4. Allmänt Elektromagnetiska vågor

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "4. Allmänt Elektromagnetiska vågor"

Transkript

1 Det är ett välkänt faktum att det runt en ledare som det flyter en viss ström i bildas ett magnetiskt fält, där styrkan hos det magnetiska fältet beror på hur mycket ström som flyter i ledaren. Om strömmen varierar med tiden kommer också det magnetiska fältets styrka att variera över tid. Det är också känt att ett varierande magnetiskt fält kan inducera ett varierande elektriskt fält (i analogi med att en magnetisk stav kan inducera en varierande spänning och en resulterande varierande ström i en spole då den flyttas in i och ut ur spolen) och omvänt att ett varierande elektriskt fält kan inducera ett varierande magnetiskt fält. Detta gör att ett magnetiskt fält som varierar i en punkt ger upphov till ett varierande elektriskt fält i närliggande punkter som i sin tur ger upphov till ett varierande magnetiskt fält i punkter i dess närhet. På så sätt kan man få ett tids- och rumsvarierande elektriskt och magnetiskt fält som fortplantar sig genom rummet på liknande sätt som de mekaniska vågor som undersökts tidigare. Det som kallas elektromagnetiska vågor utgörs alltså av ett tids- och rumsvarierande elektriskt och magnetiskt fält. Källorna till dessa elektromagnetiska vågor utgörs då av tidsvarierande strömmar (t.ex. oscillerande strömmar i en radioantenn) och laddningar som accelereras eller bromsas upp (t.ex. laddade partiklar/atomer som svänger fram och tillbaka i ett material). Dessa ger ju upphov till ett tidsvarierande magnetiskt och elektriskt fält runt dem som utbreder sig utåt från källan (mer eller mindre riktat). Det som vi brukar referera till som vanligt (synligt) ljus utgörs av elektromagnetiska vågor som ligger inom ett visst våglängdsintervall (egentligen frekvensintervall). Det som bestämmer vilken färg vi uppfattar att ett visst ljus (från t.ex. s.k. neonskyltar) har är ljusvågornas våglängd (egentligen frekvens, men eftersom vi i princip alltid betraktar saker när vi är omgivna med luft så kan man översätta frekvenserna till våglängder enligt välkänt samband nedan). Våglängden för det ljus som vi uppfattar som blått är c:a m (egentligen uppfattar vi ljusvåglängder inom ett intervall runt m som blått) och för rött c:a m. Däremellan hittar man också grönt och gult. Se Fig. 4.1 nedan för mer information om de olika färgernas våglängdsintervall. Det finns också elektromagnetiska vågor (ljus) med en sådan våglängd som vi inte kan se för blotta ögat. Ljus med våglängder något kortare än de för synligt ljus (< 400 nm) brukar kallas för ultraviolett (UV) ljus och ljus med något längre våglängder än det synliga (> 750 nm) brukar kallas för infrarött (IR) ljus. När det gäller ljus med kortare våglängd än c:a 10 nm (gränsen är lite flytande) brukar man inte längre prata om UV-ljus utan om röntgenstrålning.

2 UV-ljuset är också uppdelat på UVA ( nm), UVB ( nm) och UVC ( nm). UVB ljus (strålning) är det som ger upphov till solbränna (vilket egentligen är ett sätt för kroppen att skydda sig mot den skadliga UVB-strålningen). violett grönt orange IR λ < 400 nm λ > 750 nm UV blått gult rött Färg Violett Blått Grönt Gult Orange Rött Våglängd nm nm nm nm nm nm Fig. 4.1 Infrarött ljus brukar också begränsas, till våglängdsområdet 750 nm-c:a 1 mm (vissa källor anger gränsen till 100 μm), och vågor med längre våglängd brukar kallas radiovågor (eng. radio frequency). Ofta hör man också beteckningen mikrovågor för de ljusvågor inom radiovågsområdet (och ev övre delen av IR-området) som har en våglängd kortare än c:a 1 m. Observera att gränserna mellan dessa våglängdsområden alltså inte är helt given. Exempel på mikrovågor är t.ex. de elektromagnetiska vågor/ signaler som används för mobiltelefon-kommunikation, samt för uppvärmning av mat i mikrovågsugnar. För de elektromagnetiska vågorna kan i stort sett samma beskrivning och samma samband/ regler som ställts upp för mekaniska vågor användas för att beskriva och räkna på vågrörelserna, med några undantag. För det första behöver de elektromagnetiska vågorna inget material att fortplanta sig genom för sin utbredning. Elektromagnetiska vågor kan fortplanta sig genom vakuum. Vidare är utbredningshastigheten, vilken betecknas med bokstaven c, dels mycket högre än för de mekaniska vågorna dels är den inte alltid konstant för en och samma riktning i ett och samma material (under samma yttre förhållanden) utan beror i många material på vilken våglängd de elektromagnetiska vågorna har. D.v.s. elektromagnetiska vågor med olika våglängd har i många material olika utbredningshastighet, även om skillnaden är liten. I vakuum (och i praktiken även i luft) är dock utbredningshastigheten lika stor för alla våglängder. Sambandet mellan utbredningshastighet, frekvens och våglängd, c = f λ (jfr v = f λ), som togs fram för de mekaniska vågorna gäller dock alltid även för elektromagnetiska vågor, där c anger utbredningshastigheten för vågorna. c har värdet 2, m/s i vakuum (och i luft) och brukar vanligen betecknas c 0, men är lägre i andra material.

3 Superpositionsprincipen gäller också för elektromagnetiska vågor. För synligt ljus gäller att i de punkter där den resulterande vågen har stor amplitud blir det ljust (hög intensitet på ljuset, starkt ljus) medan det blir mörkt (noll intensitet, svagt eller inget ljus) i de punkter där amplituden är noll eller väldigt liten. Intensiteten är proportionell mot kvadraten på amplituden. I α A 2 En elektromagnetisk våg som reflekteras från ett optiskt tunnare mot ett optiskt tätare material kommer att reflekteras omvänd mot den infallande vågen, se också Fig. 4.2 nedan.. Man kan också säga att den reflekterade vågen är fasförskjuten 180 eller förskjuten en halv våglängd jämfört med den infallande. En elektromagnetisk våg som reflekteras mot ett optiskt tunnare material kommer att reflekteras vänd åt samma håll som den infallande = ingen fasförskjutning. Den infallande vågen förskjuten 180 eller en halv våglängd infallande våg Reflekterad våg Fig. 4.2 För att snabbt avgöra den optiska tätheten på olika material (bl.a. så att man kan göra en snabb jämförelse mellan materialen) har man definierat en storhet som kallas brytningsindex och som betecknas med n (n ämne ). Varje genomskinligt ämne (material) har sitt eget brytningsindex som definieras genom kvoten mellan de elektromagnetiska vågornas (ljusets) utbredningshastighet i vakuum och deras utbredningshastighet i ämnet. n ämne = c 0 /c ämne (ljushastigh. i vakuum/ ljushastigh. i ämnet) Optiskt tätare är det material som har ett högre värde på sitt brytningsindex. n vakuum = 1 och n luft 1. Brytningsindex för alla andra genomskinliga material > 1.

4 Brytningslagen som beskriver hur utbredningsriktningen för en vågrörelse ändras då vågen passerar gränsen mellan två olika material gäller också för elektromagnetiska vågor. Genom definitionen av brytningsindex (som angivits ovan) kan dock sambandet mellan infalls- och brytningsvinkeln också uttryckas med hjälp av brytningsindex för de två materialen, se Fig. 4.3 nedan. Ljusstråle (knippe av ljusvågor) i sin i/sin b = c 1 /c 2 (= v 1 /v 2 ) n = c /c material 1 brytningsindex n 1 material 2 brytningsindex n 2 n 2 /n 1 = (c 0 /c 2 )/(c 0 /c 1 ) = c 1 /c 2 b sin i/sin b = n 2 /n 1 Fig. 4.3 Även reflexionslagen, som säger att den mot en gränsyta infallande vågens vinkel (infallsvinkeln i) mot normalen till ytan är lika stor som den reflekterade vågens vinkel (reflektionsvinkeln r) mot samma normal, gäller också den för elektromagnetiska vågor, se Fig Ljusstråle (knippe av ljusvågor) i r i = r Fig. 4.4

5 Lektionsuppgifter 4.1 I mikrovågsugnar används frekvensen 2,45 GHz för att generera mikrovågorna. Beräkna våglängden för dessa elektromagnetiska vågor. Mikrovågsugnen är konstruerad så att den inte ska kunna vara påslagen när luckan är öppen. Vad kan orsaken till det vara? 4.2 Från en laser sänds en kort ljuspuls, vars varaktighet är 1, s, lodrätt ned mot en horisontell vattenyta. Beräkna längden i cm av såväl den reflekterade som den puls som fortsätter genom vattnet. 4.3 En ljusstråle som bara innehåller ljus av en enda våglängd infaller under rät vinkel mot ena sidan av ett glasprisma enligt figur nedan. Glasets brytningsindex för denna våglängd är 1,6. Bestäm ljusstrålens riktningsändring efter att den passerat genom prismat. luft glas n = 1, På en horisontell glasskiva ligger ett vattenskikt enligt figur nedan. Mot vattnet infaller en ljusstråle med infallsvinkeln 40. Glasets brytningsindex är 1,5 och vattnets 1,3. Beräkna infalls- och brytningsvinklarna vid ljusstrålens passage från vatten till glas samt ljusstrålens brytningsvinkel vid övergången från glas till luft vid skivans undersida. Luft 40 Vatten Glas

6 4.5 I en punkt A har ljus av en viss våglängd 3 gånger så stor amplitud som i en annan punkt B. Hur mycket större intensitet har ljuset av denna våglängd i punkt A jämfört med punkt B? Övningsuppgifter 4.6 Spiralarmarna i vår galax Vintergatan har kunnat kartläggas genom att vätgas i dess armar sänder ut elektromagnetisk strålning med våglängden 21,1 cm. Beräkna strålningens frekvens. 4.7 En ljusstråle går igenom en glasplatta med tjockleken 1,0 cm. Infallsvinkeln är 38 och glasets brytningsindex 1,5. Hur lång tid tar det för ljuset att passera genom glasplattan? 4.8 En ljusstråle riktas vinkelrätt mot den krökta ytan på en halvcirkulär cylinder av ett genomskinligt ämne, se figur nedan. Gränsvinkeln för totalreflexion är v 1. När en vätska sprids ut i ett tillräckligt tjockt lager på den plana ovansidan blir gränsvinkeln för totalreflexion i samma yta v 2. Uttryck vätskans brytningsindex med hjälp av v 1 och v 2. Luft n = 1,0 v 1 v 2

Elektromagnetiska vågor (Ljus)

Elektromagnetiska vågor (Ljus) Föreläsning 4-5 Elektromagnetiska vågor (Ljus) Ljus kan beskrivas som bestående av elektromagnetiska vågrörelser, d.v.s. ett tids- och rumsvarierande elektriskt och magnetiskt fält. Dessa ljusvågor följer

Läs mer

3. Ljus. 3.1 Det elektromagnetiska spektret

3. Ljus. 3.1 Det elektromagnetiska spektret 3. Ljus 3.1 Det elektromagnetiska spektret Synligt ljus är elektromagnetisk vågrörelse. Det följer samma regler som vi tidigare gått igenom för mekanisk vågrörelse; reflexion, brytning, totalreflexion

Läs mer

Kvantfysik - introduktion

Kvantfysik - introduktion Föreläsning 6 Ljusets dubbelnatur Det som bestämmer vilken färg vi uppfattar att ett visst ljus (från t.ex. s.k. neonskyltar) har är ljusvågornas våglängd. violett grönt orange IR λ < 400 nm λ > 750 nm

Läs mer

5. Elektromagnetiska vågor - interferens

5. Elektromagnetiska vågor - interferens Interferens i dubbelspalt A λ/2 λ/2 Dal för ena vågen möter topp för den andra och vice versa => mörkt (amplitud = 0). Dal möter dal och topp möter topp => ljust (stor amplitud). B λ/2 Fig. 5.1 För ljusvågor

Läs mer

3. Mekaniska vågor i 2 (eller 3) dimensioner

3. Mekaniska vågor i 2 (eller 3) dimensioner 3. Mekaniska vågor i 2 (eller 3) dimensioner Brytning av vågor som passerar gränsen mellan två material Eftersom utbredningshastigheten för en mekanisk våg med största sannolikhet ändras då den passerar

Läs mer

Två typer av strålning. Vad är strålning. Två typer av strålning. James Clerk Maxwell. Två typer av vågrörelse

Två typer av strålning. Vad är strålning. Två typer av strålning. James Clerk Maxwell. Två typer av vågrörelse Vad är strålning Två typer av strålning Partikelstrålning Elektromagnetisk strålning Föreläsning, 27/1 Marica Ericson Två typer av strålning James Clerk Maxwell Partikelstrålning Radioaktiva kärnpartiklar

Läs mer

OPTIK läran om ljuset

OPTIK läran om ljuset OPTIK läran om ljuset Vad är ljus Ljuset är en form av energi Ljus är elektromagnetisk strålning som färdas med en hastighet av 300 000 km/s. Ljuset kan ta sig igenom vakuum som är ett utrymme som inte

Läs mer

1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick.

1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. 10 Vågrörelse Vågor 1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. y (m) 0,15 0,1 0,05 0-0,05 0 0,5 1 1,5 2 x (m) -0,1-0,15

Läs mer

Denna våg är. A. Longitudinell. B. Transversell. C. Något annat

Denna våg är. A. Longitudinell. B. Transversell. C. Något annat Denna våg är A. Longitudinell B. Transversell ⱱ v C. Något annat l Detta är situationen alldeles efter en puls på en fjäder passerat en skarv A. Den ursprungliga pulsen kom från höger och mötte en lättare

Läs mer

för gymnasiet Polarisation

för gymnasiet Polarisation Chalmers tekniska högskola och November 2006 Göteborgs universitet 9 sidor + bilaga Rikard Bergman 1992 Christian Karlsson, Jan Lagerwall 2002 Emma Eriksson 2006 O4 för gymnasiet Polarisation Foton taget

Läs mer

Optik. Läran om ljuset

Optik. Läran om ljuset Optik Läran om ljuset Vad är ljus? Ljus är en form av energi. Ljus är elektromagnetisk strålning. Energi kan inte försvinna eller nyskapas. Ljuskälla Föremål som skickar ut ljus. I alla ljuskällor sker

Läs mer

Fysik (TFYA14) Fö 5 1. Fö 5

Fysik (TFYA14) Fö 5 1. Fö 5 Fysik (TFYA14) Fö 5 1 Fö 5 Kap. 35 Interferens Interferens betyder samverkan och i detta fall samverkan mellan elektromagnetiska vågor. Samverkan bygger (precis som för mekaniska vågor) på superpositionsprincipen

Läs mer

Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla

Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla Ljus/optik Ljuskällor För att vi ska kunna se något måste det finnas en ljuskälla En ljuskälla är ett föremål som själv sänder ut ljus t ex solen, ett stearinljus eller en glödlampa Föremål som inte själva

Läs mer

Föreläsning 7: Antireflexbehandling

Föreläsning 7: Antireflexbehandling 1 Föreläsning 7: Antireflexbehandling När strålar träffar en yta vet vi redan hur de bryts (Snells lag) eller reflekteras (reflektionsvinkeln lika stor som infallsvinkeln). Nu vill vi veta hur mycket som

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Lektion 9: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Värme kan överföras från en kropp till en annan genom strålning (värmestrålning). Det är därför vi kan känna solens

Läs mer

Geometrisk optik reflektion och brytning. Optiska system F9 Optiska instrument. Elektromagnetiska vågor. Det elektromagnetiska spektrumet FAF260

Geometrisk optik reflektion och brytning. Optiska system F9 Optiska instrument. Elektromagnetiska vågor. Det elektromagnetiska spektrumet FAF260 Geometrisk optik reflektion oh brytning Geometrisk optik F7 Reflektion oh brytning F8 Avbildning med linser Plana oh buktiga speglar Optiska system F9 Optiska instrument 1 2 Geometrisk optik reflektion

Läs mer

Optik, F2 FFY091 TENTAKIT

Optik, F2 FFY091 TENTAKIT Optik, F2 FFY091 TENTAKIT Datum Tenta Lösning Svar 2005-01-11 X X 2004-08-27 X X 2004-03-11 X X 2004-01-13 X 2003-08-29 X 2003-03-14 X 2003-01-14 X X 2002-08-30 X X 2002-03-15 X X 2002-01-15 X X 2001-08-31

Läs mer

Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111

Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Torsdagen den 5:e juni 2008, kl. 08:00 12:00 Fysik del B2 för tekniskt

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 33 - Ljus 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel

Läs mer

Övning 6 Antireflexbehandling

Övning 6 Antireflexbehandling Övning 6 Antireflexbehandling Antireflexbehandling Idén med antireflexskikt är att få två reflektioner som interfererar destruktivt och därmed försvagar varandra. R Vi ser att vågorna är ur fas, vi har

Läs mer

ANDREAS REJBRAND NV1A 2004-06-09 Fysik http://www.rejbrand.se. Elektromagnetisk strålning

ANDREAS REJBRAND NV1A 2004-06-09 Fysik http://www.rejbrand.se. Elektromagnetisk strålning ANDREAS REJBRAND NV1A 2004-06-09 Fysik http://www.rejbrand.se Elektromagnetisk strålning Innehållsförteckning ELEKTROMAGNETISK STRÅLNING... 1 INNEHÅLLSFÖRTECKNING... 2 INLEDNING... 3 SPEKTRET... 3 Gammastrålning...

Läs mer

Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material?

Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? 1 Föreläsning 2 Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen på samma sida är reflekterat

Läs mer

The nature and propagation of light

The nature and propagation of light Ljus Emma Björk The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Lektion 8: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Den gul-orange färgen i den smidda detaljen på bilden visar den synliga delen av den termiska strålningen. Värme

Läs mer

Övning 6 Antireflexbehandling. Idén med antireflexskikt är att få två reflektioner som interfererar destruktivt och därmed försvagar varandra.

Övning 6 Antireflexbehandling. Idén med antireflexskikt är att få två reflektioner som interfererar destruktivt och därmed försvagar varandra. Övning 6 Antireflexbehandling Antireflexbehandling Idén med antireflexskikt är att få två reflektioner som interfererar destruktivt och därmed försvagar varandra. R 1 R Vi ser att vågorna är ur fas, vi

Läs mer

Sammanfattning: Fysik A Del 2

Sammanfattning: Fysik A Del 2 Sammanfattning: Fysik A Del 2 Optik Reflektion Linser Syn Ellära Laddningar Elektriska kretsar Värme Optik Reflektionslagen Ljus utbreder sig rätlinjigt. En blank yta ger upphov till spegling eller reflektion.

Läs mer

1. Elektromagnetisk strålning

1. Elektromagnetisk strålning 1. Elektromagnetisk strålning Kursens första del behandlar olika aspekter av den elektromagnetiska strålningen. James Clerk Maxwell formulerade lagarnas som beskriver strålningen år 1864. 1.1 Uppkomst

Läs mer

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter):

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter): FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Måndagen den 5 maj 2008 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare.

Läs mer

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom

Läs mer

Tentamen i Fotonik , kl

Tentamen i Fotonik , kl FAFF25-2012-04-10 Tentamen i Fotonik - 2012-04-10, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Alla svar till de extra uppgifterna

Alla svar till de extra uppgifterna Alla svar till de extra uppgifterna Fö 1 1.1 (a) 0 cm 1.4 (a) 50 s (b) 4 cm (b) 0,15 m (15 cm) (c) 0 cm 1.5 2 m/s (d) 0 cm 1.6 1.2 (a) A nedåt, B uppåt, C nedåt, D nedåt 1.7 2,7 m/s (b) 1.8 Våglängd: 2,0

Läs mer

Vad skall vi gå igenom under denna period?

Vad skall vi gå igenom under denna period? Ljus/optik Vad skall vi gå igenom under denna period? Vad är ljus? Ljuskälla? Reflektionsvinklar/brytningsvinklar? Färger? Hur fungerar en kikare? Hur fungerar en kamera/ ögat? Var använder vi ljus i vardagen

Läs mer

Hur elektromagnetiska vågor uppstår. Elektromagnetiska vågor (Kap. 32) Det elektromagnetiska spektrumet

Hur elektromagnetiska vågor uppstår. Elektromagnetiska vågor (Kap. 32) Det elektromagnetiska spektrumet Elektromagnetiska vågor (Kap. 32) Hur elektromagnetiska vågor uppstår Laddning i vila:symmetriskt radiellt fält, Konstant hastighet: osymmetriskt radiellt fält samt ett magnetfält. Konstant acceleration:

Läs mer

Repetitionsuppgifter i vågrörelselära

Repetitionsuppgifter i vågrörelselära Repetitionsuppgifter i vågrörelselära 1. En harmonisk vågrörelse med frekvensen 6, Hz och utbredningshastigheten 1 m/s har amplituden a. I en viss punkt och vid en viss tid är elongationen +,5a. Hur stor

Läs mer

Fysik. Laboration 3. Ljusets vågnatur

Fysik. Laboration 3. Ljusets vågnatur Fysik Laboration 3 Ljusets vågnatur Laborationens syfte: att hjälpa dig att förstå ljusfenomen diffraktion och interferens och att förstå hur olika typer av spektra uppstår Utförande: laborationen skall

Läs mer

Förklara dessa begrepp: Ackommodera Avbildning, Brytning Brytningslagen Brytningsindex Brytningsvinkel Brännvidd Diffus och regelbunden reflektion

Förklara dessa begrepp: Ackommodera Avbildning, Brytning Brytningslagen Brytningsindex Brytningsvinkel Brännvidd Diffus och regelbunden reflektion Förklara dessa begrepp: Ackommodera, ögats närinställning, är förmågan att förändra brytkraften i ögats lins. Ljus från en enda punkt på ett avlägset objekt och ljus från en punkt på ett närliggande objekt

Läs mer

Vågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion)

Vågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Vågfysik Geometrisk optik Knight Kap 23 Historiskt Ljus Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Hooke, Huyghens (~1660): ljus är ett slags vågor Young

Läs mer

Fotoelektriska effekten

Fotoelektriska effekten Fotoelektriska effekten Bakgrund År 1887 upptäckte den tyska fysikern Heinrich Hertz att då man belyser ytan på en metallkropp med ultraviolett ljus avges elektriska laddningar från ytan. Noggrannare undersökningar

Läs mer

Instuderingsfrågor extra allt

Instuderingsfrågor extra allt Instuderingsfrågor extra allt För dig som vill lära dig mer, alla svaren finns inte i häftet. Sök på nätet, fråga en kompis eller läs i en grundbok som du får låna på lektion. Testa dig själv 9.1 1 Vilken

Läs mer

Kapitel: 32 Elektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge EM-vågor

Kapitel: 32 Elektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge EM-vågor Kapitel: 3 lektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge M-vågor genskaper hos M-vågor nergitransport i M-vågor Det elektromagnetiska spektrat Maxwell s ekvationer Kan

Läs mer

λ = T 2 g/(2π) 250/6 40 m

λ = T 2 g/(2π) 250/6 40 m Problem. Utbredning av vattenvågor är komplicerad. Vågorna är inte transversella, utan vattnet rör sig i cirklar eller ellipser. Våghastigheten beror bland annat på hur djupt vattnet är. I grunt vatten

Läs mer

Polarisation en introduktion (för gymnasiet)

Polarisation en introduktion (för gymnasiet) Polarisation en introduktion 1 Polarisation en introduktion (för gymnasiet) 1 Ljusets polarisationsformer Låt oss för enkelhets skull studera en stråle med monokromatiskt ljus, dvs. ljus som bara innehåller

Läs mer

Polarisation Laboration 2 för 2010v

Polarisation Laboration 2 för 2010v Polarisation Laboration 2 för 2010v Stockholms Universitet 2007 Innehåll 1 Vad är polariserat ljus? 2 Teoretisk beskrivning av polariserat ljus 2.1 Linjärpolariserat ljus 2.2 Cirkulärpolariserat ljus

Läs mer

Tentamen i Fysik för M, TFYA72

Tentamen i Fysik för M, TFYA72 Tentamen i Fysik för M, TFYA72 Onsdag 2015-06-10 kl. 8:00-12:00 Tillåtna hjälpmedel: Bifogat formelblad Avprogrammerad räknedosa enlig IFM:s regler. Christopher Tholander kommer att besöka tentamenslokalen

Läs mer

Optik Samverkan mellan atomer/molekyler och ljus elektroner atomkärna Föreläsning 7/3 200 Elektronmolnet svänger i takt med ljuset och skickar ut nytt ljus Ljustransmission i material Absorption elektroner

Läs mer

Gauss Linsformel (härledning)

Gauss Linsformel (härledning) α α β β S S h h f f ' ' S h S h f S h f h ' ' S S h h ' ' f f S h h ' ' 1 ' ' ' f S f f S S S ' 1 1 1 S f S f S S 1 ' 1 1 Gauss Linsformel (härledning) Avbilding med lins a f f b Gauss linsformel: 1 a

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 35-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

Kaströrelse. 3,3 m. 1,1 m

Kaströrelse. 3,3 m. 1,1 m Kaströrelse 1. En liten kula, som vi kallar kula 1, släpps ifrån en höjd över marken. Exakt samtidigt skjuts kula 2 parallellt med marken ifrån samma höjd som kula 1. Luftmotståndet som verkar på kulorna

Läs mer

Observera att uppgifterna inte är ordnade efter svårighetsgrad!

Observera att uppgifterna inte är ordnade efter svårighetsgrad! TENTAMEN I FYSIK FÖR n1, 9 JANUARI 2004 Skrivtid: 08.00-13.00 Hjälpmedel: Formelblad och godkänd räknare. Obs. Inga lösblad! Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och

Läs mer

Lösningsförslag. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111

Lösningsförslag. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Fredagen den 29:e maj 2009, kl 08:00 12:00 Fysik del B2 för tekniskt / naturvetenskapligt

Läs mer

Repetition Ljus - Fy2!!

Repetition Ljus - Fy2!! Repetition Ljus - Fy2 Egenskaper ör : Ljus är inte en mekanisk vågrörelse. Den tar sig ram utan problem även i vakuum och behöver alltså inget medium. Exakt vilken typ av vågrörelse är återkommer vi till

Läs mer

Bra tabell i ert formelblad

Bra tabell i ert formelblad Bra tabell i ert formelblad Vi har gått igenom hur magnetfält alstrar krafter, kap. 7. Vi har gått igenom hur strömmar alstrar magnetfält, kap. 8. Återstår att lära sig hur strömmarna alstras. Tidigare

Läs mer

Tentamen i Fotonik , kl

Tentamen i Fotonik , kl FAFF25-2013-08-26 Tentamen i Fotonik - 2013-08-26, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00

Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00 FAFF25-2013-04-03 Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Institutionen för Fysik 2013-10-17. Polarisation

Institutionen för Fysik 2013-10-17. Polarisation Polarisation Syfte Syftet med denna laboration är att lära sig om ljusets polarisation. Du kommer att se exempel på opolariserat, linjär- och cirkulärpolariserat ljus. Exempel på komponenter som kan ändra

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 32 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

Tentamen i Fotonik , kl

Tentamen i Fotonik , kl FAFF25 FAFA60-2016-05-10 Tentamen i Fotonik - 2016-05-10, kl. 08.00-13.00 FAFF25 Fysik för C och D, Delkurs i Fotonik FAFA60 Fotonik för C och D Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling

Läs mer

Presentationsmaterial Ljus som vågrörelse - Fysik B. Interferens i dubbelspalt gitter tunna skikt

Presentationsmaterial Ljus som vågrörelse - Fysik B. Interferens i dubbelspalt gitter tunna skikt Presentationsmaterial Ljus som vågrörelse - Fysik B Interferens i ubbelspalt gitter tunna skikt Syfte och omfattning Detta material behanlar på intet sätt fullstänigt såant som kan ingå i avsnitt me innebören

Läs mer

Böjning. Tillämpad vågrörelselära. Föreläsningar. Vad är optik? Huygens princip. Böjning vs. interferens FAF260. Lars Rippe, Atomfysik/LTH 1

Böjning. Tillämpad vågrörelselära. Föreläsningar. Vad är optik? Huygens princip. Böjning vs. interferens FAF260. Lars Rippe, Atomfysik/LTH 1 Tillämpad vågrörelselära 2 Föreläsningar Vad är optik? F10 och upplösning (kap 16) F11 Interferens och böjning (kap 17) F12 Multipelinterferens (kap 18) F13 Polariserat ljus (kap 20) F14 Reserv / Repetition

Läs mer

Lösningsförslag - Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111

Lösningsförslag - Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag - Tentamen Torsdagen den 26:e maj 2011, kl 08:00 12:00 Fysik del B2 för

Läs mer

Tentamen i Fysik för K1,

Tentamen i Fysik för K1, Tentamen i Fysik för K1, 000524 TID: 8.00 13.00. HJÄLPMEDEL: LÄROBÖCKER (3 ST.), RÄKNETABELL, GODKÄND RÄKNARE. ANTAL UPPGIFTER: OPTIK OCH VÅGLÄRA: 5 ST., ELLÄRA: 3 ST. LÖSNINGAR: LÖSNINGARNA SKA VARA MOTIVERADE

Läs mer

FYSIK ÅK 9 AKUSTIK OCH OPTIK. Fysik - Måldokument Lena Folkebrant

FYSIK ÅK 9 AKUSTIK OCH OPTIK. Fysik - Måldokument Lena Folkebrant Fysik - Måldokument Lena Folkebrant FYSIK ÅK 9 AKUSTIK OCH OPTIK Ljud är egentligen tryckförändringar i något material. För att ett ljud ska uppstå måste något svänga eller vibrera. När en gitarrsträng

Läs mer

SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE.

SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. Vad gjorde vi förra gången? Har du några frågor från föregående lektion? 3. titta i ditt läromedel (boken) Vad ska vi göra idag? Optik och

Läs mer

6. Kvantfysik Ljusets dubbelnatur

6. Kvantfysik Ljusets dubbelnatur 6. Kvantfysik Ljusets dubbelnatur Ljusets dubbelnatur Det som normalt bestämmer vilken färg vi upplever att ett visst föremål har är hur bra föremålet absorberar eller reflekterar de olika våglängderna

Läs mer

Övning 1 Dispersion och prismaeffekt

Övning 1 Dispersion och prismaeffekt Övning 1 Dispersion och prismaeffekt Färg För att beteckna färger används dessa spektrallinjer: Blått (F): λ F = 486.1 nm Gult (d): λ d = 587.6 nm Rött (C): λ c = 656.3 nm (Väte) (Helium) (Väte) Brytningsindex

Läs mer

Tentamen i Fotonik - 2014-04-25, kl. 08.00-13.00

Tentamen i Fotonik - 2014-04-25, kl. 08.00-13.00 FAFF25-2014-04-25 Tentamen i Fotonik - 2014-04-25, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Vågrörelselära och Optik VT14 Lab 3 - Polarisation

Vågrörelselära och Optik VT14 Lab 3 - Polarisation Vågrörelselära och Optik VT14 Lab 3 - Polarisation Stockholms Universitet 2014 Kontakt: olga.bylund@fysik.su.se Instruktioner för redogörelse för Laboration 3 Denna laboration består utav fyra experiment

Läs mer

Tenta Elektrisk mätteknik och vågfysik (FFY616) 2013-12-19

Tenta Elektrisk mätteknik och vågfysik (FFY616) 2013-12-19 Tenta Elektrisk mätteknik och vågfysik (FFY616) 013-1-19 Tid och lokal: Torsdag 19 december kl. 14:00-18:00 i byggnad V. Examinator: Elsebeth Schröder (tel 031 77 844). Hjälpmedel: Chalmers-godkänd räknare,

Läs mer

Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du:

Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du: Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du: A.Mer av dig själv. B.Mindre av dig själv. C.Lika mycket av dig själv. ⱱ Hur hög måste en spegel vara för att du ska

Läs mer

Institutionen för Fysik Polarisation

Institutionen för Fysik Polarisation Polarisation Syfte Syftet med denna laboration är att lära sig om ljusets polarisation. Du kommer att se exempel på opolariserat-, linjärt- och cirkulär polariserat ljus. Exempel på komponenter som kan

Läs mer

7. Atomfysik väteatomen

7. Atomfysik väteatomen Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det nödvändigt att betrakta

Läs mer

Laboration 1 Fysik

Laboration 1 Fysik Laboration 1 Fysik 2 2015 : Fysik 2 för tekniskt/naturvetenskapligt basår Laboration 1 Förberedelseuppgifter 1. För en våg med frekvens f och våglängd λ kan utbredningshastigheten skrivas: 2. Färgen på

Läs mer

Kapitel 35, interferens

Kapitel 35, interferens Kapitel 35, interferens Interferens hos ljusvågor, koherensbegreppet Samband för max och min för ideal dubbelspalt Samband för intensitetsvariation för ideal dubbelspalt Interferens i tunna filmer Michelson

Läs mer

VaRför är himlen blå, men solnedgången röd?

VaRför är himlen blå, men solnedgången röd? Elvis funderar över mycket. Varje dag frågar han sin mamma om saker som hon inte har en aning om. Då måste hon försöka ta reda på svaret och sedan förklara för Elvis på ett tydligt sätt. Det är jättebra,

Läs mer

Trådlös kommunikation

Trådlös kommunikation HT 2009 Akademin för Innovation, Design och Teknik Trådlös kommunikation Individuell inlämningsuppgift, Produktutveckling 3 1,5 poäng, D-nivå Produkt- och processutveckling Högskoleingenjörsprogrammet

Läs mer

Diffraktion och interferens Kapitel 35-36

Diffraktion och interferens Kapitel 35-36 Diffraktion och interferens Kapitel 35-36 1.3.2016 Natalie Segercrantz Centrala begrepp Huygens princip: Tidsskillnaden mellan korresponderande punkter på två olika vågfronter är lika för alla par av korresponderande

Läs mer

Lösningsförslag - Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111

Lösningsförslag - Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag - Tentamen Måndagen den 21:e maj 2012, kl 14:00 18:00 Fysik del B2 för tekniskt

Läs mer

SPEKTROSKOPI (1) Elektromagnetisk strålning. Synligt ljus. Kemisk mätteknik CSL Analytisk kemi, KTH. Ljus - en vågrörelse

SPEKTROSKOPI (1) Elektromagnetisk strålning. Synligt ljus. Kemisk mätteknik CSL Analytisk kemi, KTH. Ljus - en vågrörelse Kosmisk strålning Gammastrålning Röntgenstrålning Ultraviolet Synligt Infrarött Mikrovågor Radar Television NMR Radio Ultraljud Hörbart ljud Infraljud SEKTROSKOI () Kemisk mätteknik CSL Analytisk kemi,

Läs mer

2. Ljud. 2.1 Ljudets uppkomst

2. Ljud. 2.1 Ljudets uppkomst 2. Ljud 2.1 Ljudets uppkomst Ljud är en mekanisk vågrörelse som fortskrider i ett medium (t.ex. luft, vatten...) Någon typ av medium är ett krav; I vakuum kan ljudet inte fortskrida. I vätskor och gaser

Läs mer

Tentamen i Vågor och Optik 5hp F, Q, kandfys, gylärfys-programm, den 11. juni 2010

Tentamen i Vågor och Optik 5hp F, Q, kandfys, gylärfys-programm, den 11. juni 2010 Uppsala Universitet Fysiska Institutionen Laurent Duda Tentamen i Vågor och Optik 5hp Skrivtid kl. 8-13 Hjälpmedel: Räknedosa, Physics Handbook eller motsvarande (även Mathematical Handbook är tillåten)

Läs mer

Final i Wallenbergs Fysikpris

Final i Wallenbergs Fysikpris Final i Wallenbergs Fysikpris 26-27 mars 2010. Teoriprov Lösningsförslag 1. a) Vattens värmekapacitivitet: Isens värmekapacitivitet: Smältvärmet: Kylmaskinen drivs med spänningen och strömmen. Kylmaskinens

Läs mer

Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända!

Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända! Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända! Sista dag för godkännande av laborationer är torsdagen den 10/6 2015 Räknestuga Förra veckan kapitel

Läs mer

Föreläsning 6: Opto-komponenter

Föreläsning 6: Opto-komponenter Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser

Läs mer

I 1 I 2 I 3. Tentamen i Fotonik , kl Här kommer först några inledande frågor.

I 1 I 2 I 3. Tentamen i Fotonik , kl Här kommer först några inledande frågor. FAFF25-2014-03-14 Tentamen i Fotonik - 2014-03-14, kl. 14.00-19.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Final i Wallenbergs fysikpris

Final i Wallenbergs fysikpris Final i Wallenbergs fysikpris 5-6 mars 011. Teoriprov. Lösningsförslag. 1) Fysikern Hilda leker med en protonstråle i en vakuumkammare. Hon accelererar protonerna från stillastående med en protonkanon

Läs mer

Böjning och interferens

Böjning och interferens Böjning och interferens Böjning: Oänligt många elementarvågor från en öppning Böjnings minima bsin m Interferens: Änligt många elementarvågor från flera öppningar Interferens maxima sin m Multipelinterferens

Läs mer

OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten.

OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten. Speed of light OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten. 1.0 Inledning Experiment med en laseravståndsmätare

Läs mer

Hur påverkas vi av belysningen i vår omgivning?

Hur påverkas vi av belysningen i vår omgivning? Hur påverkas vi av belysningen i vår omgivning? Strålning Elektromagnetiska spektrumet Synlig strålning IR UV Våglängdsområden 100-280nm UV-C 280-315nm UV-B 315-400nm UV-A 400-780nm 780-1400nm 1400-3000nm

Läs mer

Chalmers Tekniska Högskola Tillämpad Fysik Igor Zoric

Chalmers Tekniska Högskola Tillämpad Fysik Igor Zoric Chalmers Tekniska Högskola 2002 05 28 Tillämpad Fysik Igor Zoric Tentamen i Fysik för Ingenjörer 2 Elektricitet, Magnetism och Optik Tid och plats: Tisdagen den 28/5 2002 kl 8.45-12.45 i V-huset Examinator:

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 1 augusti 008 kl 9-15 Hjälpmedel: handbok och räknare. Varje uppgift ger maximalt 4 poäng. Var

Läs mer

Tentamen i Fysik för K1, 000818

Tentamen i Fysik för K1, 000818 Tentamen i Fysik för K1, 000818 TID: 8.00-13.00. HJÄLPMEDEL: LÄROBÖCKER (3 ST), RÄKNETABELL, GODKÄND RÄKNARE. ANTAL UPPGIFTER: VÅGLÄRA OCH OPTIK: 5 ST, ELLÄRA: 3 ST. LÖSNINGAR: LÖSNINGARNA SKA VARA MOTIVERADE

Läs mer

! = 0. !!!"ä !"! +!!!"##$%

! = 0. !!!ä !! +!!!##$% TENTAMEN I FYSIK FÖR n1 3 MAJ 2011 Skrivtid: 08.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och för- sedda med svar. Kladdblad

Läs mer

Ljusets polarisation

Ljusets polarisation Ljusets polarisation Viktor Jonsson och Alexander Forsman 1 Sammanfattning Denna labb går ut på att lära sig om, och använda, ljusets polarisation. Efter utförd labb ska studenten kunna sätta upp en enkel

Läs mer

FAFA55 HT2016 Laboration 1: Interferens av ljus Nicklas Anttu och August Bjälemark, 2012, Malin Nilsson och David Göransson, 2015, 2016

FAFA55 HT2016 Laboration 1: Interferens av ljus Nicklas Anttu och August Bjälemark, 2012, Malin Nilsson och David Göransson, 2015, 2016 Inför Laborationen Laborationen sker i två lokaler: K204 (datorsal) och H226. I början av laborationen samlas ni i H212. Laborationen börjar 15 minuter efter heltimmen som är utsatt på schemat. Ta med

Läs mer

Ultraljudsfysik. Falun

Ultraljudsfysik. Falun Ultraljudsfysik Falun 161108 Historik Det första försöken att använda ultraljud inom medicin gjordes på 1940- och 1950-talet. 1953 lyckades två kardiolger i Lund (Edler och Hertz) med hjälp av en lånad

Läs mer

LÄRAN OM LJUSET OPTIK

LÄRAN OM LJUSET OPTIK LÄRAN OM LJUSET OPTIK VAD ÄR LJUS? Ljus kallas också för elektromagnetisk strålning Ljus består av små partiklar som kallas fotoner Fotonerna rör sig med en hastighet av 300 000 km/s vilket är ljusets

Läs mer

Vad är ljus? Begrepp och svåra ord: Begrepp. Övningar. Foton, partikelrörelse, kvantfysik, våglängd, prisma, spektrum, absorbera, Fördjupning

Vad är ljus? Begrepp och svåra ord: Begrepp. Övningar. Foton, partikelrörelse, kvantfysik, våglängd, prisma, spektrum, absorbera, Fördjupning Vad är ljus? Ljus består av ljuspartiklar som kallas fotoner. Ljusenergi är fotoner. Om fotoner krockar med något så kan de studsa (reflektera) eller omvandlas till värmeenergi (absorbera). Till exempel;

Läs mer

Fysik A A B C D. Sidan 1 av 9 henrik.gyllensten@tabyenskilda.se. www.tabyenskilda.se/fy

Fysik A A B C D. Sidan 1 av 9 henrik.gyllensten@tabyenskilda.se. www.tabyenskilda.se/fy www.tabyenskilda.se/y ÖÖvvnni iinn ggssuuppppggi ii teer 1. Lars lyser med en icklampa mot ett prisma. Han kan då se ett spektrum på väggen bakom prismat. Spektrumet innehåller alla ärger. Vilken av dessa

Läs mer

Tentamen i Optik för F2 (FFY091)

Tentamen i Optik för F2 (FFY091) CHALMERS TEKNISKA HÖGSKOLA 2009-03-10 Teknisk Fysik 08.30-12.30 Sal: H Tentamen i Optik för F2 (FFY091) Lärare: Bengt-Erik Mellander, tel. 772 3340 Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics

Läs mer