Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar.

Storlek: px
Starta visningen från sidan:

Download "Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar."

Transkript

1 Övning 8 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät utan återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod. Problem, nivå A. En enkel televäxel kan modelleras som könätet i figuren nedan. Systemet består av stycken M/M/-system med oändlig kö. Nod i har betjäningsintensiteten i. När ett jobb har blivit betjänat i nod, fortsätter det till nod med sannolikheten α. Med sannolikheten α fortsätter jobbet till nod. Jobb som kommer till könätet kommer alltid till nod i enlighet med en Poissonprocess med intensitet =0. Låt dessutom α =0.7, =5, =0samt =5. (a) Vilken belastning har noderna? (b) Bestäm medelantal jobb i könätet. (c) Bestäm den totala medelväntetiden i köer för ett godtyckligt jobb.. Antag att vi har modellerat ett system med hjälp av könätet nedan. Könätet består av fem noder varav fyra stycken har oändligt köutrymme (,, och 5). Nod 4 är ett upptagetsystem med tre betjänare. Alla betjäningstider är exponentialfördelade med medelvärde / i för delsystem i. Kunder ankommer enligt två Poissonprocesser med intensiteterna och. Låt =4s, =s, = =5s, =8s, 4 =s, 5 =6s och α =/. (a) Bestäm medelantal kunder i var och en av de fem noderna. (b) Bestäm medelantal kunder som spärras per sekund i nod 4. (c) Bestäm medeltiden i systemet för de kunder som inte spärras. (d) Hur lång är medelväntetiden i köerna för en godtycklig kund? α 4 α 5

2 . Ett system modelleras som ett könät med tre noder. Nod och är M/M/- system, och nod är ett upptagetsystem med betjänare. Betjäningstiderna i de tre systemen är exponentialfördelade med medelvärdena x, x respektive x. Alla kunder som kommer till systemet går först till nod (ankomstintensitet ). När en kund är färdigbetjänad i nod fortsätter den med sannolikheten β till nod och med sannolikheten β till nod. Efter betjäning i nod eller lämnar kunden könätet. Låt = 4 per minut, x = 0 sekunder, x = 0 sekunder och x =0sekunder samt β =0.. (a) Rita könätet (b) Vad blir ankomstintensiteten till nod respektive nod? (c) Bestäm medelantal kunder i nod respektive nod. (d) Bestäm hur många kunder som per minut avvisas från nod. (e) Bestäm medeltid i systemet för en kund som får full betjäning. (f) Bestäm den tid som en kund som får fullständig betjäning tillbringar i systemets köer. 4. Ett könät består av två noder. Nod är ett M/M/-system och nod är ett upptagetsystem med betjänare. Betjäningstiderna är exponentialfördelade med medelvärdena x respektive x. Alla kunder som kommer till könätet anländer till nod med intensiteten. När de är färdigbetjänade där så fortsätter de med sannolikheten α till nod och med sannolikheten α lämnar de könätet. En kund som är färdigbetjänad i nod eller avvisas där lämnar könätet. Antag att =per minut, x =0sekunder, x =60sekunder och α =0.. (a) Bestäm ankomstintensiteten till nod. (b) Bestäm P (k jobb i nod och k jobb i nod ). (c) Bestäm medelantal jobb i nod. (d) Bestäm sannolikheten att ett jobb som kommer till nod avvisas. (e) Bestäm medelantal jobb i nod. (f) Bestäm den avverkade trafiken i nod. (g) Bestäm hur många jobb per minut som i medeltal blir färdigbetjänade i nod. Problem, mer avancerad nivå (B och C) 5. Kunder kommer enligt en Poissonprocess till ett upptagetsystem med en betjänare. De kunder som får betjäning fortsätter till ett kösystem med en köplats och en betjänare. Antag att betjäningstiderna i bägge noderna är exponentialfördelade med medelvärde sekund. Medeltiden mellan ankomsterna är sekund. (a) Beräkna medelantalet kunder i nod och nod. (b) Beräkna medeltiden som en kund som betjänas i nod tillbringar i nod. (c) Är antalet kunder som finns i nod och nod oberoende av varandra?

3 Lösningar. (a) Belastningen på ett kösystem är detsamma som den avverkade trafiken. Här har vi bara M/M/-system, så vi kan helt enkelt beräkna ρ = / för noderna i könätet. Först beräknar vi i = ankomstintensiteten till nod i.vi får Nu får vi = =0 = α =7 =( α) = ρ = = 0 5 = ρ = = 7 0 ρ = = 5 (b) Vi börjar med att beräkna medelantal jobb i könätet för var och en av noderna och sedan summerar vi. Antag att N i är medelantal kunder i nod i. Vi kan använda den vanliga formeln för medelantal kunder i ett M/M/- system, vilket ger N = ρ = / ρ / = N = ρ = 7/0 ρ 7/0 = 7 N = ρ = /5 ρ /5 = Det totala antalet kunder i könätet blir nu N = N + N + N = = 5 6 (c) Vi betraktar alla könätets köer som ett enda system och använder Littles sats. För att göra detta måste vi först beräkna medelantal kunder som köar i hela könätet (N q ). För nod i gäller N qi = N i N si = N i ρ i där N qi är medelantal kunder som väntar i kön i nod i och N si är medelantal kunder som betjänas, dvs den avverkade trafiken i nod i. Det ger N q = N ρ ρ ρ = = 58 5 Medeltiden som en godtycklig kund väntar i köerna blir då N q 0.9 s

4 . (a) Vi får ρ = = 4 5 N = ρ ρ =4 ρ = = 5 N = ρ ρ = ρ = = + = 4 N = ρ ρ = ρ 4 = 4 4 = α 4 = N 4 = ρ 4 ( E (ρ 4 )).58 ρ 5 = 5 5 = ( α) 5 = N 5 = ρ 5 ρ 5 = (b) 4 E (ρ 4 ) 0.84 (c) Vi låter T i vara medeltiden i nod i.vihar T = N = T = N 0. T = N =0.5 T 4 = 4 =0.5 T 5 = N 5 =0.5 5 En kund som inte spärras kan ta följande vägar genom systemet Väg A : 4 VägB: 5 VägC: 4 VägD: 5 Antag nu att Y = tiden som en kund som inte spärras befinner sig i könätet. Då gäller E(Y tar väg A) =T + T + T 4 = E(Y tar väg B) =T + T + T 5 =.75 E(Y tar väg C) =T + T + T 4 =. E(Y tar väg D) =T + T + T 5 =.08 Låt nu Λ i vara medelantal kunder som tar väg i. Då får vi Λ A = α( E (ρ 4 )).05 4

5 Vi får då Λ B = ( α). Λ C = α( E (ρ 4 )).05 Λ D = ( α) P (tar väg i) = Λ i Λ A +Λ B +Λ C +Λ D Sedan kan vi ta bort betinget och få E(Y )= E(Y tar väg i)p (tar väg i).7 i {A,B,C,D} (d) Låt W vara den totala medelkötiden för en godtycklig kund. Littles sats medför att W = N qtot + Där N qtot är det totala medelantalet köande kunder i könätet. Om N qi är medelantalet köande i nod i så får vi N q = N ρ =. N q = N ρ 0.67 N q = N ρ =.5 N q4 =0 N q5 = N 5 ρ vilket medför att N qtot 5.88 och slutligen W 0.98 s. (a) Könätet ser ut så här β β (b) Om i är ankomstintensiteten till nod i så får vi = β =0.8 min =( β) =. min 5

6 (c) Vi kan räkna på nod och som om de vore M/M/-system vilket ger ρ = x = N = ρ = ρ ρ = x = =0.4 N = ρ ρ = (d) Medelantal avvisade per minut blir E (ρ )=. E ( ) 0.69 (e) Det finns två vägar genom systemet, väg A som går från till och väg B som går från till. Tiden som en kund tillbringar i de olika noderna är T = N =0.5 T = N 0.8 T = x = Medelantal kunder som betjänas under en minut är för nod och = ( E (ρ )) för nod. Således blir medeltiden i systemet för en godtycklig kund som betjänas färdigt (T + T ) + +(T + T ) (f) Medeltiden som en kund tillbringar med att vänta i nod i är W q = N ρ = W q = N ρ = W q =0 På samma sätt som vi får i f-uppgiften får vi att medeltiden som en godtycklig kund som betjänas tillbringar med att vänta i köerna är W q = (W q + W q ) + +(W q + W q ) = W q + W q min + 4. (a) = ( α) =.4min (b) Eftersom vi har en Poissonprocess ut från nod så kommer antalet kunder i systemen att vara oberoende av varandra. Det ger P (k,k )=ρ k ρ k /k! ( ρ ) +ρ + ρ /+ρ /! 6

7 (c) N = ρ = ρ (d) E (ρ )=E (.4) 0.7 (e) ρ ( E (ρ )).76 (f) Se e-uppgiften. Avverkad trafik är ju detsamma som medelantal upptagna betjänare. (g) ( E (ρ )).76 min 5. (a) Vi börjar med att rita upp en Markovkedja som beskriver systemet. Vi låter tillstånd ij betyda att det finns i kunder i upptagetsystemet och j kunder i väntsystemet. Då får vi Markovkedjan nedan. Använder vi flöde-in flöde ut-metoden på denna Markovkedja och utnyttjar att = =så får vi ekvationssystemet p 00 = p 0 p 0 = p 00 + p p 0 = p 0 + p 0 p = p + p 0 p 0 = p + p p = p 0 Om vi också använder oss av att summan av alla sannolikheter måste vara så ger ekvationssystemet p 00 = 5 4 p 0 = 5 4 p 0 = 8 4 p = 4 p 0 = 4 p = 4 Definitionen av medelvärde ger sedan N = (p 0 + p + p )=0.5 N = (p 0 + p )+ (p 0 + p )=.75 7

8 (b) Först måste vi beräkna. För att göra detta använder vi ett trick. Vi kan beräkna medelantalet kunder i nod :s betjänare dels med Littles sats, dels med definitionen. Om vi gör det får vi = (p 0 + p 0 + p + p ) = 4 Nu kan vi använda Littles sats, vilken ger att medeltiden i nod blir N = 4 (c) Nej, vi har inte oberoende. Om vi till exempel sätter p i (k) =sannolikheten att antalet kunder i nod i är k så är p 00 p (0)p (0) vilket innebär att vi ej har oberoende. 8

Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod.

Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod. Övning 7 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät utan återkopplingar.

Läs mer

Kunna beräkna P (spärr) för system med begränsat antal kunder och köplatser. Kunna beräkna medelantal upptagna betjänare.

Kunna beräkna P (spärr) för system med begränsat antal kunder och köplatser. Kunna beräkna medelantal upptagna betjänare. Övning 5 Vad du ska kunna efter denna övning Kunna beräkna P (spärr) för system med begränsat antal kunder och köplatser. Kunna beräkna λ eff. Kunna beräkna medelantal upptagna betjänare. Problem. Antag

Läs mer

Kunna beräkna spärren i ett M/M/m*upptagetsystem.

Kunna beräkna spärren i ett M/M/m*upptagetsystem. Övning 5 Vad du ska kunna efter denna övning Kunna beräkna spärren i ett M/M/m*upptagetsystem. Kunna beräkna den avverkade och erbjudna trafiken i ett M/M/m*upptagetsystem. Känna till enheten Erlang för

Läs mer

Kunna beräkna spärren i ett M/M/m*upptagetsystem. Känna till begreppet utnyttjning av en betjänare och beräkna den.

Kunna beräkna spärren i ett M/M/m*upptagetsystem. Känna till begreppet utnyttjning av en betjänare och beräkna den. Övning 4 Vad du ska kunna efter denna övning Kunna beräkna spärren i ett M/M/m*upptagetsystem. Kunna beräkna den medelantal upptagna betjänare i ett M/M/m*upptagetsystem. Känna till begreppet utnyttjning

Läs mer

Kunna dra slutsatser om t ex ett systems betjäningstider och antalet köplatser genom att tolka diagram.

Kunna dra slutsatser om t ex ett systems betjäningstider och antalet köplatser genom att tolka diagram. Övning 4 Vad du ska kunna efter denna övning Kunna dra slutsatser om t ex ett systems betjäningstider och antalet köplatser genom att tolka diagram Kunna beräkna medeltid i systemet och spärrsannolikhet

Läs mer

Kunna använda Littles sats för enkla räkningar på kösystem.

Kunna använda Littles sats för enkla räkningar på kösystem. Övning 3 Vad du ska kunna efter denna övning Kunna använda Littles sats för enkla räkningar på kösystem. Känna till begreppen ankomstintensitet, avgångsintensitet, medelavstånd mellan ankomster och medelbetjäningstid

Läs mer

Kunna använda Littles sats för enkla räkningar på kösystem.

Kunna använda Littles sats för enkla räkningar på kösystem. Övning 2 Vad du ska kunna efter denna övning Kunna använda Littles sats för enkla räkningar på kösystem. Känna till begreppen ankomstintensitet, avgångsintensitet, medelavstånd mellan ankomster och medelbetjäningstid

Läs mer

TILLSTÅNDSGRAFEN. Slutligen erhålls den mycket viktiga så kallade Snittmetoden :

TILLSTÅNDSGRAFEN. Slutligen erhålls den mycket viktiga så kallade Snittmetoden : Föreläsning 3. TILLSTÅNDSGRAFEN Slutligen erhålls den mycket viktiga så kallade Snittmetoden :... Snittmetoden kommer vi flitigt att använda för att bestämma tillståndssannolikheterna! Exempel på beräkning

Läs mer

Kunna dra slutsatser om ett systems betjäningstider och antalet köplatser genom att tolka diagram.

Kunna dra slutsatser om ett systems betjäningstider och antalet köplatser genom att tolka diagram. Övning 3 Vad du ska kunna efter denna övning Kunna dra slutsatser om ett systems betjäningstider och antalet köplatser genom att tolka diagram Kunna beräkna medeltid i systemet och spärrsannolikhet när

Läs mer

Fö relä sning 2, Kö system 2015

Fö relä sning 2, Kö system 2015 Fö relä sning 2, Kö system 2015 Vi ska börja titta på enskilda kösystem som ser ut på följande sätt: Det kan finnas en eller fler betjänare och bufferten kan vara ändlig eller oändlig. Om bufferten är

Läs mer

Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod.

Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod. Övning 8 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät med återkopplingar.

Läs mer

2 Laborationsuppgifter, upptagetsystem

2 Laborationsuppgifter, upptagetsystem Laboration 2 i Kösystem Denna laboration behandlar upptagetsystem och könät. När man kommer till en uppgift som är markerad med en stjärna (*) är det tänkt att man ska visa sina resultat för handledaren

Läs mer

Tiden i ett tillstånd

Tiden i ett tillstånd Föreläsning 3 I denna föreläsning ska vi behandla markovska kösystem som har ett begränsat antal buffertplatser och även ett begränsat antal kunder. För att kunna göra detta behöver man några resultat

Läs mer

M/M/m/K kösystem. M/M/m/K kösystem

M/M/m/K kösystem. M/M/m/K kösystem Allmänt om KÖSYSTEM (=betjäningssystem). För att definiera ett kösystem måste vi ange ankomstrocessen ( dvs hur kunder ankommer till systemet) och betjäningsrocess (dvs hur lång tid det tar att betjäna

Läs mer

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic KONTROLLSKRIVNING Kurs: HF Matematisk statistik Lärare: Armin Halilovic Datum: 8 maj 9 Skrivtid: 8:-: Tillåtna hjälmedel: Miniräknare av vilken ty som helst och bifogade formelblad (sida ). Förbjudna hjälmedel:

Läs mer

TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL

TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL Avd. Matematisk statistik TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL 8.00 13.00. Examinator: Björn-Olof Skytt tel. 790 86 49 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna

Läs mer

b) Vad är sannolikheten att personen somnar i lägenheten? (4 p) c) Hur många gånger förväntas personen byta rum? (4 p)

b) Vad är sannolikheten att personen somnar i lägenheten? (4 p) c) Hur många gånger förväntas personen byta rum? (4 p) Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER TISDAGEN DEN 9 JUNI 05 KL 4.00 9.00. Examinator: Boualem Djehiche tel. 790 78 75. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 6 Markovprocesser 9 Maj 2016 Johan Westerborn Markovprocesser (1) Föreläsning 6 Föreläsningsplan 1 Förra Föreläsningen 2 Johan Westerborn

Läs mer

Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel.

Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Övning 2 Vad du ska kunna efter denna övning Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Kunna beräkna

Läs mer

Fö relä sning 1, Kö system vä ren 2014

Fö relä sning 1, Kö system vä ren 2014 Fö relä sning 1, Kö system vä ren 2014 Här följer en mycket kort sammanfattning av det viktigaste i Föreläsning 1. Observera att dessa anteckningar inte kan ersätta läroboken, de är alltför kortfattade

Läs mer

Ett M/M/1 betjäningssystem har följande egenskaper: 1. Systemet har en betjänare. Betjäningstiderna är exponentialfördelade med medelvärde 1 μ

Ett M/M/1 betjäningssystem har följande egenskaper: 1. Systemet har en betjänare. Betjäningstiderna är exponentialfördelade med medelvärde 1 μ M/M/ ösystem M/M/ ösystem Ett M/M/ betjäningssystem har följande egensaper:. Systemet har en betjänare. Betjäningstiderna är exponentialfördelade med medelvärde x =.. Kunder anommer enligt Poissonprocess

Läs mer

TENTAMEN I SF1904 MARKOVPROCESSER TISDAGEN DEN 29 MAJ 2018 KL

TENTAMEN I SF1904 MARKOVPROCESSER TISDAGEN DEN 29 MAJ 2018 KL Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER TISDAGEN DEN 29 MAJ 208 KL 4.00 9.00. Examinator: Björn-Olof Skytt tel. 790 86 49 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna hjälpmedel:

Läs mer

a) Använd samtal.mat för att beräkna antalet samtal som blir spärrade i de olika cellerna under den givna timmen.

a) Använd samtal.mat för att beräkna antalet samtal som blir spärrade i de olika cellerna under den givna timmen. Inlämningsuppgift Svaren lämnas in i kursfacket märkt TNK090 på plan 5 i Täppan, senast 2016-10-28. Alla svar ska motiveras, tankegången i lösningen förklaras och notation definieras. Uppgifterna utförs

Läs mer

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel.

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Övning 1(a) Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 5 Markovprocesser 24 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 5 Föreläsningsplan 1 Förra Föreläsningen 2 Poissonprocessen

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 5 Markovprocesser 2 Maj 2016 Johan Westerborn Markovprocesser (1) Föreläsning 5 Föreläsningsplan 1 Förra Föreläsningen 2 Poissonprocessen

Läs mer

Ur en kortlek på 52 kort väljer man ( utan återläggning och utan hänsyn till ordning) slumpvis 5 kort. Vad är sannolikheten för att få

Ur en kortlek på 52 kort väljer man ( utan återläggning och utan hänsyn till ordning) slumpvis 5 kort. Vad är sannolikheten för att få Tentamen TEN, HF, aug 9 Matematisk statistik Kurskod HF Skrivtid: 8:-: Lärare och examinator : Armin Halilovic Hjälmedel: Bifogat formelhäfte ("Formler och tabeller i statistik ") och miniräknare av vilken

Läs mer

TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 18 AUGUSTI 2017 KL

TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 18 AUGUSTI 2017 KL Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER FREDAGEN DEN 8 AUGUSTI 207 KL 08.00 3.00. Examinator: Boualem Djehiche tel. 790 78 75 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna hjälpmedel:

Läs mer

Fö relä sning 1, Kö system 2015

Fö relä sning 1, Kö system 2015 Fö relä sning 1, Kö system 2015 Här följer en kort sammanfattning av det viktigaste i Föreläsning 1. Kolla kursens hemsida minst en gång per vecka. Övningar kommer att läggas ut där, skriv ut dem och ha

Läs mer

Performance QoS Köteori SNMP. Felsökning. Jens A Andersson (Maria Kihl) GET request GET response SET request TRAP MIB. Att mäta är att veta ping

Performance QoS Köteori SNMP. Felsökning. Jens A Andersson (Maria Kihl) GET request GET response SET request TRAP MIB. Att mäta är att veta ping Performance QoS Köteori Jens A Andersson (Maria Kihl) SNMP GET request GET response SET request TRAP MIB Management Information Base 2 Felsökning Att mäta är att veta ping icmp echo traceroute avlyssning

Läs mer

Performance QoS Köteori. Jens A Andersson (Maria Kihl)

Performance QoS Köteori. Jens A Andersson (Maria Kihl) Performance QoS Köteori Jens A Andersson (Maria Kihl) Internet Består av ett antal sammankopplade nät som utbyter data enligt egna trafikavtal. Alla delnät som utgör Internet har en gemensam nämnare: Alla

Läs mer

aug 2017 Kurskod HF1012 Halilovic internet. Betygsgränser: För (betyg Fx). Sida 1 av 13

aug 2017 Kurskod HF1012 Halilovic internet. Betygsgränser: För (betyg Fx). Sida 1 av 13 Tentamen TEN, HF, aug 7 Matematisk statistik Kurskod HF Skrivtid: :-: Lärare och examinator : Armin Halilovic Hjälpmedel: Bifogat formelhäfte ("Formler och tabeller i statistik ") och miniräknare av vilken

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 15 / TEN 1

LINKÖPINGS UNIVERSITET EXAM TAMS 15 / TEN 1 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 5 / TEN januari 08, klockan 4.00-8.00 Examinator: Jörg-Uwe Löbus (Tel: 0709-6087) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

TAMS79: Föreläsning 10 Markovkedjor

TAMS79: Föreläsning 10 Markovkedjor TAMS79: Föreläsning 0 Markovkedjor Johan Thim december 08 0. Markovkedjor Vi ska nu betrakta en speciell tidsdiskret diskret stokastisk process, nämligen Markovkedjan. Vi börjar med en definition Definition.

Läs mer

Tentamen i matematisk statistik, TAMS15/TEN (4h)

Tentamen i matematisk statistik, TAMS15/TEN (4h) LINKÖPINGS UNIVERSITET Kurskod: TAMS1 Matematiska institutionen Provkod: TEN1 Johan Thim Datum: 2018-12-42 Institution: MAI Tentamen i matematisk statistik, TAMS1/TEN1 2018-12-42 (4h Hjälpmedel är: miniräknare

Läs mer

Stokastiska processer och simulering I 24 maj

Stokastiska processer och simulering I 24 maj STOCKHOLMS UNIVERSITET LÖSNINGAR MATEMATISKA INSTITUTIONEN Stokastiska processer och simulering I Avd. Matematisk statistik 24 maj 2016 Lösningar Stokastiska processer och simulering I 24 maj 2016 9 14

Läs mer

Kursombud sökes! Kursens syfte är att ge en introduktion till metoder för att förutsäga realtidsegenskaper hos betjäningssystem, i synnerhet för data- och telekommunikationssystem. Såväl enkla betjäningssystem,

Läs mer

Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret stokastisk variabel.

Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret stokastisk variabel. Övning 1 Vad du ska kunna efter denna övning Diskret och kontinuerlig stokastisk variabel. Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret

Läs mer

Övning 1. Vad du ska kunna efter denna övning. Problem, nivå A

Övning 1. Vad du ska kunna efter denna övning. Problem, nivå A Övning 1 Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen

Läs mer

Tentamen i FMS180/MASC03 Markovprocesser

Tentamen i FMS180/MASC03 Markovprocesser Matematisk statistik Matematikcentrum Lunds Universitet Tentamen i FMS80/MASC03 Markovprocesser 009-05-5 Lösningsförslag. Följande är en möjlighet. 6 5 3 4 Här är tillstånden, och 3 transienta, tillstånd

Läs mer

Tentamen TEN1, HF1012, 29 maj Matematisk statistik Kurskod HF1012 Skrivtid: 14:00-18:00 Lärare och examinator : Armin Halilovic

Tentamen TEN1, HF1012, 29 maj Matematisk statistik Kurskod HF1012 Skrivtid: 14:00-18:00 Lärare och examinator : Armin Halilovic Tentamen TEN, HF, 9 maj 9 Matematisk statistik Kurskod HF Skrivtid: 4:-8: Lärare och examinator : Armin Halilovic Hjälmedel: Bifogat formelhäfte ("Formler och tabeller i statistik ") och miniräknare av

Läs mer

** a) Vilka värden ska vara istället för * och **? (1 p) b) Ange för de tre tillstånden vilket som svarar mot 0,1,2 i figuren.

** a) Vilka värden ska vara istället för * och **? (1 p) b) Ange för de tre tillstånden vilket som svarar mot 0,1,2 i figuren. Avd. Matematisk statistik TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 19 AUGUSTI 2016 KL 08.00 13.00. Examinator: Jimmy Olsson tel. 790 72 01. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 4 Markovprocesser 20 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 4 Föreläsningsplan 1 Förra Föreläsningen 2 Innbäddade

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler

Läs mer

Föreläsningsanteckningar köteori

Föreläsningsanteckningar köteori Föreläsningsanteckningar köteori Fredrik Olsson, fredrik.olsson@iml.lth.se Produktionsekonomi, Lunds universitet 3 augusti 206 Dessa föreläsningsanteckningar utgör en delmängd av vad som tagits upp på

Läs mer

TENTAMEN I KOTEORI 20 dec 07 Ten2 i kursen HF1001 ( Tidigare kn 6H3012), KÖTEORI OCH MATEMATISK STATISTIK,

TENTAMEN I KOTEORI 20 dec 07 Ten2 i kursen HF1001 ( Tidigare kn 6H3012), KÖTEORI OCH MATEMATISK STATISTIK, TENTAMEN I KOTEORI dec 7 Ten i ursen HF Tidigare n 6H), KÖTEORI OH MATEMATISK STATISTIK, och TEN i 6H7, Dataommuniation och nätver, ) Srivtid: :-7: Lärare: Armin Halilovic Kursod HF Hjälmedel: Miniränare

Läs mer

INTRODUKTION TILL MARKOVKEDJOR av Göran Rundqvist, KTH

INTRODUKTION TILL MARKOVKEDJOR av Göran Rundqvist, KTH Läs detta först: INTRODUKTION TILL MARKOVKEDJOR av Göran Rundqvist, KTH Det här kompendiet är avsett som en introduktion till kompendiet av Enger och Grandell. Det är absolut inget fel på det officiella

Läs mer

Lycka till!

Lycka till! Avd. Matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR K OCH B MÅNDAGEN DEN 25 AUGUSTI 2003 KL 14.00 19.00. Examinator: Gunnar Englund, 790 7416. Tillåtna hjälpmedel: Formel- och

Läs mer

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING

Läs mer

Tentamen i Sannolikhetslära och statistik, TNK069, , kl 8 13.

Tentamen i Sannolikhetslära och statistik, TNK069, , kl 8 13. LINKÖPINGS UNIVERSITET ITN, Campus Norrköping Univ lekt George Baravdish Tentamen i Sannolikhetslära och statistik, TNK69, 26--7, kl 8 3. Hjälpmedel är räknare med tömda minnen samt formelsamling utgiven

Läs mer

Simulering av ett Multi-skill callcenter Med varierande genomsnittlig betjäningstid beroende på agenters kunskapsnivå

Simulering av ett Multi-skill callcenter Med varierande genomsnittlig betjäningstid beroende på agenters kunskapsnivå Simulering av ett Multi-skill callcenter Med varierande genomsnittlig betjäningstid beroende på agenters kunskapsnivå Handledare: Johan Boye Filip Gaun Klippgatan 12c 171 47 Solna 076-650 76 33 lipgau@kth.se

Läs mer

Stokastiska processer och simulering I 24 augusti

Stokastiska processer och simulering I 24 augusti STOCKHOLMS UNIVERSITET LÖSNINGAR MATEMATISKA INSTITUTIONEN Stokastiska processer och simulering I Avd Matematisk statistik 24 augusti 2016 Lösningar Stokastiska processer och simulering I 24 augusti 2016

Läs mer

Poisson Drivna Processer, Hagelbrus

Poisson Drivna Processer, Hagelbrus Kapitel 6 Poisson Drivna Processer, Hagelbrus Poissonprocessen (igen) Vi har använt Poissonprocessen en hel del som exempel. I den här föreläsningen kommer vi att titta närmare på den, och även andra processer

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 3 Markovprocesser 16 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 3 Föreläsningsplan 1 Förra Föreläsningen 2 Markovprocesser

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 3 Markovprocesser 13 April 2016 Johan Westerborn Markovprocesser (1) Föreläsning 3 Föreläsningsplan 1 Förra Föreläsningen 2 Markovprocesser

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 9 Johan Lindström 16 oktober 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F9 1/26 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys 1 / 14 Statistiska metoder för säkerhetsanalys F2: Händelseströmmar och Poissonprocesser Definition Intensitet Exempel 2 / 14 Händelseström Händelsen A inträffar vid de okända tidpunkterna S 1, S 2,...

Läs mer

Optimering av ett patientflöde inom svensk veterinärvård

Optimering av ett patientflöde inom svensk veterinärvård DEGREE PROJECT, IN APPLIED MATHEMATICS AND INDUSTRIAL ECONOMICS, FIRST LEVEL STOCKHOLM, SVERIGE 2015 Optimering av ett patientflöde inom svensk veterinärvård HANS DE GEER KKTH ROYAL INSTITUTE OF TECHNOLOGY

Läs mer

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO310 OPTIMERING

Läs mer

Föreläsning 6: Nätverksoptimering

Föreläsning 6: Nätverksoptimering Föreläsning 6: Nätverksoptimering. Minkostnadsflödesproblem i nätverk.. Modellering och grafteori.. Simplexmetoden. Föreläsning 6 - Ulf Jönsson & Per Enqvist Nätverksoptimering Minkostnadsflödesproblem

Läs mer

Modellering och kundprocessanalys av kösystem på Vapiano Sturegatan

Modellering och kundprocessanalys av kösystem på Vapiano Sturegatan EXAMENSARBETE INOM TEKNIK, GRUNDNIVÅ, 15 HP STOCKHOLM, SVERIGE 2016 Modellering och kundprocessanalys av kösystem på Vapiano Sturegatan YRR AHLKLO CARIN LIND KTH KUNGLIGA TEKNISKA HÖGSKOLAN SKOLAN FÖR

Läs mer

Optimering av ett kösystem på IKEA Kungens Kurva

Optimering av ett kösystem på IKEA Kungens Kurva DEGREE PROJECT, IN APPLIED MATHEMATICS AND INDUSTRIAL ECONOMICS, FIRST LEVEL STOCKHOLM, SWEDEN 2015 Optimering av ett kösystem på IKEA Kungens Kurva PERSHENG BABAHEIDARI, MICHAELA JERNBECK KTH ROYAL INSTITUTE

Läs mer

Händelsestyrd simulering. Inledning. Exempel

Händelsestyrd simulering. Inledning. Exempel Lunds Tekniska Högskola Datavetenskap Lennart Andersson EDA061/F10 Uppgift 2010-09-13 Händelsestyrd simulering Inledning Du skall konstruera ett program som simulerar vad som händer när kunder kommer till

Läs mer

Kurssammanfattning MVE055

Kurssammanfattning MVE055 Obs: Detta är enbart tänkt som en översikt och innehåller långt ifrån allt som ingår i kursen (vilket anges exakt på hemsidan). Fullständiga antaganden i satser kan saknas och fel kan förekomma så kontrollera

Läs mer

Lösningsförslag till Problem i kapitel 7 i Mobil Radiokommunikation

Lösningsförslag till Problem i kapitel 7 i Mobil Radiokommunikation Lösningsförslag till Problem i kapitel 7 i Mobil adiokommunikation 7. 7. Två lognormalt fördelade stokastiska variabler X och Y med log-standardavvikelserna σ logx och σ logy. Att den stokastiska variabeln

Läs mer

Utdrag ur TAMS15: Matematisk statistik I, grundkurs Extra kursmaterial för TAMS79

Utdrag ur TAMS15: Matematisk statistik I, grundkurs Extra kursmaterial för TAMS79 Utdrag ur TAMS5: Matematisk statistik I, grundkurs Extra kursmaterial för TAMS79 John M. Noble, Institute of Applied Mathematics, University of Warsaw, ul. Banacha, -97 Warszawa Revised: J. Thim ii Innehåll

Läs mer

TAMS79 / TAMS65 - vt TAMS79 / TAMS65 - vt Formel- och tabellsamling i matematisk statistik. TAMS79 / TAMS65 - vt 2013.

TAMS79 / TAMS65 - vt TAMS79 / TAMS65 - vt Formel- och tabellsamling i matematisk statistik. TAMS79 / TAMS65 - vt 2013. Formel- och tabellsamling i matematisk statistik c Martin Singull 2 Innehåll 3.3 Tukey s metod för parvisa jämförelser.................... 14 1 Sannolikhetslära 5 1.1 Några diskreta fördelningar.........................

Läs mer

2 x dx = [ x ] 1 = 1 ( 1 (1 0.9) ) 100 = /

2 x dx = [ x ] 1 = 1 ( 1 (1 0.9) ) 100 = / Föreläsning 5: Matstat AK för I, HT-8 MATEMATISK STATISTIK AK FÖR I HT-8 FÖRELÄSNING 5: KAPITEL 4.6 7: SUMMOR, MAXIMA OCH ANDRA FUNKTIONER AV S.V. KAPITEL 5. : VÄNTEVÄRDEN, LÄGES- OCH SPRIDNINGSMÅTT EXEMPEL

Läs mer

e x/1000 för x 0 0 annars

e x/1000 för x 0 0 annars VK Matematiska institutionen avd matematisk statistik TENTAMEN I 5B506 MATEMATISK STATISTIK GRUNDKURRS FÖR D OCH F, 5B504 MATEMATISK STATISTIK GRUNDKURS FÖR ÄLDRE OCH 5B50 MARKOVPROCESSER ONSDAGEN DEN

Läs mer

Föreläsningsanteckningar i kurs 5B1506 Markovprocesser och köteori. Jan Grandell

Föreläsningsanteckningar i kurs 5B1506 Markovprocesser och köteori. Jan Grandell Föreläsningsanteckningar i kurs 5B1506 Markovprocesser och köteori Jan Grandell 2 Förord Dessa anteckningar gjordes för mitt privata bruk av föreläsningsmanuskript och har aldrig varit tänkta att användas

Läs mer

Modeller för reservoarer - köer och liknande fenomen

Modeller för reservoarer - köer och liknande fenomen Modeller för reservoarer - köer och liknande fenomen Robert Eriksson Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2011:2 Matematisk statistik Juni 2011

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

Network Management Säkerhet Performance QoS Köteori. Jens A Andersson

Network Management Säkerhet Performance QoS Köteori. Jens A Andersson Network Management Säkerhet Performance QoS Köteori Jens A Andersson Publika telenätet Digitalt lokalstation Trunknät Accessnät Analogt Analogt 2 Trunknätet Internationell station Gateway till mobila nät

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 augusti 218, klockan 8.-12. Examinator: Jörg-Uwe Löbus (Tel: 79-62827) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 6 Johan Lindström oktober 8 Johan Lindström - johanl@maths.lth.se FMSF45/MASB F6 /9 Johan Lindström - johanl@maths.lth.se FMSF45/MASB F6 /9 Summa

Läs mer

Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II

Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II Sannolikhetslära och inferens II Kapitel 4 Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar 1 Kontinuerliga slumpvariabler En slumpvariabel som kan anta alla värden på något intervall sägs

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 7 15 november 2017 1 / 28 Lite om kontrollskrivning och laborationer Kontrollskrivningen omfattar Kap. 1 5 i boken, alltså Föreläsning

Läs mer

TNSL011 Kvantitativ Logistik

TNSL011 Kvantitativ Logistik TENTAMEN TNSL011 Kvantitativ Logistik Datum: 21 augusti 2012 Tid: 08:00 12:00 i SP71 Hjälpmedel: Hjälpmedel av alla slag, förutom kommunikationsutrustning (telefoner, datorer, och andra saker som kan ta

Läs mer

Extrauppgifter - Statistik

Extrauppgifter - Statistik Extrauppgifter - Statistik Uppgifter 1. Den stokastiska variabeln Y t 10 ). Bestäm c så att P ( c < Y < c) = 2. Vid tillverkning av en viss sorts färg tillsätts färgpigmentet med hjälp av en doseringsapparat,

Läs mer

1 Minkostnadsflödesproblem i nätverk

1 Minkostnadsflödesproblem i nätverk Krister Svanberg, april 2012 1 Minkostnadsflödesproblem i nätverk Ett nätverk består av en given mängd noder numrerade från 1 till m (där m är antalet noder) samt en given mängd riktade bågar mellan vissa

Läs mer

TMS136: Dataanalys och statistik Tentamen

TMS136: Dataanalys och statistik Tentamen TMS136: Dataanalys och statistik Tentamen 013-08-7 Examinator och jour: Mattias Sunden, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkänd räknare och formelsamling (formelsamling delas ut med tentan). Betygsgränser:

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker max/min Matematisk statistik för D, I, Π och Fysiker Föreläsning 5 Johan Lindström 25 september 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F5 1/25 max/min Johan Lindström - johanl@maths.lth.se

Läs mer

Grafer och grannmatriser

Grafer och grannmatriser Föreläsning 2, Linjär algebra IT VT2008 Som avslutning på kursen ska vi knyta samman linjär algebra med grafteori och sannolikhetsteori från första kursen. Resultatet blir så kallade slumpvandringar på

Läs mer

forts. Kapitel A: Komplexa tal

forts. Kapitel A: Komplexa tal forts. Kapitel A: Komplexa tal c 005 Eric Järpe Högskolan i Halmstad Andragradsekvationer Obs! i är antingen 1 1 + i) eller 1 1 + i), dvs i = 1 1 + i). Obs! Se upp med roten ur negativa tal: regeln ab

Läs mer

Om konvergens av serier

Om konvergens av serier Om konvergens av serier Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I den här artikeln diskuteras några av de grundläggande satserna som hjälper oss att avgöra om en serie

Läs mer

Matematisk statistik 9hp Föreläsning 7: Normalfördelning

Matematisk statistik 9hp Föreläsning 7: Normalfördelning Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning

Läs mer

P(ξ > 1) = 1 P( 1) = 1 (P(ξ = 0)+P(ξ = 1)) = 1 0.34. ξ = 2ξ 1 3ξ 2

P(ξ > 1) = 1 P( 1) = 1 (P(ξ = 0)+P(ξ = 1)) = 1 0.34. ξ = 2ξ 1 3ξ 2 Lösningsförslag TMSB18 Matematisk statistik IL 101015 Tid: 12.00-17.00 Telefon: 101620, Examinator: F Abrahamsson 1. Varje dag levereras en last med 100 maskindetaljer till ett företag. Man tar då ett

Läs mer

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS,

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, Avd. Matematisk statistik TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, TORSDAGEN DEN 7 JUNI 2012 KL 14.00 19.00 Examinator:Gunnar Englund, 073 3213745 Tillåtna hjälpmedel: Formel- och

Läs mer

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012 Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig

Läs mer

Resursplanering - att använda ledtider som parameter vid bemanning av företag i drift

Resursplanering - att använda ledtider som parameter vid bemanning av företag i drift EXAMENSARBETE INOM TEKNIK, GRUNDNIVÅ, 15 HP STOCKHOLM, SVERIGE 2016 Resursplanering - att använda ledtider som parameter vid bemanning av företag i drift SARA CEDELL REBECCA GRÜNBERGER KTH KUNGLIGA TEKNISKA

Läs mer

Obligatorisk uppgift: Simulering av köer i ett trafiksystem

Obligatorisk uppgift: Simulering av köer i ett trafiksystem Informationsteknologi 10 februari 2016 Obligatorisk uppgift: imulering av köer i ett trafiksystem Moment: Centrala begrepp som klasser, objekt, metoder, attribut. Problembeskrivning OB: Uppgifterna kommer

Läs mer

Uppgift 2. För två händelser A och B gäller P(A B)=0.5, P ( A ) = 0. 4 och P ( B

Uppgift 2. För två händelser A och B gäller P(A B)=0.5, P ( A ) = 0. 4 och P ( B TENTAMEN I MATEMATISK STATISTIK Datum: 3 juni 8 Ten i ursen HF3, 6H3, 6L3 MATEMATIK OH MATEMATISK STATISTIK, Ten i ursen HF ( Tidigare n 6H3), KÖTEORI OH MATEMATISK STATISTIK, Ten i ursen HF4, (Tidigare

Läs mer

Stokastiska Processer

Stokastiska Processer Kapitel 3 Stokastiska Processer Karakteristisk funktion: Den karakteristiska funktionen φ ξ : R n C för en R n -värd s.v. definieras för t R n. φ ξ (t) = E{e iπ(t ξ +...+t nξ n) } = E{e iπtt ξ } Den karakteristiska

Läs mer

Tentamen i Linjär algebra , 8 13.

Tentamen i Linjär algebra , 8 13. LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: ETE5 Provkod: TEN Tentamen i Linjär algebra 5 8, 8. Inga hjälpmedel. Ej räknedosa. Resultatet meddelas vi e-post. För godkänt räcker

Läs mer

Extend för Dummies Teknologer

Extend för Dummies Teknologer Extend för Dummies Teknologer (Till dig som ska använda Extend för första gången) Den huvudsakliga tanken med denna manual är att Ni på ett enkelt sätt ska kunna sätta Er in i Extend och konstruera Er

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

Hemuppgift 1, SF1861 Optimeringslära för T

Hemuppgift 1, SF1861 Optimeringslära för T Hemuppgift 1, SF1861 Optimeringslära för T Examinator: Per Enqvist, tel: 790 6298, penqvist@math.kth.se. Assistenter: Amol Sasane, sasane@math.kth.se, Mikael Fallgren, werty@kth.se. Lämnas in till någon

Läs mer

Veckoblad 3. Kapitel 3 i Matematisk statistik, Dahlbom, U.

Veckoblad 3. Kapitel 3 i Matematisk statistik, Dahlbom, U. Veckoblad 3 Kapitel 3 i Matematisk statistik, Dahlbom, U. Poissonfördelningen: ξ är Po(λ) λ = genomsnittligt antal händelser i ett intervall. Sannolikhet: P(ξ = ) = e λ λ! Väntevärde: E(ξ) = λ Varians:

Läs mer

Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Torsdag 28 maj 2010 kl

Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Torsdag 28 maj 2010 kl Lösningsförslag till tentamen i SF86 Optimeringslära för T. Torsdag 28 maj 2 kl. 4. 9. Examinator: Per Enqvist, tel. 79 62 98. (a) Inför variablerna x = (x sr, x sm, x sp, x sa, x sd, x gr, x gm, x gp,

Läs mer