhet per ytenhet. S = Effekt per ytenhet = Energi överföring = Energyflöde Sinusformade vågor: Formelsamling Amplituden = maximal energi överföring 110

56 Elektromagnetiska vågor Effekt och intensitet Intensitet = medelvärdet av S medelvärdet av cos 2 (x) = 1/2 Formelsamling Elektromagnetiska vågor i materia: 111 Vågrörelselära och optik Kapitel 33 - Ljus 112

57 Ljusets natur Källa för elektromagnetisk strålning är elektriska laddningar i accelererad rörelse Termisk strålning: Termiska rörelser av molekyler skapar elektromagnetisk strålning. Lampa: En ström värmer glödtråden som sedan sänder ut värmestrålning med många våglängder. Laser: Atomer emitterar ljus koherent vilket ger (nästan) monokromatisk strålning. 113 Ljusets natur Våg front: yta med konstant fas. Plan våg: en våg vars vågfronter är oändliga parallella plan. Stråle: tänkt linje längs riktningen för vågutbredningen. 114

58 Ljusets natur Reflektion & Refraktion Reflektion och refraktion 115 Ljusets natur Reflektion & Refraktion Observationer: Vid ytan mellan glas och luft både reflekteras och refrakteras ljuset. Reflektionsvinkeln är densamma som den infallande vinkeln. Brytningsvinkeln är större än den infallande vinkeln. Vid ytan mellan luft och glas är vinkeln 90 grader och då reflekteras och bryts ljuset också med 90 grader. 116

59 Ljusets natur Reflektion & Refraktion n a n b Planet för infallande ljus: Planet för den infallande strålen och normalen till ytan. Den reflekterade och refrakterade strålen är i planet för det infallande ljuset. Snells lag: n = 1 i vakuum n > 1 i ett material Formelsamling 117 Ljusets natur Reflektion & Refraktion Snells law: n a < n b n a > n b Stort n Regel: Liten vinkel 118

60 Ljusets natur Intensitet Ljus instensitet Intensiteten hos det reflekterade ljuset ökar från nästan 0% vid θ = 0 o till 100% för θ = 90 o. Intensiteten hos det reflekterade ljuset beror också på n och på polariseringen av det inkommande ljuset. Summan av intensiteten av det reflekterade och refrakterad ljuset är lika med intensiteten hos det inkommande ljuset. 119 Ljusets natur Totalreflektion Totalreflektion 120

61 Ljusets natur Totalreflektion Totalreflektion när ljuset går till ett medium med mindre n 90 o 121 Ljusets natur Totalreflektion Totalreflektion optisk fiber Porro prisma 122

62 Ljusets natur Totalreflektion Optiska fiber Princip Struktur n 2 < n 1 Mantel Kärna Ljusets natur Frekvens Frekvens- och våglängdsberoende 124

63 Ljusets natur Frekvens Frekvens och våglängd ν = c/n Större n Hastigheten lägre f a = f b Större n Frekvensen oförändrad n a n b Större n Våglängden kortare λ 0 = c / f n = 1 λ = ν / f n > 1 n = 1 i vakuum n > 1 i ett material λ 0 /λ = c/ν = n 125 Ljusets natur Dispersion Ljus dispersion 126

64 Ljusets natur Dispersion Ljusets natur Dispersion Dispersion Hur är det möjligt? Svar: n måste bero på λ! men n = c / ν så hastigheten i materialet måste beror på λ 128

65 Ljusets natur Dispersion Regnbåge 129 Vågrörelselära och optik Kapitel 34 - Optik 130

66 Geometrisk optik Speglar Platta speglar Geometrisk optik Speglar Virtuella bilder: utgående strålar divergerar Reella Bilder: utgående strålar konvergerar till en bild som kan visas på en skärm 132

67 Geometrisk optik Speglar Tecken regler: Punkt objekt positiv Objekt avstånd (s) positiv om samma sida som inkommande ljus. Bild avstånd (s ) positiv om samma sida som utgående ljus. negativ Virtuell bild Utsträckt objekt Formelsamling 133 Geometrisk optik Speglar Platt spegel 134

68 Geometrisk optik Speglar Konkava speglar 135 Geometrisk optik Speglar Konkav spegel f = brännpunktsavstånd R = krökningsradie 136

69 Geometrisk optik Speglar Sammanfattning sfäriska speglar Tecken regler: Positivt objekt avstånd (s) = om objekt och inkommande ljus på samma sida. Positivt bild avstånd (s ) = om bild och utgående ljus på samma sida. y negativ y, s, s, f positiv y s y R f s Positiv krökningradie (R) = om center på samma sida som utgående ljus. Positiv förstoring (m) = om samma riktningen av objekt och bild. Formelsamling 137 Geometrisk optik Speglar Ett oändligt antal strålar kan dras från ett objekt till sin bild. Men endast två strålar behövs för att bestämma läget för bilden. 138

70 Geometrisk optik Speglar Hur man hittar bilden i en konkav spegel Botten av objektet är på den optiska axeln och så botten av bilden kommer också att vara på den optiska axeln. Den övre delen av bilden kan hittas med vilka två strålar som hellst. Använd till exempel två strålar som går genom brännpunkten. y s y f s 139 Geometrisk optik Speglar Objekt 140

71 Geometrisk optik Speglar y negativ y, s, s, f positiv y negativ y, s, s, f positiv s s y negativ y, s, s, f positiv s negativ y, y, s, f positiv 141 Geometrisk optik Speglar Konvexa speglar 142

72 Geometrisk optik Speglar Konvexa speglar Virtuell Brännpunkt s, f negativ y, y, s positiv 143 Geometrisk optik Speglar Objekt Bild 144

73 Geometrisk optik Sfäriska ytor Sfäriska ytor Tecken regler: Positivt objekt avstånd (s) objekt och inkommande ljus på samma sida. Positivt bild avstånd (s ) bild och utgående ljus på samma sida. Geometrisk optik Sfäriska ytor Sammanfattning Sfäriska ytor s positiv s positiv R positiv Positiv krökningradie (R) center på samma sida som utgående ljus. Formelsamling Positiv förstoring (m) samma riktningen av objekt och bild. 146

74 Geometrisk optik Platta ytor Platta ytor Geometrisk optik Platta ytor Special fall: Platt yta n a /s = -n b /s -s /s = n b /n a 148

75 Geometrisk optik Linser Konvexa linser 149 Geometrisk optik Linser Olika typer av linser En lins som är tjockare i mitten än i kanterna är konvergent. En lins som är tunnare i mitten än i kanterna är divergerande. 150

76 Geometrisk optik Linser Geometrisk optik Linser Två användbara strålar 152

77 Geometrisk optik Linser Geometrisk optik Linser Ett föremål placerat vid brännpunkten verkar vara oändligt långt borta 154

78 Tecken regler: Geometrisk optik Linser Sammanfattning konvexa linser Positivt objekt avstånd (s) objekt och inkommande ljus på samma sida. Positivt bild avstånd (s ) bild och utgående ljus på samma sida. Positivt brännpunktsavstånd (f) Konvergerande (konvexa) linser Positiv förstoring (m) samma riktningen av objekt och bild. Formelsamling s is positiv f is positiv m is negativ s s is negativ f is positiv m is positiv s 155 Geometrisk optik Linser Gauss formel Newtons formel Formelsamling 156

79 Geometrisk optik Linser Kombinera två linser s 1 s 1 s 2 s 2 y 2 y 1 f 1 f 2 f 1 f 2 y 1 y Geometrisk optik Linser Konkava linser 158

80 Geometrisk optik Linser Olika typer av linser En lins som är tjockare i mitten än i kanterna är konvergent. En lins som är tunnare i mitten än i kanterna är divergerande. 159 Geometrisk optik Linser 160

81 Geometrisk optik Linser Geometrisk optik Linser Lins formeln för konkava linser s s f är negativ för divergerande linser s är negativ för divergerande linser m är positiv 162

82 Geometrisk optik Linser Linsmakarens formel 163 Geometrisk optik Linser Olika typer av linser En lins som är tjockare i mitten än i kanterna är konvergent (f är positivt) En lins som är tunnare i mitten än i kanterna är divergerande (f är negativt) 164

83 Geometrisk optik Linser Linsmakarens ekvation = Formelsamling 165 Geometrisk optik Linser Tecken regel för krökningsradie R är positiv om centrum är på sidan med utgående ljus. f = positiv R 1 = positiv R 2 = positiv s = positiv eller negativ f = positiv R 1 = positiv R 2 = negativ s = positiv eller negativ f = negativ R 1 = negativ R 2 = positiv s = negativ 166

84 Geometrisk optik Sammanfattnig Sammanfattning Konkav spegel Konvex spegel Sfärisk yta Konvex lins Konkav lins 167 Konkav spegel Konvex spegel Geometrisk optik Sammanfattnig Formler Formelsamling Sfärisk yta Konvex lins Konkav lins 168

85 Geometrisk optik Sammanfattnig Tecken regler speglar: Positivt objekt avstånd (s) om objekt och inkommande ljus på samma sida. Positivt bild avstånd (s ) om bild och utgående ljus på samma sida. Positiv krökningradie (R) om center på samma sida som utgående ljus. Positiv förstoring (m) om samma riktningen av objekt och bild. Tecken regler linser: Positivt objekt avstånd (s) om objekt och inkommande ljus på samma sida. Positivt bild avstånd (s ) om bild och utgående ljus på samma sida. Positivt brännpunktsavstånd (f) Konvergerande (konvexa) linser Positiv förstoring (m) om samma riktningen av objekt och bild. 169 Geometrisk optik Ögat Ögat 170

86 Geometrisk optik Ögat När punkten: kortaste avståndet till ögat vid vilken människor kan se klart (från 7cm vid 10 års ålder till 40 cm vid 50 års ålder för normalt ögat). Normalt läsavstånd: antas vara 25 cm när man utformar korrektionslinser. Fjärr punkten: Längsta avståndet till ögat vid vilken människor kan se klart. Linser för korrigeringar anges i dioptrier: Lins styrka = 1/f (enhet: dioptrier = m -1 ) Normalt öga Närsynt Myopi Översynt Långsynt Hyperopi 171 Geometrisk optik Ögat 172

87 Geometrisk optik Problem Ett översynt öga har närpunkten på ett avstånd av 100 cm. Vilken linsstryka behövs för att närpunkten ska flyttas till 25 cm? Med ett föremål på s = 25 cm från korrektionslinsen vill vi att bilden ska hamna vid s = 100 cm för det är den närmsta punkten ögat kan se skarpt. Lins styrka = 1/f = 1/0.33 m -1 = 3 dioptrier 173 Geometrisk optik Problem Ett närsynt öga har fjärrpunkten på ett avstånd av 50 cm. Vilken linsstyrka behövs för att korrigera ögat om linsen sitter 2 cm framför ögat? Linsen ska flytta fjärrpunkten från 50 cm till oändligt långt bort. Korrektionslinsen ska därför ha s = oändligheten och s = 50-2 = 48 cm. OBS Lins styrka = 1/f = -1/0.48 m -1 = -2.1 dioptrier 174

88 Geometrisk optik Förstoringsglas Förstoringsglas 175 Geometrisk optik Förstoringsglas Ett förstoringsglas är en konvex lins. Håller man ett förstoringsglas långt borta från ögat (armlängds avstånd) kan man se en förstorad och upp och ner vänd bild. s Normal användning av ett förstoringsglas är att sätta objektet mellan brännpunkten och glaset för att få en förstorad upprätt bild. s 176

89 Geometrisk optik Mikroskop Mikroskop OKULAR OBJEKTIV OBJEKT FOKUSERING LAMPA 177 OKULAR Geometrisk optik Mikroskop BILD Förstoringsglas (f är några cm) OBJEKTIV Okular OBJEKT LAMPA Objektiv Skapar förstorad bild nära okularets brännpunkt (f < 1 cm) 178

90 Geometrisk optik Mikroskop s s L OKULAR Vinkel förstoringen av ett förstoringsglas: Objektiv Okular OBJEKTIV MIKROSKOP Förstoring: σ är närpunkts avståndet vilket är typiskt 25 cm 179 Geometrisk optik Förstoringsglas När punkten (σ): Kortaste avståndet ett öga kan fokusera (ca 25 cm) σ = 25 cm Maximal vinkel utan förstoringsglas Maximal vinkel med förstoringsglas När objektet är i brännpunkten använder man vinkel förstoring (M) i stället för lateral förstoring (m). 180

91 Geometrisk optik Teleskop Teleskop 181 Geometrisk optik Teleskop Objektiv Föremålet är oändligt långt borta så bilden kommer att vara i brännpunkten av objektivet. Okular Okularet fungerar som ett förstorings glas med bilden I i dess brännpunkt. Ett teleskops vinkelförstoringen är definierad som förhållandet mellan vinkeln av bilden till det av det inkommande ljuset. 182

92 Teleskop Geometrisk optik Teleskop Föremålet är oändligt långt från objektivet Stort f 1 & Litet f 2 Mikroskop s 1 s 1 L Föremålet är nära objektivet σ är närpunkten (typiskt 25 cm) Litet f 1 & Litet f Vågrörelselära och optik Kapitel 35 - Interferens 184

93 Interferens Interferens Interferens Vågfronter: vågtoppar i en våg åtskilda av en λ Interferens: Vågor överlappar i rymden Koherenta källor: samma frekvens (eller våglängd) och konstant fasförhållande (inte nödvändigtvis i fas). Superpositions principen När två eller fler vågor överlagras så blir den momentana förflyttningen = Summan av förflyttningen från de individuella vågorna var för sig 186

94 Interferens Kontruktiv interferens Formelsamling Destruktiv interferens 187 Interferens Antinodala kurvor = konstruktiv interferens Kontruktiv interferens För en punkt gäller: r 1 r 2 En vägskillnad av en våglängd motsvarar en fasskillnad på 2π Formelsamling Destruktiv interferens 188

95 Interferens Kontruktiv Destruktiv Interferens Geometri: m=-1 m=0 m=1 m=2 R y m=3 y Kontruktiv interferens: 0, 1, 2,

96 Interferens Intensitet En vägskillnad av en våglängd motsvarar en fasskillnad på 2π Väg skillnaden Formelsamling 191 Interferens Intensitet Introducera y i formeln θ y litet θ 192

97 Interferens Intensitet m=-1 m=0 m=1 m=2 Intensitet: m=3 y Formelsamling m=3 193 Interferens Intensitet Formelsamling Konstruktiv interferens: Intensitet : 194

98 Interferens Michelsons interferometer Michelsons interferometer 195 Interferens Michelsons interferometer y Kompensator plattan kompenserar för detta Observatören ser ett interferensmönster med ringar. Ringarna i mönstret kommer att röra sig när spegeln flyttas. Antalet ringar (m) som passerar förbi kan användas för att beräkna y eller λ 196

99 Interferens Michelsons interferometer Vågrörelselära och optik Kapitel 36 - Diffraktion 198

100 Diffraktion Diffraktion 199 Diffraktion Interferens: Dubbel spalt experiment Diffraktion: singel spalt experiment 200

101 Diffraktion Dela upp spalten i många små imaginära spalter a = spalt bredden Plana vågor som träffar spalten Varje imaginär spalt är en källa till sekundära vågelement (wavelets). 201 Diffraktion TRICKET: För varje punkt i den övre halvan av spalten finns en motsvarande punkt i den nedre halvan som den kan interferera med. destruktiv interferens 202

102 Diffraktion Geometri: Destruktiv Interferens: sin(θ) = mλ/a Formelsamling Små vinklar: 203 Diffraktion Ljusa band: Avstånd till skärmen Våglängd Spalt avstånd Mörka band: Avstånd till skärmen Våglängd Spalt bredd 204

103 Diffraktion Intensitet r 2 r 1 En vägskillnad av en våglängd motsvarar en fasskillnad på 2π Vägskillnaden: r 2 r 1 = a sin(θ) r 2 -r 1 är vägskillnaden mellan en stråle från toppen och botten av spalten. Formelsamling 205 Diffraktion Intensitet Geometri 206

104 Diffraktion Intensitet Formelsamling β = 6π β = 4π β = 2π där β = -2π β = -4π β = -6π 207 Diffraktion Två spalter Två breda spalter 208

105 Diffraktion Två spalter I studien av interferens från två spalter antogs det att de var mycket smala. Vad händer om de är breda? Två smala spalter: En bred spalt: Två breda spalter: där Formelsamling 209 Diffraktion Två spalter Två smala spalter: En bred spalt: Två breda spalter: 210

106 Diffraktion Många spalter Många spalter 211 Diffraktion Många spalter Vägskillnaden mellan intilliggande spalter som ger maximal intensitet med många spalter ges av: 2 spalter 8 spalter N-2 små toppar 212

107 Diffraktion Många spalter N = 2 N = 8 N = 16 N-1 minimum Huvud maximum: 213 Diffraktion Många spalter I diffraktions gitter använder man tusentals spalter eller tusentals reflekterande ytor. Detta ger mycket smala huvud maximum som kan användas för att bestämma våglängden av olika ljus. Transmissions gitter Reflektions gitter Maximum Formelsamling Gitter ekvationen 214

108 Diffraktion Spektrometrar Spektrometrar 215 Diffraktion Spektrometrar Spektrometer för astronomi Ljus som infaller på ett gitter dispergeras i ett spektrum. Vinklarna för avvikelser hos maxima mäts för att beräkna våglängden. 216

109 Diffraktion Spektrometrar Kromatisk upplösningsförmåga : Den minsta våglängdsskillnaden (Δλ) som kan mätas av en spektrograf. Antal spalter i ett gitter Formelsamling Ordningen av toppen i diffraktions spectrat R är högre för många spalter och högre ordningar! 217 Diffraktion Problem Gitter: 1000 spalter per mm Första maximum vid 24 o Vad är λ? med d = 1 mm / 1000 slits = 10-6 m θ = 24 o λ = d sin(θ) = 10-6 sin(24 o ) = x 10-6 = 407 nm 218

110 Diffraktion Hål diffraktion Hål diffraktion Diffraktion Hål diffraktion Diffraktion begränsar vinkelupplösningen av optiska instrument. θ 1 = vinkeln till första minimum Vinkeln till första minimum: D = hålets diameter λ = våglängden 220

111 Diffraktion Hål diffraktion Rayleigh kriterium: Två punktobjekt kan upplösas av ett optiskt system om deras vinkel separation är större än θ 1 Gränsen för upplösningen av två föremål är när centrum av ett diffraktions mönster är i det första minimum av det andra mönstret. Formelsamling

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 32 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 34 - Optik 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 36-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 33 - Ljus 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 15 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 : Kapitel 15.1 15.8 Ljud och

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 35-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 16-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

λ = T 2 g/(2π) 250/6 40 m

λ = T 2 g/(2π) 250/6 40 m Problem. Utbredning av vattenvågor är komplicerad. Vågorna är inte transversella, utan vattnet rör sig i cirklar eller ellipser. Våghastigheten beror bland annat på hur djupt vattnet är. I grunt vatten

Läs mer

Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion)

Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Kapitel 33 The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens

Läs mer

Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25

Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25 Geometrisk optik Syfte och mål Laborationens syfte är att du ska lära dig att: Förstå allmänna principen för geometrisk optik, (tunna linsformeln) Rita strålgångar Ställa upp enkla optiska komponenter

Läs mer

The nature and propagation of light

The nature and propagation of light Ljus Emma Björk The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens

Läs mer

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t s(x,t) =s 0 sin 2π T x. v = fλ =3 5 m/s = 15 m/s

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t s(x,t) =s 0 sin 2π T x. v = fλ =3 5 m/s = 15 m/s 140528: TFEI02 1 TFEI02: Vågfysik Tentamen 140528: Svar och anvisningar Uppgift 1 a) En fortskridande våg kan skrivas på formen: t s(x,t) =s 0 sin 2π T x λ Vi ser att periodtiden är T =1/3 s, vilket ger

Läs mer

Tillämpad vågrörelselära FAF260. Svängningar genererar vågor - Om en svängande partikel är kopplad till andra partiklar uppkommer vågor

Tillämpad vågrörelselära FAF260. Svängningar genererar vågor - Om en svängande partikel är kopplad till andra partiklar uppkommer vågor FF60 Tillämpad vågrörelselära FF60 Karaktäristiskt för periodiska svängningar är att det finns en återförande kraft riktad mot jämviktsläget y 0 F F F k y F m a 4 Svängningar genererar vågor - Om en svängande

Läs mer

Kapitel 35, interferens

Kapitel 35, interferens Kapitel 35, interferens Interferens hos ljusvågor, koherensbegreppet Samband för max och min för ideal dubbelspalt Samband för intensitetsvariation för ideal dubbelspalt Interferens i tunna filmer Michelson

Läs mer

Gauss Linsformel (härledning)

Gauss Linsformel (härledning) α α β β S S h h f f ' ' S h S h f S h f h ' ' S S h h ' ' f f S h h ' ' 1 ' ' ' f S f f S S S ' 1 1 1 S f S f S S 1 ' 1 1 Gauss Linsformel (härledning) Avbilding med lins a f f b Gauss linsformel: 1 a

Läs mer

Vågor. En våg är en störning som utbreder sig En våg överför energi från en plats till en annan. Det sker ingen masstransport

Vågor. En våg är en störning som utbreder sig En våg överför energi från en plats till en annan. Det sker ingen masstransport Vågor En våg är en störning som utbreder sig En våg överför energi från en plats till en annan. Det sker ingen masstransport Vågtyper Transversella Mediets partiklar rör sig vinkelrätt mot vågens riktning.

Läs mer

Vågfysik. Superpositionsprincipen

Vågfysik. Superpositionsprincipen Vågfysik Superposition Knight, Kap 21 Superpositionsprincipen Superposition = kombination av två eller fler vågor. Vågor partiklar Elongation = D 1 +D 2 D net = Σ D i Superpositionsprincipen 1 2 vågor

Läs mer

Fysik (TFYA14) Fö 5 1. Fö 5

Fysik (TFYA14) Fö 5 1. Fö 5 Fysik (TFYA14) Fö 5 1 Fö 5 Kap. 35 Interferens Interferens betyder samverkan och i detta fall samverkan mellan elektromagnetiska vågor. Samverkan bygger (precis som för mekaniska vågor) på superpositionsprincipen

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 1,5 högskolepoäng, FK49 Tisdagen den 17 juni 28 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare

Läs mer

Vågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion)

Vågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Vågfysik Geometrisk optik Knight Kap 23 Historiskt Ljus Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Hooke, Huyghens (~1660): ljus är ett slags vågor Young

Läs mer

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter):

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter): FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Måndagen den 5 maj 2008 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare.

Läs mer

OPTIK läran om ljuset

OPTIK läran om ljuset OPTIK läran om ljuset Vad är ljus Ljuset är en form av energi Ljus är elektromagnetisk strålning som färdas med en hastighet av 300 000 km/s. Ljuset kan ta sig igenom vakuum som är ett utrymme som inte

Läs mer

Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi

Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi Ljusets vågnatur Ljus är elektromagnetiska vågor som rör sig framåt. När vi ritar strålar så

Läs mer

Ljudhastighet (vätska & gas) RT v M Intensitet från en punktkälla P I medel 2 4 r Ljudintensitetsnivå I 12 2 LI 10lg med Io 1,0 10 W/m Io Dopplereffek

Ljudhastighet (vätska & gas) RT v M Intensitet från en punktkälla P I medel 2 4 r Ljudintensitetsnivå I 12 2 LI 10lg med Io 1,0 10 W/m Io Dopplereffek Ljudhastighet (vätska & gas) RT v M Intensitet från en punktkälla P I medel 4 r Ljudintensitetsnivå I 1 LI 10lg med Io 1,0 10 W/m Io Dopplereffekt, ljud v v f m m fs v v s Relativistisk Dopplereffekt,

Läs mer

Vågor och Optik. Mekaniska vågor (Kap. 15) Mekaniska vågor (Kap. 15)

Vågor och Optik. Mekaniska vågor (Kap. 15) Mekaniska vågor (Kap. 15) Mekaniska vågor (Kap. 15) Vågor och Optik Mekaniska vågor (Kap. 15) D Alemberts allmäna lösning i 1D En mekanisk våg är en störning i ett medium som fortplantar sig. 1 $ 1 '$ 1 ' =& )& + ) = 0 x v t %

Läs mer

TFEI02: Vågfysik. Tentamen : Lösningsförslag

TFEI02: Vågfysik. Tentamen : Lösningsförslag 160530: TFEI0 1 Uppgift 1 TFEI0: Vågfysik Tentamen 016-05-30: Lösningsförslag a) Ljudintensiteten, I, är ett mått på hur stor effekt, P eff, som transporteras per area. Om vi vet amplituden på vågen kan

Läs mer

Laboration i Geometrisk Optik

Laboration i Geometrisk Optik Laboration i Geometrisk Optik Stockholms Universitet 2002 Modifierad 2007 (Mathias Danielsson) Innehåll 1 Vad är geometrisk optik? 1 2 Brytningsindex och dispersion 1 3 Snells lag och reflektionslagen

Läs mer

Sammanfattning: Fysik A Del 2

Sammanfattning: Fysik A Del 2 Sammanfattning: Fysik A Del 2 Optik Reflektion Linser Syn Ellära Laddningar Elektriska kretsar Värme Optik Reflektionslagen Ljus utbreder sig rätlinjigt. En blank yta ger upphov till spegling eller reflektion.

Läs mer

Förklara dessa begrepp: Ackommodera Avbildning, Brytning Brytningslagen Brytningsindex Brytningsvinkel Brännvidd Diffus och regelbunden reflektion

Förklara dessa begrepp: Ackommodera Avbildning, Brytning Brytningslagen Brytningsindex Brytningsvinkel Brännvidd Diffus och regelbunden reflektion Förklara dessa begrepp: Ackommodera, ögats närinställning, är förmågan att förändra brytkraften i ögats lins. Ljus från en enda punkt på ett avlägset objekt och ljus från en punkt på ett närliggande objekt

Läs mer

Mer om EM vågors polarisation. Vad händer om man lägger ihop två vågor med horisontell och vertikal polarisation?

Mer om EM vågors polarisation. Vad händer om man lägger ihop två vågor med horisontell och vertikal polarisation? Mer om EM vågors polarisation Vad händer om man lägger ihop två vågor med horisontell och vertikal polarisation? Svänger x Svänger y 2π Superposition av x och y polariserade EM vågor (Ritar bara positivt

Läs mer

Vågrörelselära. Christian Karlsson Uppdaterad: Har jag använt någon bild som jag inte får använda så låt mig veta så tar jag bort den.

Vågrörelselära. Christian Karlsson Uppdaterad: Har jag använt någon bild som jag inte får använda så låt mig veta så tar jag bort den. Vågrörelselära Christian Karlsson Uppdaterad: 161003 Har jag använt någon bild som jag inte får använda så låt mig veta så tar jag bort den. christian.karlsson@ckfysik.se [14] 1 Elasticitet (bl.a. fjädrar)

Läs mer

Hur elektromagnetiska vågor uppstår. Elektromagnetiska vågor (Kap. 32) Det elektromagnetiska spektrumet

Hur elektromagnetiska vågor uppstår. Elektromagnetiska vågor (Kap. 32) Det elektromagnetiska spektrumet Elektromagnetiska vågor (Kap. 32) Hur elektromagnetiska vågor uppstår Laddning i vila:symmetriskt radiellt fält, Konstant hastighet: osymmetriskt radiellt fält samt ett magnetfält. Konstant acceleration:

Läs mer

1. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (1p)

1. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (1p) Problem Energi. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (p) b) Ge en tydlig förklaring av hur frekvens, period, våglängd och våghastighet hänger

Läs mer

ett uttryck för en våg som beskrivs av Jonesvektorn: 2

ett uttryck för en våg som beskrivs av Jonesvektorn: 2 Tentamen i Vågrörelselära(FK49) Datum: Tisdag, 6 Juni, 29, Tid: 9: - 5: Tillåten Hjälp: Physics handbook eller dylikt Förklara resonemang och uträkningar klart och tydligt. Tentamensskrivningen består

Läs mer

Föreläsning 7: Antireflexbehandling

Föreläsning 7: Antireflexbehandling 1 Föreläsning 7: Antireflexbehandling När strålar träffar en yta vet vi redan hur de bryts (Snells lag) eller reflekteras (reflektionsvinkeln lika stor som infallsvinkeln). Nu vill vi veta hur mycket som

Läs mer

Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt

Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt Kursavsnitt Böjning och interferens Böjning i en spalt bsin m m 1,... 8 9 Böjning i en spalt Böjning i cirkulär öppning med diameter D Böjningsminimum då =m Första min: Dsin 1. 10 11 Vinkelupplösning,

Läs mer

92FY27: Vågfysik teori och tillämpningar. Tentamen Vågfysik. 17 oktober :00 13:00

92FY27: Vågfysik teori och tillämpningar. Tentamen Vågfysik. 17 oktober :00 13:00 Linköpings Universitet Institutionen för fysik, kemi och biologi Roger Magnusson 92FY27: Vågfysik teori och tillämpningar Tentamen Vågfysik 17 oktober 2016 8:00 13:00 Tentamen består av 6 uppgifter som

Läs mer

1 AKUSTIK Håkan Wennlöf, I = P A m 2 P effekt, A arean effekten är spridd över (ofta en sfär, ljud utbreds sfärsiskt).

1 AKUSTIK Håkan Wennlöf, I = P A m 2 P effekt, A arean effekten är spridd över (ofta en sfär, ljud utbreds sfärsiskt). AKUSTIK Håkan Wennlöf, hwennlof@kth.se Övning : Akustik. Intensitet är effekt per area I = P A [ ] W m 2 P effekt, A arean effekten är spridd över (ofta en sfär, ljud utbreds sfärsiskt). För ljudvåg gäller

Läs mer

Diffraktion... Diffraktion (Kap. 36) Diffraktion... Enkel spalt. Parallellt monokromatiskt ljus gör att skuggan av rakbladet uppvisar en bandstruktur.

Diffraktion... Diffraktion (Kap. 36) Diffraktion... Enkel spalt. Parallellt monokromatiskt ljus gör att skuggan av rakbladet uppvisar en bandstruktur. Diffraktion (Kap. 36) Diffraktion... Fjärilens (Blå Morpho) vingar har en ytstruktur som gör att endast vissa färger (blå) blir synligt under vissa vinklar genom diffraktionseffekter: idag försöker forskare

Läs mer

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t 2π T x. s(x,t) = 2 cos [2π (0,4x/π t/π)+π/3]

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t 2π T x. s(x,t) = 2 cos [2π (0,4x/π t/π)+π/3] TFEI0: Vågfysik Tentamen 14100: Svar och anvisningar Uppgift 1 a) Vågen kan skrivas på formen: vilket i vårt fall blir: s(x,t) =s 0 sin t π T x + α λ s(x,t) = cos [π (0,4x/π t/π)+π/3] Vi ser att periodtiden

Läs mer

= T. Bok. Fysik 3. Harmonisk kraft. Svängningsrörelse. Svängningsrörelse. k = = = Vågrörelse. F= -kx. Fjäder. F= -kx. massa 100 g töjer fjärder 4,0 cm

= T. Bok. Fysik 3. Harmonisk kraft. Svängningsrörelse. Svängningsrörelse. k = = = Vågrörelse. F= -kx. Fjäder. F= -kx. massa 100 g töjer fjärder 4,0 cm Bok Vågrörelse Fysik 3 Fysik 3, Vågrörelse Mekanisk vågrörelse Ljud Ljus Harmonisk kraft Ex [ F] [ k ] N / m [ x] Fjäder F -kx F -kx [ F] k fjäderkonstanten [ k ] [ x] - kraften riktad mot jämviktsläget

Läs mer

Föreläsning 7: Antireflexbehandling

Föreläsning 7: Antireflexbehandling 1 Föreläsning 7: Antireflexbehandling När strålar träffar en yta vet vi redan hur de bryts (Snells lag) eller reflekteras (reflektionsvinkeln lika stor som infallsvinkeln). Nu vill vi veta hur mycket som

Läs mer

1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick.

1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. 10 Vågrörelse Vågor 1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. y (m) 0,15 0,1 0,05 0-0,05 0 0,5 1 1,5 2 x (m) -0,1-0,15

Läs mer

Denna våg är. A. Longitudinell. B. Transversell. C. Något annat

Denna våg är. A. Longitudinell. B. Transversell. C. Något annat Denna våg är A. Longitudinell B. Transversell ⱱ v C. Något annat l Detta är situationen alldeles efter en puls på en fjäder passerat en skarv A. Den ursprungliga pulsen kom från höger och mötte en lättare

Läs mer

Optik. Läran om ljuset

Optik. Läran om ljuset Optik Läran om ljuset Vad är ljus? Ljus är en form av energi. Ljus är elektromagnetisk strålning. Energi kan inte försvinna eller nyskapas. Ljuskälla Föremål som skickar ut ljus. I alla ljuskällor sker

Läs mer

Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material?

Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? 1 Föreläsning 2 Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen på samma sida är reflekterat

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 1 augusti 008 kl 9-15 Hjälpmedel: handbok och räknare. Varje uppgift ger maximalt 4 poäng. Var

Läs mer

Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt

Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt Kursavsnitt Böjning och interferens Böjning i en spalt bsin m m 1,... 8 9 Böjning i en spalt Böjning i cirkulär öppning med diameter D Böjningsminimum då =m Första min: Dsin 1. 10 11 Vinkelupplösning,

Läs mer

Kapitel 36, diffraktion

Kapitel 36, diffraktion Kapitel 36, diffraktion Diffraktionsbegreppet, en variant av interferens Hitta min värden för enkelspalt med vidden a Intensitet för enkelspalt med vidden a Två spalter med vidd a och separation d Många

Läs mer

Vågrörelselära. Uppdaterad: [1] Elasticitet (bl.a. fjädrar) [15] Superposition / [2] Elastisk energi /

Vågrörelselära. Uppdaterad: [1] Elasticitet (bl.a. fjädrar) [15] Superposition / [2] Elastisk energi / Vågrörelselära Har jag använt någon bild som jag inte får Uppdaterad: 171017 använda? Låt mig veta så tar jag bort den. christian.karlsson@ckfysik.se [1] Elasticitet (bl.a. fjädrar) [15] Superposition

Läs mer

Diffraktion och interferens Kapitel 35-36

Diffraktion och interferens Kapitel 35-36 Diffraktion och interferens Kapitel 35-36 1.3.2016 Natalie Segercrantz Centrala begrepp Huygens princip: Tidsskillnaden mellan korresponderande punkter på två olika vågfronter är lika för alla par av korresponderande

Läs mer

Luft. film n. I 2 Luft

Luft. film n. I 2 Luft Tentamen i Vågrörelselära(FK49) Datum: Måndag, 14 Juni, 21, Tid: 9: - 15: Tillåten Hjälp: Physics handbook eller dylikt och miniräknare Förklara resonemang och uträkningar klart och tydligt. Tentamensskrivningen

Läs mer

1. Ge en tydlig förklaring av Dopplereffekt. Härled formeln för frekvens som funktion av källans hastighet i stillastående luft.

1. Ge en tydlig förklaring av Dopplereffekt. Härled formeln för frekvens som funktion av källans hastighet i stillastående luft. Problem. Ge en tydlig förklaring av Dopplereffekt. Härled formeln för frekvens som funktion av källans hastighet i stillastående luft. (p) Det finns många förklaringar, till exempel Hewitt med insekten

Läs mer

Tentamen i Fysik för M, TFYA72

Tentamen i Fysik för M, TFYA72 Tentamen i Fysik för M, TFYA72 Onsdag 2015-06-10 kl. 8:00-12:00 Tillåtna hjälpmedel: Bifogat formelblad Avprogrammerad räknedosa enlig IFM:s regler. Christopher Tholander kommer att besöka tentamenslokalen

Läs mer

Kapitel: 32 Elektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge EM-vågor

Kapitel: 32 Elektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge EM-vågor Kapitel: 3 lektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge M-vågor genskaper hos M-vågor nergitransport i M-vågor Det elektromagnetiska spektrat Maxwell s ekvationer Kan

Läs mer

3. Ljus. 3.1 Det elektromagnetiska spektret

3. Ljus. 3.1 Det elektromagnetiska spektret 3. Ljus 3.1 Det elektromagnetiska spektret Synligt ljus är elektromagnetisk vågrörelse. Det följer samma regler som vi tidigare gått igenom för mekanisk vågrörelse; reflexion, brytning, totalreflexion

Läs mer

Böjning. Tillämpad vågrörelselära. Föreläsningar. Vad är optik? Huygens princip. Böjning vs. interferens FAF260. Lars Rippe, Atomfysik/LTH 1

Böjning. Tillämpad vågrörelselära. Föreläsningar. Vad är optik? Huygens princip. Böjning vs. interferens FAF260. Lars Rippe, Atomfysik/LTH 1 Tillämpad vågrörelselära 2 Föreläsningar Vad är optik? F10 och upplösning (kap 16) F11 Interferens och böjning (kap 17) F12 Multipelinterferens (kap 18) F13 Polariserat ljus (kap 20) F14 Reserv / Repetition

Läs mer

Geometrisk optik reflektion och brytning. Optiska system F9 Optiska instrument. Elektromagnetiska vågor. Det elektromagnetiska spektrumet FAF260

Geometrisk optik reflektion och brytning. Optiska system F9 Optiska instrument. Elektromagnetiska vågor. Det elektromagnetiska spektrumet FAF260 Geometrisk optik reflektion oh brytning Geometrisk optik F7 Reflektion oh brytning F8 Avbildning med linser Plana oh buktiga speglar Optiska system F9 Optiska instrument 1 2 Geometrisk optik reflektion

Läs mer

E-strängen rör sig fyra gånger så långsamt vid samma transversella kraft, accelerationen. c) Hur stor är A-strängens våglängd?

E-strängen rör sig fyra gånger så långsamt vid samma transversella kraft, accelerationen. c) Hur stor är A-strängens våglängd? Problem. Betrakta en elgitarr. Strängarna är 660 mm långa. Stämningen är E-A-d-g-b-e, det vill säga att strängen som ger tonen e-prim (330 Hz) ligger två oktav högre i frekvens än E-strängen. Alla strängar

Läs mer

för M Skrivtid i hela (1,0 p) 3 cm man bryningsindex i glaset på ett 2. två spalter (3,0 p)

för M Skrivtid i hela (1,0 p) 3 cm man bryningsindex i glaset på ett 2. två spalter (3,0 p) Tentamen i tillämpad Våglära FAF260, 2016 06 01 för M Skrivtid 08.00 13.00 Hjälpmedel: Formelblad och miniräknare Uppgifterna är inte sorteradee i svårighetsgrad Börja varje ny uppgift på ett nytt blad

Läs mer

Interferens (Kap. 35) Interferens (Kap. 35) Interferens mellan vågor från två punktformiga källor. Skillnad mellan interferens och diffraktion

Interferens (Kap. 35) Interferens (Kap. 35) Interferens mellan vågor från två punktformiga källor. Skillnad mellan interferens och diffraktion Interferens (Kap. 35) Interferens (Kap. 35) Varför syns regnbågs färger särskilt bra ifall lite olja är spilld i en vattenpöl på asfalt? Hur tunn måste en oljefim vara för att visa upp sådana regnbågs

Läs mer

Tentamen i Fotonik , kl

Tentamen i Fotonik , kl FAFF25-2015-03-20 Tentamen i Fotonik - 2015-03-20, kl. 14.00-19.15 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Tentamen i Vågor och Optik 5hp F, Q, kandfys, gylärfys-programm, den 11. juni 2010

Tentamen i Vågor och Optik 5hp F, Q, kandfys, gylärfys-programm, den 11. juni 2010 Uppsala Universitet Fysiska Institutionen Laurent Duda Tentamen i Vågor och Optik 5hp Skrivtid kl. 8-13 Hjälpmedel: Räknedosa, Physics Handbook eller motsvarande (även Mathematical Handbook är tillåten)

Läs mer

Övning 9 Tenta

Övning 9 Tenta Övning 9 Tenta 014-11-8 1. När ljus faller in från luft mot ett genomskinligt material, med olika infallsvinkel, blir reflektansen den som visas i grafen nedan. Ungefär vilket brytningsindex har materialet?

Läs mer

Vågrörelselära & Kvantfysik, FK2002 1 december 2011

Vågrörelselära & Kvantfysik, FK2002 1 december 2011 Räkneövning 6 Vågrörelselära & Kvantfysik, FK2002 december 20 Problem 36.23 Avståndet mellan två konvexa linser i ett mikroskop, l = 7.5 cm. Fokallängden för objektivet f o = 0.8 cm och för okularet f

Läs mer

Studieanvisning i Optik, Fysik A enligt boken Quanta A

Studieanvisning i Optik, Fysik A enligt boken Quanta A Detta är en något omarbetad version av Studiehandledningen som användes i tryckta kursen på SSVN. Sidhänvisningar hänför sig till Quanta A 2000, ISBN 91-27-60500-0 Där det har varit möjligt har motsvarande

Läs mer

Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla

Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla Ljus/optik Ljuskällor För att vi ska kunna se något måste det finnas en ljuskälla En ljuskälla är ett föremål som själv sänder ut ljus t ex solen, ett stearinljus eller en glödlampa Föremål som inte själva

Läs mer

Tentamen i Fotonik , kl

Tentamen i Fotonik , kl FAFF25-2013-08-26 Tentamen i Fotonik - 2013-08-26, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Föreläsning 2 (kap , 2.6 i Optics)

Föreläsning 2 (kap , 2.6 i Optics) 5 Föreläsning 2 (kap 1.6-1.12, 2.6 i Optics) Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen

Läs mer

3. Mekaniska vågor i 2 (eller 3) dimensioner

3. Mekaniska vågor i 2 (eller 3) dimensioner 3. Mekaniska vågor i 2 (eller 3) dimensioner Brytning av vågor som passerar gränsen mellan två material Eftersom utbredningshastigheten för en mekanisk våg med största sannolikhet ändras då den passerar

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 7 poäng, FyL2 Tisdagen den 19 juni 2007 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 7 poäng, FyL2 Tisdagen den 19 juni 2007 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 7 poäng, FyL2 Tisdagen den 19 juni 2007 kl 9-15 Hjälpmedel: Handbok, kopior av avsnitt om Fouirertransformer och Fourieranalys

Läs mer

TENTAMEN. Institution: DFM, Fysik Examinator: Pieter Kuiper. Datum: april 2010

TENTAMEN. Institution: DFM, Fysik Examinator: Pieter Kuiper. Datum: april 2010 TENTAMEN Institution: DFM, Fysik Examinator: Pieter Kuiper Namn:... Adress:... Datum: april 2010... Tid: Plats: Kurskod: 1FY803 Personnummer: Kurs/provmoment: Vågrörelselära och Optik Hjälpmedel: linjal,

Läs mer

FK Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00

FK Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00 FK5019 - Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00 Läs noggrant igenom hela tentan först Tentan består av 5 olika uppgifter med

Läs mer

Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från vänster, sträcka i ljusets riktning = positiv

Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från vänster, sträcka i ljusets riktning = positiv Avbildningskvalitet Föreläsning 1-2: Sfärisk aberration och koma Repetition: brytning och avbildning i sfärisk yta och tunn lins Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från

Läs mer

Föreläsning 12. Tidsharmoniska fält, komplexa fält (Kap ) Plana vågor (Kap ) i Griffiths

Föreläsning 12. Tidsharmoniska fält, komplexa fält (Kap ) Plana vågor (Kap ) i Griffiths 1 Föreläsning 12 9.1-9.3.2 i Griffiths Tidsharmoniska fält, komplexa fält (Kap. 9.1.2) Tidsharmoniska fält (dvs. fält som varierar sinus- eller cosinusformigt i tiden) har stora tillämpningsområden i de

Läs mer

Så, hur var det nu? Tillämpad vågrörelselära FAF260. Cirkulär polarisation (höger) Cirkulär polarisation FAF260. Lars Rippe, Atomfysik/LTH 1

Så, hur var det nu? Tillämpad vågrörelselära FAF260. Cirkulär polarisation (höger) Cirkulär polarisation FAF260. Lars Rippe, Atomfysik/LTH 1 FF60 Tillämpad vågrörelselära FF60 Så, hur var det nu? 3 Plan, elliptisk och cirkulär polarisation Fig 0.4, sid 405 Cirkulär polarisation (höger) När det elektro-magnetiska fältet består av två vinkelräta

Läs mer

Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från vänster, sträcka i ljusets riktning = positiv

Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från vänster, sträcka i ljusets riktning = positiv Avbildningskvalitet Föreläsning 1 2: Sfärisk aberration och koma Repetition: brytning och avbildning i sfärisk yta och tunn lins Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från

Läs mer

Fysik. Laboration 3. Ljusets vågnatur

Fysik. Laboration 3. Ljusets vågnatur Fysik Laboration 3 Ljusets vågnatur Laborationens syfte: att hjälpa dig att förstå ljusfenomen diffraktion och interferens och att förstå hur olika typer av spektra uppstår Utförande: laborationen skall

Läs mer

Optik, F2 FFY091 TENTAKIT

Optik, F2 FFY091 TENTAKIT Optik, F2 FFY091 TENTAKIT Datum Tenta Lösning Svar 2005-01-11 X X 2004-08-27 X X 2004-03-11 X X 2004-01-13 X 2003-08-29 X 2003-03-14 X 2003-01-14 X X 2002-08-30 X X 2002-03-15 X X 2002-01-15 X X 2001-08-31

Läs mer

Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du:

Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du: Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du: A.Mer av dig själv. B.Mindre av dig själv. C.Lika mycket av dig själv. ⱱ Hur hög måste en spegel vara för att du ska

Läs mer

(ii) Beräkna sidoförskjutningen d mellan in- och utgående strålar, uttryckt i vinklarna θ i och tjocklekar t i. (2p)

(ii) Beräkna sidoförskjutningen d mellan in- och utgående strålar, uttryckt i vinklarna θ i och tjocklekar t i. (2p) Tentamen i Vågrörelselära(FK49) Datum: Onsdag, 4 Augusti,, Tid: 9: - 4: Tillåten Hjälp: Physics handbook eller dylikt och miniräknare Förklara resonemang och uträkningar klart och tydligt. Tentamensskrivningen

Läs mer

Fysik TFYA86. Föreläsning 9/11

Fysik TFYA86. Föreläsning 9/11 Fysik TFYA86 Föreläsning 9/11 1 Elektromagnetiska vågor (ljus) University Physics: Kapitel 32, 33, 35, 36 (delar, översiktligt!) Översikt och breddning! FÖ: 9 (ljus) examineras främst genom ljuslabben

Läs mer

Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola

Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola Tid: Måndagen 5/3-2012 kl: 8.15-12.15. Hjälpmedel: Räknedosa. Bifogad formelsamling. Lösningar: Lösningarna skall vara väl

Läs mer

Lösningar till repetitionsuppgifter

Lösningar till repetitionsuppgifter Lösningar till repetitionsuppgifter 1. Vågen antas röra sig i positiva x-axelns riktning dvs s = a sin(ω t k x +δ). Elongationen = +0,5 a för x = 0 vid t = 0 0,5 a = a sin(δ) sin(δ) = 0,5 δ 1 = π/6 och

Läs mer

Repetition Harmonisk svängning & vågor - Fy2 Heureka 2: kap. 7, 9, 13 version 2016

Repetition Harmonisk svängning & vågor - Fy2 Heureka 2: kap. 7, 9, 13 version 2016 Repetition Harmonisk svängning & vågor - Fy2 Heureka 2: kap. 7, 9, 13 version 2016 Harmonisk svängning En svängning fram och tillbaka kring ett jämviktsläge, där den resulterande kraften på den svängande

Läs mer

TFEI02/TEN1: Va gfysik teori och tilla mpningar. Tentamen Va gfysik. 30 maj :00 12:00

TFEI02/TEN1: Va gfysik teori och tilla mpningar. Tentamen Va gfysik. 30 maj :00 12:00 Linko pings Universitet Institutionen fo r fysik, kemi och biologi Roger Magnusson TFEI02/TEN1: Va gfysik teori och tilla mpningar Tentamen Va gfysik 30 maj 2015 8:00 12:00 Tentamen besta r av 6 uppgifter

Läs mer

interferens och diffraktion

interferens och diffraktion Kapitel 1. Vågrörelselära: interferens och diffraktion [Understanding physics: 12.7-12.9, 12.11-12.12, 12.15] Som en inledning till den moderna fysiken skall vi studera hur två vågrörelser påverkar varandra.

Läs mer

Vågrörelselära, akustik och optik. Lösningsförslag till räkneuppgifter

Vågrörelselära, akustik och optik. Lösningsförslag till räkneuppgifter Vågrörelselära, akustik och optik. Lösningsförslag till räkneuppgifter Jonas Persson 5 juli 2007 Förord Som författare försöker man att anpassa sig till läsarna och presentera materialet på ett så lättläst

Läs mer

Tentamen i Vågor och Optik 5hp F, Q, kandfys, gylärfys-programm, den 15. mars 2010

Tentamen i Vågor och Optik 5hp F, Q, kandfys, gylärfys-programm, den 15. mars 2010 Uppsala Universitet Fysiska Institutionen Laurent Duda Tentamen i Vågor och Optik 5hp Skrivtid kl. 14-19 Hjälpmedel: Räknedosa, Physics Handbook eller motsvarande (även Mathematical Handbook är tillåten)

Läs mer

Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00

Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00 Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00 Tentamen i Fotonik 2011 08 25, kl. 08.00 13.00 FAFF25-2015-08-21 FAFF25 2011 08 25 FAFF25 2011 08 25 FAFF25 FAFF25 - Tentamen Fysik för Fysik C och i för

Läs mer

5. Elektromagnetiska vågor - interferens

5. Elektromagnetiska vågor - interferens Interferens i dubbelspalt A λ/2 λ/2 Dal för ena vågen möter topp för den andra och vice versa => mörkt (amplitud = 0). Dal möter dal och topp möter topp => ljust (stor amplitud). B λ/2 Fig. 5.1 För ljusvågor

Läs mer

4. Allmänt Elektromagnetiska vågor

4. Allmänt Elektromagnetiska vågor Det är ett välkänt faktum att det runt en ledare som det flyter en viss ström i bildas ett magnetiskt fält, där styrkan hos det magnetiska fältet beror på hur mycket ström som flyter i ledaren. Om strömmen

Läs mer

Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00

Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00 FAFF25-2013-04-03 Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Diffraktion och interferens

Diffraktion och interferens Institutionen för Fysik 005-10-17 Diffraktion och interferens Syfte och mål När ljus avviker från en rätlinjig rörelse kallas det för diffraktion och sker då en våg passerar en öppning eller en kant. Det

Läs mer

1.3 Uppkomsten av mekanisk vågrörelse

1.3 Uppkomsten av mekanisk vågrörelse 1.3 Uppkomsten av mekanisk vågrörelse För att en mekanisk vågrörelse skall kunna uppstå, behövs ett medium, något som rörelsen kan framskrida i. Det kan vara vatten, luft, ett bord, jordskorpan, i princip

Läs mer

TFYA58, Fysik, 8 hp, 3 delar

TFYA58, Fysik, 8 hp, 3 delar 1. Vågrörelselära (mekaniska vågor, optik, diffraktion ) 7x2 tim föreläsning 6x2tim lektion 2. Experimentell problemlösning TFYA58, Fysik, 8 hp, 3 delar Ht 1 Ht 2 2x1 tim föreläsning 2 st Richardslabbar

Läs mer

Vågfysik. Vilka typer av vågor finns det? Fortskridande vågor. Mekaniska vågor Elektromagnetiska vågor Materievågor

Vågfysik. Vilka typer av vågor finns det? Fortskridande vågor. Mekaniska vågor Elektromagnetiska vågor Materievågor Vågysik Fortskridande ågor Knight, Kap. 0 Vilka typer a ågor inns det? Mekaniska ågor Elektromagnetiska ågor Materieågor 1 Vad är en åg? En ortskridande åg är en lokal störning som utbreder sig på ett

Läs mer

Problem Vågrörelselära & Kvantfysik, FK november Givet:

Problem Vågrörelselära & Kvantfysik, FK november Givet: Räkneövning 3 Vågrörelselära & Kvantfysik, FK2002 29 november 2011 Problem 16.5 Givet: En jordbävning orsakar olika typer av seismiska vågor, bland annat; P- vågor (longitudinella primär-vågor) med våghastighet

Läs mer

Tentamen i Fotonik , kl

Tentamen i Fotonik , kl FAFF25-2012-04-10 Tentamen i Fotonik - 2012-04-10, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer