M/M/m/K kösystem. M/M/m/K kösystem

Storlek: px
Starta visningen från sidan:

Download "M/M/m/K kösystem. M/M/m/K kösystem"

Transkript

1 Allmänt om KÖSYSTEM (=betjäningssystem). För att definiera ett kösystem måste vi ange ankomstrocessen ( dvs hur kunder ankommer till systemet) och betjäningsrocess (dvs hur lång tid det tar att betjäna dem). Vi inför följande beteckning för att karakterisera ett kösystem A/B/C/D där A står för ankomstintervallens fördelning B står för betjäningstidsfördelningen C står för antalet betjänare D står för antalet kölatser. A och B kan t ex väljas bland följande beteckningar: M (=Markov) om vi har exonentialfördelning G (=General) om fördelningen inte är secificerad D (=Deterministisk) om tiderna är konstanta. Exemelvis M/M//5 betecknar ett kösystem där i) Ankomsttiderna exonentialfördelade (Markovrocess) ii) Betjäningstiderna är exonentialfördelade (Markovrocess) iii) Kösystemet har betjänare iv) Kösystemet har 5 kölatser. Ett M/M/m/K betjäningssystem har följande egenskaer:. Systemet har m betjänare av samma ty.. Betjäningstiderna för kunder i en betjänare är exonentialfördelade med medelvärde x =. Systemet betjänar kunder med intensiteten om en betjänare jobbar, med intensiteten om betjänare jobbar, med intensiteten om betjänare jobbar o.s.v.. Kunder ankommer enligt Poissonrocess med ankomstintensiteten kunder er tidsenhet. (Därmed är ankomsttiderna exonentialfördelade). Kösystemet har begränsat antal kölatser (=K) Systemet M/M/m/K kan modelleras som en födelsedödsrocess med tillstånd,,... k max där k max = (total antal latser i systemet =antalet betjänare + antalet kölatser betjänare) =m+k dvs

2 k max = m+k. Ankommande kunder kön K kölatser μ μ m betjänare Avgående kunder särr avvisade kunder μμ m betjänare Ankomstintensitet = Betjäningsintensitet =μ Begränsat antal kölatser = K Det största antalet kunder som kan finnas i kösystemet M/M/m/K är k max = m+k Låt Z(t) beteckna antalet kunder i systemet vid tiden t. Z(t) kan anta värden,,,,... k max. Vi betraktar Z(t) som en födelsedödsrocess. Låt k beteckna sannolikheten för k kunder i systemet. För att bestämma stationära sannolikheter använder vi beräkningsmodellen med födelsedödsrocess.

3 Beteckningar: Stationära sannolikheter; k k är sannolikheten för k kunder i systemet N Medelantal kunder i systemet, N = N q + N s Medelantal kunder i kön N q N Medelantal kunder i betjänarna s x~ Betjäningstid för en kund (stokastisk variabel ) x Medel betjäningstid för en kund, x = E (x ~ ) w ~ Väntetid (=tid i kö) för en kund (stokastisk variabel ) W Medel väntetid för en kund, W = E(w~ ) s~ Total tid i systemet för en kund; ~ s = ~ x + w ~ T Medel totaltid i systemet för en kund T = E(s ~ ), T = W + x Ankomstintensitet Särrade kunder er tidsenhet särr Effektiv ankomstintensitet = - särr Betjäningsintensitet ρ Erbjuden trafik, ρ = Några formler för ett : N = k k k = särr kmax = särr N T = x = T = W + x Littles formler: N = T N q = W N = x s

4 N = N q + N s ρ =, erbjuden trafik (kallas också "betjäningsfaktor") ρ = säρρ säρρ, särrad trafik ρ =, ektiv trafik Belastning er betjänare = Ns/m ====================================================== ÖVNINGSUPPGIFTER Ugift. Ett system kan modelleras som M/M//. Ankomstintensiteten är kunder/minut och betjäningsintensiteten för en betjänare är = kunder/minut. a) Skissera tillståndsgraf b) Bestäm sannolikheterna,,,,, 5, 6, och, Beräkna c) N = medelantal kunder i systemet, d) särr = särrad ankomstintensitet, och = ektiv ankomstintensitet e) x =medel betjäningstid för en kund, T =medel totaltid i systemet för en kund och W=medel väntetid för en kund f) Nq =medelantal kunder i kön och Ns =medelantal kunder i betjänarna g) erbjuden. avverkad och särrad trafik. Lösning: a) För att rita tillståndsgraf tar vi hänsyn till följande: i) Totalantal latser i systemet är kmax=(antalet betjänare)+(antalet kölatser)=m+k=+= ii) Ankomstintensitet är konstant = kunder er minut. ii) Betjäningsintensiteten för en betjänare är = kunder/minut. Om två betjänare jobbar samtidigt (det händer när vi har exakt två kunder i systemet ) då är systemets betjäningsintensitet = =6 kunder/minut. Om vi har eller flera kunder i systemet så jobbar alla tre betjänare och därmed blir systemets betjäningsintensitet = =9 kunder/minut. Därför har vi följande tillståndsgraf

5 5 eller b) Med hjäl av teorin för födelsedödsrocesser har vi följande relationer mellan de stationära sannolikheterna k och : =, =, =. = 6 Vi har = = = =., 8 = = = = å liknande sätt = =.956, =.55899, 5 = = =.5696

6 6 För att bestämma substituerar vi ovanstående relationer i ekvationen och får =.959 = = Nu är det enkelt att beräkna alla andra stationära sannolikheter. Vi helt enkelt substituerar =.5568 i ovanstående relationer och får: =.9, = , =.559, =.86, 5=.998 6= , =.959 c) Medelantal kunder i systemet, N= E(Z), bestämmer vi med hjäl av den allmänna formeln för medelvärdet av en diskret stokastiskvariabel: N= E(Z) = z k k k = =.599 d) Medelantal kunder er minut som avvisas från systemet är särr = kmax = kunder/min Medelantal kunder er minut som asserar systemet är = särr =9.8 kunder/min e) x =medel betjäningstid för en kund, W=medel väntetid för en kund. T =medel totaltid i systemet för en kund och Från Littles formel N = T har vi N T = =.6596 min (för en kund) x = = =. min (för en kund) T = W + x W = T x =.866 min (för en kund) f) Nq =medelantal kunder i kön och Ns =medelantal kunder i betjänarna Metod, Littles formler: N q = W =.686 N = x =.8958 s Metod, Direkt beräkning (Medelvärdet av en diskret stokastisk variabel): Låt q j beteckna antalet kunder i kön. Då är Nq= q j j.en kund hamnar i kön om alla betjänarna är utagna (och dessutom finns en ledig kölats). Exemelvis, om vår system( med betjänare och kölatser) är i tillstånd 5 så är tre kunder i betjänarna och i kön. k

7 I vårt fall har vi följande situation i kön: Tillstånd: 5 6 sannolikhet 5 6 Antalet kunder i kön Därför är Nq= = För antalet kunder i betjänarna har vi följande situation: Tillstånd: 5 6 sannolikhet 5 6 Antalet kunder i betjänarna Därför är Ns= = g) erbjuden, avverkad och särrad trafik. ρ = = =., erbjuden trafik (kallas också "betjäningsfaktor") säρρ ρsäρρ = =.55, särrad trafik ρ = =.8958, avverkad trafik (eller ektiv trafik ) Tillstånd: 5 6 sannolikhet 5 6 Antalet kunder i betjänarna Ugift. Ett system kan modelleras som M/M// väntsystem. Ankomstintensiteten är 6 kunder/minut och betjäningsintensiteten är = kunder/minut. a) Skissera tillståndsgraf b) Beräkna särrad trafik och avverkad trafik. Svar a)

8 8 b) Först =, =. 5, =. 5 =. 5, 5 =. 5, 6 =. 5 Substitutionen i = ger och därmed särr = kmax = = särr =9.88 Nu kan vi beräkna särrad och avverkad trafik (=ektiv trafik): särrad trafik= ρ = säρρ säρρ =.59 avverkad trafik (=ektiv trafik) = ρ = =.95. Ugift. Ett system kan modelleras som M/M// väntsystem. Ankomstintensiteten är 5 kunder/sekund och betjäningsintensiteten är = kunder/sekund. a) Skissera tillståndsgraf b) Beräkna avverkad trafik, särrad trafik och anrossärr (sannolikheten att en kund avvisas) Svar: a) Sannolikheterna:

9 särr = kmax =.6968 = särr = erbjuden trafik= 5. avverkad trafik=.59 särrad trafik=.6 En kund avvisas om den kommer då alla latser i systemet är utagna, i vårt system är därmed anrosärr= kmax =.95 anrosärr=.95 Ugift. Ett system kan modelleras som M/M/5/ väntsystem. Ankomstintensiteten är kunder/minut och medel betjäningstid är x = sekund. Beräkna N, N q, N s och belastning er betjänare. Svar: Från x = sekund er kund får vi att betjäningsintensitet = = kund er sekund eller 6 x kunder er minut. Sannolikheterna: särr = kmax = = särr =8.68 N= T=N/ =.89, W = T x =.666 Nq=.5 Ns=.5 Belastning er betjänare = Ns/5=.6

10 Ugift 5. I en nod i ett datornät betraktar vi en från noden utgående transmissionskanal med tillhörande buffert ( oututkö till kanalen ). Vi antar att vi kan modellera detta system som M/M//5 med ankomstintensitet = 8 meddelanden/ sekund och medelbetjäningstiden (medelöverföringstiden) x =. sekunder. Beräkna : a) T, b) W, c) avverkad och d) särrad trafik i detta system. Svar: Från x =. sekund er meddelande får vi att betjäningsintensitet = = x meddelanden er sekund N 6 6. = 5. särr = a) T=.868 b) W=.868 c) avverkad trafik=.69 d) särrad trafik= Ugift 6. I en nod i ett datornät betraktar vi en från noden utgående transmissionskanal med tillhörande buffert ( oututkö till kanalen ). Vi antar att vi kan modellera detta system som M/M//6 med ankomstintensitet = 6 meddelanden/ sekund och medelbetjäningstiden (medelöverföringstiden) x =.5 sekunder. Beräkna sannolikheten att ett meddelande a) slier vänta i bufferten och omedelbart får betjäning b) måste vänta men blir betjänat c) avvisas Svar:

11 Från x =.5 sekunder er meddelande får vi att betjäningsintensitet = = x meddelanden er sekund. a) Sannolikheten att ett meddelande slier vänta i bufferten och omedelbart får betjäning är =.9 b) Sannolikheten att ett meddelande måste vänta men blir betjänat är = c) Sannolikheten att ett meddelande avvisas är =.5985

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic KONTROLLSKRIVNING Kurs: HF Matematisk statistik Lärare: Armin Halilovic Datum: 8 maj 9 Skrivtid: 8:-: Tillåtna hjälmedel: Miniräknare av vilken ty som helst och bifogade formelblad (sida ). Förbjudna hjälmedel:

Läs mer

Ur en kortlek på 52 kort väljer man ( utan återläggning och utan hänsyn till ordning) slumpvis 5 kort. Vad är sannolikheten för att få

Ur en kortlek på 52 kort väljer man ( utan återläggning och utan hänsyn till ordning) slumpvis 5 kort. Vad är sannolikheten för att få Tentamen TEN, HF, aug 9 Matematisk statistik Kurskod HF Skrivtid: 8:-: Lärare och examinator : Armin Halilovic Hjälmedel: Bifogat formelhäfte ("Formler och tabeller i statistik ") och miniräknare av vilken

Läs mer

aug 2017 Kurskod HF1012 Halilovic internet. Betygsgränser: För (betyg Fx). Sida 1 av 13

aug 2017 Kurskod HF1012 Halilovic internet. Betygsgränser: För (betyg Fx). Sida 1 av 13 Tentamen TEN, HF, aug 7 Matematisk statistik Kurskod HF Skrivtid: :-: Lärare och examinator : Armin Halilovic Hjälpmedel: Bifogat formelhäfte ("Formler och tabeller i statistik ") och miniräknare av vilken

Läs mer

Ett M/M/1 betjäningssystem har följande egenskaper: 1. Systemet har en betjänare. Betjäningstiderna är exponentialfördelade med medelvärde 1 μ

Ett M/M/1 betjäningssystem har följande egenskaper: 1. Systemet har en betjänare. Betjäningstiderna är exponentialfördelade med medelvärde 1 μ M/M/ ösystem M/M/ ösystem Ett M/M/ betjäningssystem har följande egensaper:. Systemet har en betjänare. Betjäningstiderna är exponentialfördelade med medelvärde x =.. Kunder anommer enligt Poissonprocess

Läs mer

TILLSTÅNDSGRAFEN. Slutligen erhålls den mycket viktiga så kallade Snittmetoden :

TILLSTÅNDSGRAFEN. Slutligen erhålls den mycket viktiga så kallade Snittmetoden : Föreläsning 3. TILLSTÅNDSGRAFEN Slutligen erhålls den mycket viktiga så kallade Snittmetoden :... Snittmetoden kommer vi flitigt att använda för att bestämma tillståndssannolikheterna! Exempel på beräkning

Läs mer

Kunna beräkna P (spärr) för system med begränsat antal kunder och köplatser. Kunna beräkna medelantal upptagna betjänare.

Kunna beräkna P (spärr) för system med begränsat antal kunder och köplatser. Kunna beräkna medelantal upptagna betjänare. Övning 5 Vad du ska kunna efter denna övning Kunna beräkna P (spärr) för system med begränsat antal kunder och köplatser. Kunna beräkna λ eff. Kunna beräkna medelantal upptagna betjänare. Problem. Antag

Läs mer

Kunna använda Littles sats för enkla räkningar på kösystem.

Kunna använda Littles sats för enkla räkningar på kösystem. Övning 3 Vad du ska kunna efter denna övning Kunna använda Littles sats för enkla räkningar på kösystem. Känna till begreppen ankomstintensitet, avgångsintensitet, medelavstånd mellan ankomster och medelbetjäningstid

Läs mer

Tentamen TEN1, HF1012, 29 maj Matematisk statistik Kurskod HF1012 Skrivtid: 14:00-18:00 Lärare och examinator : Armin Halilovic

Tentamen TEN1, HF1012, 29 maj Matematisk statistik Kurskod HF1012 Skrivtid: 14:00-18:00 Lärare och examinator : Armin Halilovic Tentamen TEN, HF, 9 maj 9 Matematisk statistik Kurskod HF Skrivtid: 4:-8: Lärare och examinator : Armin Halilovic Hjälmedel: Bifogat formelhäfte ("Formler och tabeller i statistik ") och miniräknare av

Läs mer

Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar.

Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. Övning 8 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät utan återkopplingar.

Läs mer

Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod.

Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod. Övning 7 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät utan återkopplingar.

Läs mer

Kunna använda Littles sats för enkla räkningar på kösystem.

Kunna använda Littles sats för enkla räkningar på kösystem. Övning 2 Vad du ska kunna efter denna övning Kunna använda Littles sats för enkla räkningar på kösystem. Känna till begreppen ankomstintensitet, avgångsintensitet, medelavstånd mellan ankomster och medelbetjäningstid

Läs mer

Kunna dra slutsatser om t ex ett systems betjäningstider och antalet köplatser genom att tolka diagram.

Kunna dra slutsatser om t ex ett systems betjäningstider och antalet köplatser genom att tolka diagram. Övning 4 Vad du ska kunna efter denna övning Kunna dra slutsatser om t ex ett systems betjäningstider och antalet köplatser genom att tolka diagram Kunna beräkna medeltid i systemet och spärrsannolikhet

Läs mer

TENTAMEN I KOTEORI 20 dec 07 Ten2 i kursen HF1001 ( Tidigare kn 6H3012), KÖTEORI OCH MATEMATISK STATISTIK,

TENTAMEN I KOTEORI 20 dec 07 Ten2 i kursen HF1001 ( Tidigare kn 6H3012), KÖTEORI OCH MATEMATISK STATISTIK, TENTAMEN I KOTEORI dec 7 Ten i ursen HF Tidigare n 6H), KÖTEORI OH MATEMATISK STATISTIK, och TEN i 6H7, Dataommuniation och nätver, ) Srivtid: :-7: Lärare: Armin Halilovic Kursod HF Hjälmedel: Miniränare

Läs mer

Kunna dra slutsatser om ett systems betjäningstider och antalet köplatser genom att tolka diagram.

Kunna dra slutsatser om ett systems betjäningstider och antalet köplatser genom att tolka diagram. Övning 3 Vad du ska kunna efter denna övning Kunna dra slutsatser om ett systems betjäningstider och antalet köplatser genom att tolka diagram Kunna beräkna medeltid i systemet och spärrsannolikhet när

Läs mer

Kunna beräkna spärren i ett M/M/m*upptagetsystem. Känna till begreppet utnyttjning av en betjänare och beräkna den.

Kunna beräkna spärren i ett M/M/m*upptagetsystem. Känna till begreppet utnyttjning av en betjänare och beräkna den. Övning 4 Vad du ska kunna efter denna övning Kunna beräkna spärren i ett M/M/m*upptagetsystem. Kunna beräkna den medelantal upptagna betjänare i ett M/M/m*upptagetsystem. Känna till begreppet utnyttjning

Läs mer

Fö relä sning 2, Kö system 2015

Fö relä sning 2, Kö system 2015 Fö relä sning 2, Kö system 2015 Vi ska börja titta på enskilda kösystem som ser ut på följande sätt: Det kan finnas en eller fler betjänare och bufferten kan vara ändlig eller oändlig. Om bufferten är

Läs mer

Kunna beräkna spärren i ett M/M/m*upptagetsystem.

Kunna beräkna spärren i ett M/M/m*upptagetsystem. Övning 5 Vad du ska kunna efter denna övning Kunna beräkna spärren i ett M/M/m*upptagetsystem. Kunna beräkna den avverkade och erbjudna trafiken i ett M/M/m*upptagetsystem. Känna till enheten Erlang för

Läs mer

2 Laborationsuppgifter, upptagetsystem

2 Laborationsuppgifter, upptagetsystem Laboration 2 i Kösystem Denna laboration behandlar upptagetsystem och könät. När man kommer till en uppgift som är markerad med en stjärna (*) är det tänkt att man ska visa sina resultat för handledaren

Läs mer

a) Använd samtal.mat för att beräkna antalet samtal som blir spärrade i de olika cellerna under den givna timmen.

a) Använd samtal.mat för att beräkna antalet samtal som blir spärrade i de olika cellerna under den givna timmen. Inlämningsuppgift Svaren lämnas in i kursfacket märkt TNK090 på plan 5 i Täppan, senast 2016-10-28. Alla svar ska motiveras, tankegången i lösningen förklaras och notation definieras. Uppgifterna utförs

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 6 Markovprocesser 9 Maj 2016 Johan Westerborn Markovprocesser (1) Föreläsning 6 Föreläsningsplan 1 Förra Föreläsningen 2 Johan Westerborn

Läs mer

Performance QoS Köteori SNMP. Felsökning. Jens A Andersson (Maria Kihl) GET request GET response SET request TRAP MIB. Att mäta är att veta ping

Performance QoS Köteori SNMP. Felsökning. Jens A Andersson (Maria Kihl) GET request GET response SET request TRAP MIB. Att mäta är att veta ping Performance QoS Köteori Jens A Andersson (Maria Kihl) SNMP GET request GET response SET request TRAP MIB Management Information Base 2 Felsökning Att mäta är att veta ping icmp echo traceroute avlyssning

Läs mer

TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL

TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL Avd. Matematisk statistik TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL 8.00 13.00. Examinator: Björn-Olof Skytt tel. 790 86 49 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna

Läs mer

Performance QoS Köteori. Jens A Andersson (Maria Kihl)

Performance QoS Köteori. Jens A Andersson (Maria Kihl) Performance QoS Köteori Jens A Andersson (Maria Kihl) Internet Består av ett antal sammankopplade nät som utbyter data enligt egna trafikavtal. Alla delnät som utgör Internet har en gemensam nämnare: Alla

Läs mer

Fö relä sning 1, Kö system vä ren 2014

Fö relä sning 1, Kö system vä ren 2014 Fö relä sning 1, Kö system vä ren 2014 Här följer en mycket kort sammanfattning av det viktigaste i Föreläsning 1. Observera att dessa anteckningar inte kan ersätta läroboken, de är alltför kortfattade

Läs mer

Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod.

Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod. Övning 8 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät med återkopplingar.

Läs mer

Fö relä sning 1, Kö system 2015

Fö relä sning 1, Kö system 2015 Fö relä sning 1, Kö system 2015 Här följer en kort sammanfattning av det viktigaste i Föreläsning 1. Kolla kursens hemsida minst en gång per vecka. Övningar kommer att läggas ut där, skriv ut dem och ha

Läs mer

P(X nk 1 = j k 1,..., X n0 = j 0 ) = j 1, X n0 = j 0 ) P(X n0 = j 0 ) = etc... P(X n0 = j 0 ) ... P(X n 1

P(X nk 1 = j k 1,..., X n0 = j 0 ) = j 1, X n0 = j 0 ) P(X n0 = j 0 ) = etc... P(X n0 = j 0 ) ... P(X n 1 Kaitel 1 Mer Markovkedjor Med att secificera en Markovkedja menar vi att man bestämmer övergångsmatrisen P. Detta säger ju allt om dynamiken för rocessen. Om vi dessutom vet hur kedjan startar, dvs startfördelningen

Läs mer

Kursombud sökes! Kursens syfte är att ge en introduktion till metoder för att förutsäga realtidsegenskaper hos betjäningssystem, i synnerhet för data- och telekommunikationssystem. Såväl enkla betjäningssystem,

Läs mer

Tiden i ett tillstånd

Tiden i ett tillstånd Föreläsning 3 I denna föreläsning ska vi behandla markovska kösystem som har ett begränsat antal buffertplatser och även ett begränsat antal kunder. För att kunna göra detta behöver man några resultat

Läs mer

b) Vad är sannolikheten att personen somnar i lägenheten? (4 p) c) Hur många gånger förväntas personen byta rum? (4 p)

b) Vad är sannolikheten att personen somnar i lägenheten? (4 p) c) Hur många gånger förväntas personen byta rum? (4 p) Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER TISDAGEN DEN 9 JUNI 05 KL 4.00 9.00. Examinator: Boualem Djehiche tel. 790 78 75. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

Tentamen TEN1, HF1012, 30 maj Matematisk statistik Kurskod HF1012 Skrivtid: 14:00-18:00 Lärare och examinator : Armin Halilovic

Tentamen TEN1, HF1012, 30 maj Matematisk statistik Kurskod HF1012 Skrivtid: 14:00-18:00 Lärare och examinator : Armin Halilovic Tentmen TEN, HF, mj 8 Mtemtis sttisti Kursod HF Srivtid: 4:-8: Lärre och emintor : Armin Hlilovic Hjälmedel: Bifogt formelhäfte ("Formler och teller i sttisti " och miniränre v vilen ty som helst Förjudn

Läs mer

TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 18 AUGUSTI 2017 KL

TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 18 AUGUSTI 2017 KL Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER FREDAGEN DEN 8 AUGUSTI 207 KL 08.00 3.00. Examinator: Boualem Djehiche tel. 790 78 75 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna hjälpmedel:

Läs mer

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärd funktion definierad på ett utfallsrum Ω kallas en (endimensionell)

Läs mer

Modellering och kundprocessanalys av kösystem på Vapiano Sturegatan

Modellering och kundprocessanalys av kösystem på Vapiano Sturegatan EXAMENSARBETE INOM TEKNIK, GRUNDNIVÅ, 15 HP STOCKHOLM, SVERIGE 2016 Modellering och kundprocessanalys av kösystem på Vapiano Sturegatan YRR AHLKLO CARIN LIND KTH KUNGLIGA TEKNISKA HÖGSKOLAN SKOLAN FÖR

Läs mer

** a) Vilka värden ska vara istället för * och **? (1 p) b) Ange för de tre tillstånden vilket som svarar mot 0,1,2 i figuren.

** a) Vilka värden ska vara istället för * och **? (1 p) b) Ange för de tre tillstånden vilket som svarar mot 0,1,2 i figuren. Avd. Matematisk statistik TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 19 AUGUSTI 2016 KL 08.00 13.00. Examinator: Jimmy Olsson tel. 790 72 01. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

TENTAMEN I SF1904 MARKOVPROCESSER TISDAGEN DEN 29 MAJ 2018 KL

TENTAMEN I SF1904 MARKOVPROCESSER TISDAGEN DEN 29 MAJ 2018 KL Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER TISDAGEN DEN 29 MAJ 208 KL 4.00 9.00. Examinator: Björn-Olof Skytt tel. 790 86 49 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna hjälpmedel:

Läs mer

Simulering av ett Multi-skill callcenter Med varierande genomsnittlig betjäningstid beroende på agenters kunskapsnivå

Simulering av ett Multi-skill callcenter Med varierande genomsnittlig betjäningstid beroende på agenters kunskapsnivå Simulering av ett Multi-skill callcenter Med varierande genomsnittlig betjäningstid beroende på agenters kunskapsnivå Handledare: Johan Boye Filip Gaun Klippgatan 12c 171 47 Solna 076-650 76 33 lipgau@kth.se

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR Stokastiska rocesser Defiitio E stokastisk rocess är e mägd (familj) av stokastiska variabler X(t) arameter t är oftast (me ite alltid) e tidsvariabel rocesse kallas diskret om X(t) är e diskret s v för

Läs mer

Tentamen i Sannolikhetslära och statistik, TNK069, , kl 8 13.

Tentamen i Sannolikhetslära och statistik, TNK069, , kl 8 13. LINKÖPINGS UNIVERSITET ITN, Campus Norrköping Univ lekt George Baravdish Tentamen i Sannolikhetslära och statistik, TNK69, 26--7, kl 8 3. Hjälpmedel är räknare med tömda minnen samt formelsamling utgiven

Läs mer

Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret stokastisk variabel.

Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret stokastisk variabel. Övning 1 Vad du ska kunna efter denna övning Diskret och kontinuerlig stokastisk variabel. Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret

Läs mer

Stokastiska processer med diskret tid

Stokastiska processer med diskret tid Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna

Läs mer

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärld funktion definierad på ett utfallsrum Ω kallas en (endimensionell)

Läs mer

Optimering av ett patientflöde inom svensk veterinärvård

Optimering av ett patientflöde inom svensk veterinärvård DEGREE PROJECT, IN APPLIED MATHEMATICS AND INDUSTRIAL ECONOMICS, FIRST LEVEL STOCKHOLM, SVERIGE 2015 Optimering av ett patientflöde inom svensk veterinärvård HANS DE GEER KKTH ROYAL INSTITUTE OF TECHNOLOGY

Läs mer

Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel.

Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Övning 2 Vad du ska kunna efter denna övning Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Kunna beräkna

Läs mer

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska

Läs mer

INTRODUKTION TILL MARKOVKEDJOR av Göran Rundqvist, KTH

INTRODUKTION TILL MARKOVKEDJOR av Göran Rundqvist, KTH Läs detta först: INTRODUKTION TILL MARKOVKEDJOR av Göran Rundqvist, KTH Det här kompendiet är avsett som en introduktion till kompendiet av Enger och Grandell. Det är absolut inget fel på det officiella

Läs mer

Föreläsningsanteckningar köteori

Föreläsningsanteckningar köteori Föreläsningsanteckningar köteori Fredrik Olsson, fredrik.olsson@iml.lth.se Produktionsekonomi, Lunds universitet 3 augusti 206 Dessa föreläsningsanteckningar utgör en delmängd av vad som tagits upp på

Läs mer

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel.

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Övning 1(a) Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen

Läs mer

MALLAR PÅ NÅGRA FRÅGOR I TENTAMEN (OBS! EJ KVALITETSÄKRADE)

MALLAR PÅ NÅGRA FRÅGOR I TENTAMEN (OBS! EJ KVALITETSÄKRADE) MALLAR PÅ NÅGRA FRÅGOR I TENTAMEN 160318 (OBS! EJ KVALITETSÄKRADE) FRÅGA 1 (2p) Ett sätt att bedöma en prognos lämplighet är att beräkna hur väl en presterar relativt en naiv prognos, d.v.s. om man gör

Läs mer

. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet.

. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet. Stokastiska rocesser Defiitio E stokastisk rocess är e mägd familj av stokastiska variabler Xt arameter t är oftast me ite alltid e tidsvariabel rocesse kallas diskret om Xt är e diskret s v för varje

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

Kontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan)

Kontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan) Statistiska institutionen VT 2012 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

KONTROLLSKRIVNING 3. Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic

KONTROLLSKRIVNING 3. Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic KONTROLLSKRIVNING Version B Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad (som delas u i salen) Förbjudna

Läs mer

Övning 1. Vad du ska kunna efter denna övning. Problem, nivå A

Övning 1. Vad du ska kunna efter denna övning. Problem, nivå A Övning 1 Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen

Läs mer

STABILITET FÖR ICKE-LINJÄRA SYSTEM

STABILITET FÖR ICKE-LINJÄRA SYSTEM Armin Halilovic: ETRA ÖVNINGAR SF1676 Stabilitet för icke linära sstem Sida 1 av 8 STABILITET FÖR ICE-LINJÄRA SYSTEM Linarisering och lokal stabilitet Låt d d ss 1 vara ett autonomt icke-linärt sstem där

Läs mer

TAMS79: Föreläsning 6. Normalfördelning

TAMS79: Föreläsning 6. Normalfördelning TAMS79: Föreläsning 6 Normalfördelningen Johan Thim (johan.thim@liu.se 3 november 018 Normalfördelning Definition. Låt µ R och > 0. Om X är en stokastisk variabel med täthetsfunktion f X ( = 1 ( ep ( µ,

Läs mer

Tentamen i Matematik 1 HF1901 (6H2901) 22 aug 2011 Tid: :15 Lärare:Armin Halilovic

Tentamen i Matematik 1 HF1901 (6H2901) 22 aug 2011 Tid: :15 Lärare:Armin Halilovic Tentamen i Matematik HF90 (6H90) aug 0 Tid: 8. : Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras på alla uppgifter.

Läs mer

1 Förberedelser. 2 Teoretisk härledning av värmeförlust LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01

1 Förberedelser. 2 Teoretisk härledning av värmeförlust LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01 LUNDS UNIVERSITET MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01 1 Förberedelser I denna laboration modelleras värmeförlusten i ett kraftverk

Läs mer

Tentamen i FMS180/MASC03 Markovprocesser

Tentamen i FMS180/MASC03 Markovprocesser Matematisk statistik Matematikcentrum Lunds Universitet Tentamen i FMS80/MASC03 Markovprocesser 009-05-5 Lösningsförslag. Följande är en möjlighet. 6 5 3 4 Här är tillstånden, och 3 transienta, tillstånd

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER

Läs mer

Lösningar till Matematisk analys

Lösningar till Matematisk analys Lösningar till Matematisk analys 685. Sätt fx x. Rotationskroppens volym är π fx dx π ] x 6 dx π 7 x7 π 7. Rotationskroppens area är summan av arean av kroppens mantelyta och arean av kroppens cirkulära

Läs mer

Första sidan är ett försättsblad (laddas ned från kurshemsidan) Alla frågor som nns i uppgiftstexten är besvarade

Första sidan är ett försättsblad (laddas ned från kurshemsidan) Alla frågor som nns i uppgiftstexten är besvarade HT 2011 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas in senast 29/9 kl 16.30.

Läs mer

Oberoende stokastiska variabler

Oberoende stokastiska variabler Kapitel 6 Oberoende stokastiska variabler Betrakta ett försök med ett ändligt (eller högst numrerbart) utfallsrum Ω samt två stokastiska variabler ξ och η med värdemängderna Ω ξ och Ω η. Vi bildar funktionen

Läs mer

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med RÄTA LINJER OCH PLAN Räta linjer i 3D-rummet: Låt L vara den räta linjen genom punkten P = ( x, y, som är parallell med vektorn v = v, v, v ) 0. ( 3 P Räta linjens ekvation på parameterform kan man ange

Läs mer

Optimering av ett kösystem på IKEA Kungens Kurva

Optimering av ett kösystem på IKEA Kungens Kurva DEGREE PROJECT, IN APPLIED MATHEMATICS AND INDUSTRIAL ECONOMICS, FIRST LEVEL STOCKHOLM, SWEDEN 2015 Optimering av ett kösystem på IKEA Kungens Kurva PERSHENG BABAHEIDARI, MICHAELA JERNBECK KTH ROYAL INSTITUTE

Läs mer

Händelsestyrd simulering. Inledning. Exempel

Händelsestyrd simulering. Inledning. Exempel Lunds Tekniska Högskola Datavetenskap Lennart Andersson EDA061/F10 Uppgift 2010-09-13 Händelsestyrd simulering Inledning Du skall konstruera ett program som simulerar vad som händer när kunder kommer till

Läs mer

TAMS79 / TAMS65 - vt TAMS79 / TAMS65 - vt Formel- och tabellsamling i matematisk statistik. TAMS79 / TAMS65 - vt 2013.

TAMS79 / TAMS65 - vt TAMS79 / TAMS65 - vt Formel- och tabellsamling i matematisk statistik. TAMS79 / TAMS65 - vt 2013. Formel- och tabellsamling i matematisk statistik c Martin Singull 2 Innehåll 3.3 Tukey s metod för parvisa jämförelser.................... 14 1 Sannolikhetslära 5 1.1 Några diskreta fördelningar.........................

Läs mer

Uppgift 1. Bestäm definitionsmängder för följande funktioner 2. lim

Uppgift 1. Bestäm definitionsmängder för följande funktioner 2. lim Tentamen (TEN) i MATEMATIK, HF 7 dec 7 Tid :-7: KLASS: BP 7 Lärare: Armin Halilovic Hjälpmedel: Miniräknare av vilken typ som helst, en formelsamling och ett bifogat formelblad. Denna lapp lämnar du in

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 5 Markovprocesser 24 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 5 Föreläsningsplan 1 Förra Föreläsningen 2 Poissonprocessen

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 5 Markovprocesser 2 Maj 2016 Johan Westerborn Markovprocesser (1) Föreläsning 5 Föreläsningsplan 1 Förra Föreläsningen 2 Poissonprocessen

Läs mer

FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 5, a 2 e x2 /a 2, x > 0 där a antas vara 0.6.

FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 5, a 2 e x2 /a 2, x > 0 där a antas vara 0.6. Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 5, 28-4-6 EXEMPEL (max och min): Ett instrument består av tre komponenter.

Läs mer

1 Stokastiska processer. 2 Poissonprocessen

1 Stokastiska processer. 2 Poissonprocessen 1 Stokastiska processer En stokastisk process är en stokastisk variabel X(t), som beror på en parameter t, kallad tiden. Tiden kan vara kontinuerlig, eller diskret (i vilket fall man brukar beteckna processen

Läs mer

0 annan metod måste tillämpas **************************************************************** vara en stationär punkt dvs f x

0 annan metod måste tillämpas **************************************************************** vara en stationär punkt dvs f x EXTREMVÄRDEN FÖR FUNKTIONER AV TVÅ VARIABLER. Lokala etremvärden för funktioner av två variabler Låt zz = ff(, y vara en funktion från ett område D i RR till R. Låt (aa, b vara en inre punkt av D. Vi säger

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF006 och HF008 Datum TEN 8 jan 08 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Erik Melander, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan

Läs mer

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler Jörgen Säve-Söderbergh Stokastisk variabel Singla en slant två gånger. Ω = {Kr Kr, Kr Kl, Kl Kr, Kl Kl}

Läs mer

SF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att

SF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att SF11 Perspektiv på matematik Tentamen 4 oktober 013 kl 14.00 19.00 Svar och lösningsförslag (1) Låt z = (cos π + i sin π ) och låt w = 1(cos π 3 + i sin π 3 ). Beräkna och markera talet z11 w 3 z 11 w

Läs mer

STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER

STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Armin Halilovic: EXTRA ÖVNINGAR, SF676 STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Innehåll Stabilitet för en kritisk punkt (grundbegrepp) Stabilitet för ett linjärt homogent system

Läs mer

Lycka till!

Lycka till! Avd. Matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR K OCH B MÅNDAGEN DEN 25 AUGUSTI 2003 KL 14.00 19.00. Examinator: Gunnar Englund, 790 7416. Tillåtna hjälpmedel: Formel- och

Läs mer

Reglerteori. Föreläsning 3. Torkel Glad

Reglerteori. Föreläsning 3. Torkel Glad Reglerteori. Föreläsning 3 Torkel Glad Föreläsning 1 Torkel Glad Januari 2018 2 Sammanfattning av föreläsning 2 Det mesta av teorin för envariabla linjära system generaliseras lätt till ervariabla (era

Läs mer

TENTAMEN I MATEMATISK STATISTIK 19 nov 07

TENTAMEN I MATEMATISK STATISTIK 19 nov 07 TENTAMEN I MATEMATISK STATISTIK 9 nov 7 Ten i kursen HF ( Tidigare kn 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Ten i kursen 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Skrivtid: 3:5-7:5 Lärare: Armin Halilovic

Läs mer

En bijektion mellan två mängder A och B som har ändligt antal element kan finnas endast om mängderna har samma antal element.

En bijektion mellan två mängder A och B som har ändligt antal element kan finnas endast om mängderna har samma antal element. Inversa unktion BIJEKTION, INJEKTION, SURJEKTION Allmän terminologi I samband med variabelbyte vid beräkning av integraler har vi en avbildning mellan två mängder A och B, dvs en unktion : A B Vi har otast

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Stefan Engblom, tel. 471 27 54, Per Lötstedt, tel. 471 29 72 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Skrivtid:

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 3 Markovprocesser 16 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 3 Föreläsningsplan 1 Förra Föreläsningen 2 Markovprocesser

Läs mer

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic KONTROLLSKRIVNING Version A Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad som delas u i salen) Förbjudna

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 3 Markovprocesser 13 April 2016 Johan Westerborn Markovprocesser (1) Föreläsning 3 Föreläsningsplan 1 Förra Föreläsningen 2 Markovprocesser

Läs mer

Föreläsning 8 för TNIU23 Integraler och statistik

Föreläsning 8 för TNIU23 Integraler och statistik Föreläsning 8 för TNIU Integraler och statistik Krzysztof Marciniak ITN, Campus Norrköping, krzma@itn.liu.se www.itn.liu.se/ krzma ver. - 9--6 Inledning - lite om statistik Statistik är en gren av tillämpad

Läs mer

Sådana avbildningar kallar vi bijektioner mellan A och B (eller från A till B).

Sådana avbildningar kallar vi bijektioner mellan A och B (eller från A till B). BIJEKTION, INJEKTION, SURJEKTION Allmän terminologi. I samband med variabelbyte vid beräkning av integraler har vi en avbildning mellan två mängder A och B, dvs en funktion f : A B. Vi har oftast krav

Läs mer

Stockholms Universitet Statistiska institutionen Termeh Shafie

Stockholms Universitet Statistiska institutionen Termeh Shafie Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2012-03-16 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade

Läs mer

Stokastiska processer med diskret tid

Stokastiska processer med diskret tid Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna

Läs mer

Betygsgränser: För (betyg Fx).

Betygsgränser: För (betyg Fx). Tetame TEN, HF2, 4 jui 2 Matematis statisti Kursod HF2 Srivtid: 3:-7: : Lärare och examiator : Armi Halilovic Hjälmedel: Bifogat formelhäfte ("Formler och tabeller i statisti ") och miiräare av vile ty

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Väntevärde, varians, standardavvikelse, kvantiler Uwe Menzel, 28 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Väntevärdet X : diskret eller kontinuerlig slumpvariable

Läs mer

TMS136. Föreläsning 4

TMS136. Föreläsning 4 TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,

Läs mer

Föreläsning 6, Repetition Sannolikhetslära

Föreläsning 6, Repetition Sannolikhetslära Föreläsning 6, Repetition Sannolikhetslära kap 4 Sannolikhetslära och slumpvariabler kap 5 Stickprov, medelvärden, CGS, binomialfördelning Viktiga grundbegrepp utfall, händelse, sannolikheter, betingad

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det finns inget så praktiskt som en bra teori" November 2011 Repetition Vad vi gjort hitills Vi har börjat med att studera olika typer av mätningar och sedan successivt tagit fram olika beskrivande mått

Läs mer