4. Optimal styrning. 4. Optimal styrning. 4. Optimal styrning. 4. Optimal styrning. 4. Optimal styrning. 4.1 Dynamisk programmering.

Storlek: px
Starta visningen från sidan:

Download "4. Optimal styrning. 4. Optimal styrning. 4. Optimal styrning. 4. Optimal styrning. 4. Optimal styrning. 4.1 Dynamisk programmering."

Transkript

1 . Optimal styrning. Optimal styrning. Optimal styrning Vad är optimal styrning? I allmänna termer kan reglertekniska problem formleras på följande sätt: Välj styrsignaler så att systemet beter sig så bra som möjligt Svårigheten ligger vanligtvis i att formlera vad som är så bra som möjligt. Om man kan formlera detta matematiskt samt har en representativ processmodell kan man lösa reglerproblemet systematiskt: man löser helt enkelt det matematiska optimeringsproblemet. Eempel på praktiska problemställningar är att bestämma optimal väg genom ett nätverk från en pnkt A till en pnkt B beräkna optimal styrstrategi för en satsvis celllosa- eller sockerkokare minimera tiden det tar att byta papperskvalitet på en pappersmaskin designa en process bestående av flera delprocesser så att anläggnings- och driftskostnaderna minimeras Reglerteknik II illståndsmetoder 9 Öppen styrning Öppen styrning är en speciell typ av styrproblem där man inte tnyttjar återkoppling; den optimala strategin beräknas helt tgående från processmodellen och ett matematiskt godhetskriterim även kostnadsfnktion, förlstfnktion. ypiska problem av denna typ är att bestämma billigaste vägen minimera tiden för en verksamhet allokera resrser Ofta kombineras öppen styrning med återkopplad reglering på en lägre nivå..e. problemet att bestämma optimal temperatrprofil som fnktion av tiden för en satsreaktor är ett öppet styrproblem, men temperatren realiseras genom återkopplad reglering. I detta fall är problemet att generera optimala börvärden Reglerteknik II illståndsmetoder 9. Optimal styrning. Optimal styrning Övning.. Ett eempel på billigaste färdväg Vi skall resa från pnkt A till pnkt B i nedanstående schema, där vi skall välja en av flera möjliga resrtter så att resans totalkostnad minimeras. Kostnaderna för de möjliga delrtterna finns tmärkta i figren. Vilken väg skall vi välja från pnkt A till pnkt B? A Reglerteknik II illståndsmetoder 9 B. Dynamisk programmering Dynamisk programmering, tvecklad av Richard Bellman i sltet av 95-talet, är en optimeringsmetod som är speciellt lämplig för problem som kan ppdelas i en serie delproblem, som kan behandlas sekventiellt så att varje delproblem medför ett beslt dvs en styråtgärd. ypiska problemställningar är att bestämma billigaste vägen allokera resrser Dynamisk programmering bygger på optimalitetsprincipen: De optimala beslten styråtgärderna från och med ett godtyckligt steg i besltsprocessen dvs de efterföljande beslten får inte bero på hr tillståndet i detta steg ppnåtts. Vad betyder detta? Vi kan också formlera optimalitetsprincipen på följande sätt: Oberoende av vad vi gjort fram till steg n i besltsprocessen, skall vi i fortsättningen göra det som är optimalt för de efterföljande stegen i besltsprocessen. Denna princip har som följd att det ofta är fördelaktigt att beräkna den optimala strategin startande från sltändan av den sekventiella besltsprocessen. Reglerteknik II illståndsmetoder 9

2 . Dynamisk Programmering.. Öppen styrning tan.. Eempel på öppen styrning tan Ett dynamiskt system beskrivs av den tidsdiskreta ekvationen k k, Beräkna styråtgärderna, och som minimerar förlstfnktionen t dt då tillståndet t antas förändras linjärt med tiden mellan samplingspnkterna. Samplingsintervallet är h tidsenhet och inga eisterar för k Eftersom t förändras linjärt mellan samplingspnkterna gäller t k t k k, k t < k, k,, vilket gör att förlstfnktionen kan skrivas k d k k k k k k k k k [ t k ] t. Optimal styrning 5 k. Lösning genom ordinär optimering Eftersom styrsignalernas storlek i detta fall inte bidrar till förlstfnktionen kan man lika väl optimera direkt med avseende på, och och därefter beräkna de optimala styrsignalerna när de optimala tillstånden, och är kända. min där Vi skall alltså bestämma,, k k k k k Eftersom variablerna saknar gäller vid minimm,,. Dynamisk programmering 6.. Öppen styrning tan.. Öppen styrning tan Vi får,, dvs räknat från sltet samt Dynamisk programmering 5 6 min 8, Lösning genom dynamisk programmering Vi skriver förlstfnktionen som k, k k k k k k och börjar med att minimera det sista steget k samma som tidigare Därefter minimerar vi stegen k. Vi har med samma Alla steg med och ger 6 6 samma. Dynamisk programmering 8

3 .. Öppen styrning tan.. Öppen styrning tan Sboptimala lösningar På grnd av förlstfnktionens form k, k k k k k k ligger det nära till hand att minimera varje steg var för sig, dvs att minimera lokalt: k k k k k k k k k k som är fel lösning tom för sista steget k. Denna sboptimala lösning optimal i varje steg ger sb ,8 5 En dead-beat strategi, ger och dead,.. Dynamisk programmering 9 Kommentarer I detta mycket enkla fall var metoden med dynamisk programmering knappast enklare än ordinär optimering. Vi kan dock konstatera följande: Om antalet steg varit större hade det dock varit besvärligt att optimera globalt med avseende på alla optimeringsvariabler samtidigt. Vid användning av dynamisk programmering blir de enskilda stegen inte besvärligare. Om förlstfnktionen är mer komplicerad, inklderande t.e. styrsignaler, blir det också besvärligare att optimera globalt i ett steg. Vid användning av dynamisk programmering blir varje enskilt steg normalt inte nämnvärt svårare. Ifall man har på tillståndvariablerna tsignalerna och/eller styrsignalerna, blir traditionell optimering mycket besvärlig, kanske omöjlig. Begränsningar kan relativ enkelt beaktas vid dynamisk programmering då problemet löses stegvis. En nackdel med dynamisk programmering är det stora antal olika alternativ som måste sparas ifall man inte kan ttrycka sambanden analytiskt the crse of dimensionality.. Dynamisk programmering. Dynamisk programmering.. Öppen styrning med.. Eempel på öppen styrning med Antag att styrsignalerna, och i det ovan behandlade eemplet endast kan anta jämna heltalsvärden. Då kan problemet i princip inte lösas analytiskt genom nollställning av partialderivator, varken genom ordinär optimering eller dynamisk programmering. En möjlighet är att avrnda den analytiska lösningens styrsignaler till närmaste jämna heltal, men det finns inget som garanterar att detta ger den optimala heltalslösningen. Det finns avancerade matematiska metoder för lösning av heltalsproblem som vi dock inte skall behandla här. En fördel med heltalsproblem är dock att det vanligtvis endast finns ett ändligt antal möjliga lösningar, vilket betyder att man i princip kan analysera alla tänkbara lösningar. Genom användning av dynamisk programmering, ev. kombinerad med någon fndamental analys av problemets natr och nödvändiga egenskaper för den optimala lösningen, kan man ofta lösa denna typ av problem förhållandevis enkelt. Eempel med Uppgiften är att minimera k, k k k k k k nder bivillkoren modellen k k, samt k {, ±, ±, }. Det är enkelt att övertyga sig om att för den optimala lösningen måste gälla, ifall k, att k < k samt att k och k inte har samma tecken eftersom k k < minimerar varje k jämfört med k k >. Man inser då, med hjälp av modellen, att de optimala styrsignalerna k och tillstånden k måste satisfiera {,, 6, 8, }, {,,, 6, 8}, {,,, 6} {,,, 6, 8}, {,,, 6}, {,, } Det vore möjligt att begränsa styrsignalerna ytterligare med en mer ingående inledande analys, vilket vi dock inte gör.. Optimal styrning. Dynamisk programmering

4 .. Öppen styrning med.. Öppen styrning med I stället tnyttjar vi dynamisk programmering för att hitta den sltliga lösningen. Med hjälp av modellen k k kan ttrycket för k skrivas k k k Steget k Eftersom gäller för lösningen av det obegränsade fallet, är det också en möjlig lösning i detta fall, ifall det finns en tillåten lösning som satisfierar sambandet. a Om {, }, fås, som är ett jämnt heltal. Bidraget till förlstfnktionen blir. är inte ett jämnt heltal. Närmast till hands ligger lösningarna ±, som är jämna heltal. Kontroll visar att både och ger samma bidrag. Inget annat tillåtet ger här ett mindre. b Om { }, 6. Dynamisk programmering Stegen k a Vi har {, }. Modellsambandet ger {, } och 5 6 Möjligheterna är i och ii som ger i och ii 8. Här är i bättre mindre om {,,, 6}, ii bättre om 8. b Vi har {, 6} och således {, 6} samt 5 6 Möjligheterna är i och ii 6 som ger i 8 och ii 6 6. Här är i bättre om <, dvs alltid. 6 är således inte en möjlig optimal lösning.. Dynamisk programmering.. Öppen styrning med.. Öppen styrning med Alla steg a i Vi har {,,, 6}. Sambandet då, {, 6, 8, } samt ger {,,, 6} och Minimm 88 fås för 8. a ii Här är 8. Sambandet samt ger och Detta fall är alltså sämre än a i Sambandet samt ger och b i Här är {,,, 6, 8} {,, 6, 8, } 9 Minimm fås för 6 och 8. Även detta är sämre än a i. Den optimala lösningen Den optimala lösningen är fall a i som för ger 88 9, med 8,,,, Obs att denna lösning med denna förlstfnktion är bättre än dead-beat strategin, som även satisfierar na k {, ±, ±, }.. Dynamisk programmering 5. Dynamisk programmering 6

5 . Dynamisk programmering.. Allmän formlering av lösning.. Allmän formlering av lösning med dynamisk programmering Sambandet mellan tillstånden k och k samt en styråtgärd k kan allmänt skrivas k fk, k,, där f k är en godtycklig fnktion, som inte behöver vara linjär och inte behöver vara densamma för alla k. Antag att man önskar styra systemet från tillståndet till N så att förlstfnktionen N g, k k k k minimeras. Här är g k en godtycklig fnktion som anger kostnaden att gå från tillståndet k till k med styrsignalen k. Om man inledningsvis har en kostnad g k som är beroende av tillståndet k, kan detta elimineras med hjälp av modellsambandet. Därmed kan slttillståndet N alltid elimineras från förlstfnktionen. Optimal styrning Låt k k beteckna kostnaden för den optimala vägen dvs den minimala kostnaden från tillståndet k till slttillståndet N. Då gäller ppenbarligen N N samt för sccessivt minskande k, k N,, : k min gk k k min gk k fk Minimering i varje steg enligt valfri metod, med beaktande av ev. ger en optimal styrsignal k som fnktion av k, betecknad * k k, matematiskt ttryckt: arg min gk k fk ill slt erhålles för k min och, som kan bestämmas då begynnelsetillståndet är känt. illståndet kan därefter beräknas enligt modellsam- bandet med, varefter kan bestämmas, osv * k och för alla k. Märk att beteckningarna här avviker från beteckningarna i de tidigare eemplen.. Dynamisk programmering 8. Optimal styrning. Maimmprincipen. Maimmprincipen Optimalitetsprincipen ger en strategi för att finna den optimala lösningen när ett problem kan delas pp i ett antal delsteg, som kan lösas sekventiellt. Detta förtsätter att också förlstfnktion kan ppdelas så, att en viss förlst är förknippad varje enskilt delsteg. Maimmprincipen ger villkor som den optimala lösningen bör ppfylla för mera allmänna optimeringsproblem, som inte nödvändigtvis kan ppdelas i ett antal delproblem som löses sekventiellt. Dessa villkor ger inte direkt den optimala lösningen, men de gör det vanligtvis möjligt att finna den. Benämningen maimmprincipen följer av att problemen tidigare formlerades som maimeringsproblem; nförtiden minimerar vi hellre. Principen benämnes ofta Pontryagins maimmprincip eller minimmprincip efter en av pphovsmännen. Maimmprincipen ger optimalitetsvillkor för generella styrproblem; ett antal viktiga specialfall inklderar var för sig stora klasser optimala styrproblem. Reglerteknik II illståndsmetoder Det optimala styrproblemet Det optimala styrproblemet kan i kontinerlig tid formleras på följande sätt: Minimera förlstfnktionen tf φ f, d..a t L t t t nder bivillkoren t f, t t..b t U, t tf..c, ψ tf..d Här är..b modellen för det dynamiska systemet,..c definierar ev. på de tillgängliga styrsignalerna,..d ger begynnelsetillstånd och ett ev. bivillkor relaterat till slttillståndet. Viktiga specialfall som förenklar lösningen fås när slttiden t f är given inga bivillkor ψ t f begränsar slttillståndet tf förlstfnktionen har speciellt enkel form. Optimal styrning

6 . Maimmprincipen.. Given slttid, obegränsat slttillstånd.. Given slttid, obegränsat slttillstånd I det fall, att slttiden t f är given och slttillståndet tf är obegränsat, bör den optimala lösningen t, t ppfylla följande villkor: där p p f..a min H, t, t H, t, t, t t t U H p,, L, p f,..b är den s.k. Hamiltonfnktionen och där p ppfyller den adjngerade ekvationen H, t, p t p t, t φ p tf tf..c Eempel.. Styrning i strömmande vatten. En båt med lägeskoordinaten, rör sig i ett område med varierande ström. Styrvariabeln är lika med båtens hastighet relativt vattnet i -riktning, styrvariabeln dess hastighet i -riktningen. Vattnets hastighet är v i -riktningen och i - riktningen. Båten startar i origo och man vill förflytta sig så långt som möjligt i -led på tidsenheter. Vilka är de optimala styråtgärderna då de är begränsade så att båtens fart relativt vattnet är konstant? Detta ger optimeringsproblemet min, nder bivillkoren v,,. Optimal styrning. Maimmprincipen.. Given slttid, obegränsat slttillstånd.. Given slttid, obegränsat slttillstånd Här är förlstfnktionens L, vilket ger v,,, H p p f p p v p De adjngerade ekvationerna blir H, t, p t p v p p t t t p t p v H, t, p t p v p t t φ p φ p Enligt..a skall styrsignalerna väljas som lösningen till p pv p U min H, t, t min p v p min p Man kan enkelt visa att p, p p satisfierar den optimala lösningen. Av ttrycken för de adjngerade ekvationerna följer p p t t t p t och p t p τ d τ p τ v τd τ v τdτ Om vattnets hastighet v t.e. varierar linjärt med, så att v k, fås med beaktande av p, att p t k t p. Maimmprincipen. Maimmprincipen

7 . Maimmprincipen.. Minimaltidsproblem.. Minimaltidsproblem I ett minimaltidsproblem vill man genom styråtgärder minimera den tid det tar att från ett givet tgångstillstånd ppnå ett visst slttillstånd. I detta fall blir förlstfnktionen så enkel som tf d t t f vilket i de tidigare ttrycken motsvaras av φ tf och L t, t. I detta fall eisterar alltid ett villkor ψ t f, som slttillståndet bör satisfiera. För ett linjärt system begränsat av t A t B t ma i i t, i,,dim, ψ t f kan man visa att den optimala styrstrategin i allmänhet har formen ma i, t i ma i t p b < sign ma i p t bi i, p t bi > där b i är i :te kolonnen av B och p t är en lösning till den adjngerade ekvationen. Fnktionen sign p t b i ± byter tecken vi något visst värde på t, som beror av systemet och de gällande na. Denna typ av styrning kallas bang-bang-styrning. Allmänt kan man säga att en styrsignal, som alltid antar sitt största eller minsta värde med ändligt många välingar däremellan, är av bang-bang typ. Dead-beat-reglering, som egentligen är lösningen till ett minimaltidsproblem, leder vanligtvis till bang-bang-reglering.. Optimal styrning 5. Maimmprincipen 6

4. Optimal styrning. 4. Optimal styrning. Vad är optimal styrning?

4. Optimal styrning. 4. Optimal styrning. Vad är optimal styrning? reglerteni Reglerteni II / KEH. Optimal styrning. Optimal styrning Vad är optimal styrning? I allmänna termer an reglertenisa problem formleras på följande sätt: Välj styrsignaler så att systemet beter

Läs mer

Dynamisk programmering. Dynamisk programmering. Dynamisk programmering. Dynamisk programmering

Dynamisk programmering. Dynamisk programmering. Dynamisk programmering. Dynamisk programmering Betrakta ett lagerhållningsproblem i flera tidsperioder. Vi har tillverkning och försäljning av produkter i varje tidsperiod. Dessutom kan vi lagra produkter mellan tidsperioder, för att utnyttja stordriftsfördelar

Läs mer

Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin

Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2 Tillämpad matematisk programming Korttidsplanering

Läs mer

Optimeringslara = matematik som syftar till att analysera och. Optimeringslara ar en gren av den tillampade matematiken.

Optimeringslara = matematik som syftar till att analysera och. Optimeringslara ar en gren av den tillampade matematiken. Optimal = basta mojliga. Optimeringslara = matematik som syftar till att analysera och nna det basta mojliga. Anvands oftast till att nna ett basta handlingsalternativ i tekniska och ekonomiska beslutsproblem.

Läs mer

3. Matematisk modellering

3. Matematisk modellering 3. Matematisk modellering 3. Modelleringsprinciper 3.. Modelltyper För att knna göra design och analys av reglersystem behöver man en matematisk modell, som beskriver systemets dynamiska beteende. Vi kan

Läs mer

VEKTORRUMMET R n. 1. Introduktion

VEKTORRUMMET R n. 1. Introduktion VEKTORRUMMET R n RYSZARD RUBINSZTEIN 28--8. Introdktion Låt n vara ett heltal. Med R n kommer vi att beteckna mängden vars element är alla n-tipplar av reella tal (a, a 2,..., a n ), R n = { (a, a 2,...,

Läs mer

1 Duala problem vid linjär optimering

1 Duala problem vid linjär optimering Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 9 Icke-linjär optimering Konveitet Metoder ör problem utan bivillkor Optimalitetsvillkor ör icke-linjära problem Icke-linjär programmering Non-linear

Läs mer

Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition

Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition Optimum? När man har formulerat sin optimeringsmodell vill man lösa den Dvs finna en optimal lösning, x, till modellen Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan (bättre Upprepa, tills

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER

Läs mer

TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.

TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad. Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 27 augusti 2013 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.

Läs mer

Styrsignalsfördelning hos system med redundanta aktuatorer

Styrsignalsfördelning hos system med redundanta aktuatorer Styrsignalsfördelning hos system med redndanta aktatorer Linköpings Tekniska Högskola Tillämpningar Styrsignalsfördelning (eng. control allocation) Hr Hr ska ska den den önskade totala styrerkan fördelas

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TSRT91 Reglerteknik: Föreläsning 11

TSRT91 Reglerteknik: Föreläsning 11 Föreläsningar / 5 TSRT9 Reglerteknik: Föreläsning Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Armin Halilovic: EXTRA ÖVNINGAR, SF676 Differentialekvationer Inledning DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 19 april 2017 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:

Läs mer

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:

Läs mer

Optimering, exempel. Funktionens enda stationära punkt är alltså origo. Den ligger också i det inre av mängden.

Optimering, exempel. Funktionens enda stationära punkt är alltså origo. Den ligger också i det inre av mängden. Optimering, exempel Exempel 1 (optimering över kompakt mängd) Bestäm största och minsta värdet till funktionen f(x,y) = x 4 + y 4 + 4x 2 + 16 i cirkelskivan {x 2 + y 2 4}. Lösning: Cirkelskivan är kompakt

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

Föreläsning 7: Kvadratisk optimering. 4. Kvadratisk optimering under linjära bivillkor

Föreläsning 7: Kvadratisk optimering. 4. Kvadratisk optimering under linjära bivillkor Föreläsning 7: Kvadratisk optimering 1. Kvadratisk optimering utan bivillkor 2. Positivt definita och semidefinita matriser 3. LDL T faktorisering 4. Kvadratisk optimering under linjära bivillkor 5. Minsta

Läs mer

Kortsiktig produktionsplanering med hjälp av olinjär programmering

Kortsiktig produktionsplanering med hjälp av olinjär programmering Kortsiktig produktionsplanering med hjälp av olinjär programmering S. Velut, P-O. Larsson, J. Windahl Modelon AB K. Boman, L. Saarinen Vattenfall AB 1 Kortsiktig produktionsplanering Introduktion Optimeringsmetod

Läs mer

Lösningsförslag till tentamen i Reglerteknik (TSRT19)

Lösningsförslag till tentamen i Reglerteknik (TSRT19) Lösningsförslag till tentamen i Reglerteknik (TSRT9) 26-3-6. (a) Systemet är stabilt och linjärt. Därmed kan principen sinus in, sinus ut tillämpas. Givet insignalen u(t) sin (t) sin ( t) har vi G(i )

Läs mer

TNSL05 Optimering, Modellering och Planering. Föreläsning 6

TNSL05 Optimering, Modellering och Planering. Föreläsning 6 TNSL05 Optimering, Modellering och Planering Föreläsning 6 Agenda Kursens status Tolkning av utdata Intro lösningsmetoder Linjära optimeringsproblem (LP) på standardform Algebraisk formulering av LP Konveitet

Läs mer

Föreläsning 6: Nätverksoptimering

Föreläsning 6: Nätverksoptimering Föreläsning 6: Nätverksoptimering. Minkostnadsflödesproblem i nätverk.. Modellering och grafteori.. Simplexmetoden. Föreläsning 6 - Ulf Jönsson & Per Enqvist Nätverksoptimering Minkostnadsflödesproblem

Läs mer

Reglerteori. Föreläsning 11. Torkel Glad

Reglerteori. Föreläsning 11. Torkel Glad Reglerteori. Föreläsning 11 Torkel Glad Föreläsning 11 Torkel Glad Februari 2018 2 Sammanfattning av föreläsning 10. Fasplan Linjärisering av ẋ = f(x) kring jämviktspunkt x o, (f(x o ) = 0) f 1 x 1...

Läs mer

Datorsimuleringsuppgift i Mekanik I del 2, Ht Stela Kroppens Dynamik (TMME18) Rulle på Cylinder. Deadline för inlämning: , kl 15.

Datorsimuleringsuppgift i Mekanik I del 2, Ht Stela Kroppens Dynamik (TMME18) Rulle på Cylinder. Deadline för inlämning: , kl 15. (6) Bakgrnd Datorsimleringsppgift i Mekanik I del, Ht 0 Stela Kroppens Dynamik (TMME8) Rlle på Cylinder Deadline för inlämning: 0--09, kl 5.00 I ppgiften skall d ställa pp rörelseekvationerna för ett mekaniskt

Läs mer

Optimering och simulering: Hur fungerar det och vad är skillnaden?

Optimering och simulering: Hur fungerar det och vad är skillnaden? Optimering och simulering: Hur fungerar det och vad är skillnaden? Anders Peterson, Linköpings universitet Andreas Tapani, VTI med inspel från Sara Gestrelius, RIS-SIS n titt i KAJTs verktygslåda Agenda

Läs mer

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, )}, i N, N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg innehåller

Läs mer

REPETITION (OCH LITE NYTT) AV REGLERTEKNIKEN

REPETITION (OCH LITE NYTT) AV REGLERTEKNIKEN REPETITION (OCH LITE NYTT) AV REGLERTEKNIKEN Automatisk styra processer. Generell metodik Bengt Carlsson Huvudantagande: Processen kan påverkas med en styrsignal (insignal). Normalt behöver man kunna mäta

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR ABSOLUTBELOPP Några eempel som du har gjort i gymnasieskolan: a) b) c) 5 5 Alltså et av ett tal är lika med själva talet om talet är positivt eller lika med et av är lika med det motsatta talet om är negativt

Läs mer

1 Ickelinjär optimering under bivillkor

1 Ickelinjär optimering under bivillkor Krister Svanberg, maj 2012 1 Ickelinjär optimering under bivillkor Hittills har vi behandlat optimeringsproblem där alla variabler x j kunnat röra sig fritt, oberoende av varann, och anta hur stora eller

Läs mer

Ekvationer och system av ekvationer

Ekvationer och system av ekvationer Modul: Undervisa matematik utifrån problemlösning Del 4. Strategier Ekvationer och system av ekvationer Paul Vaderlind, Stockholms universitet Ekvationslösning är ett av de viktiga målen i skolmatematiken.

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

Linjära ekvationer med tillämpningar

Linjära ekvationer med tillämpningar UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-17 SÄL 1-10p Linjära ekvationer med tillämpningar Avsnitt 2.1 Linjära ekvationer i en variabel

Läs mer

1 LP-problem på standardform och Simplexmetoden

1 LP-problem på standardform och Simplexmetoden Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering

Läs mer

Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl

Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 1 Matematiska Institutionen KTH Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna

Läs mer

1. Vad är optimering?

1. Vad är optimering? . Vad är optimering? Man vill hitta ett optimum, när något är bäst, men att definiera vad som är bäst är inte alltid så självklart. För att kunna jämföra olika fall samt avgöra vad som är bäst måste man

Läs mer

Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler

Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j j= a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland

Läs mer

Föreläsning 11, Dimensionering av tidsdiskreta regulatorer

Föreläsning 11, Dimensionering av tidsdiskreta regulatorer Föreläsning 11, Dimensionering av tidsdiskreta regulatorer KTH 8 februari 2011 1 / 28 Innehåll 1 Kapitel 19.2. Polplaceringsmetoden 2 3 4 5 6 2 / 28 Innehåll 1 Kapitel 19.2. Polplaceringsmetoden 2 3 4

Läs mer

De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas. 1 2 xt Hx + c T x. minimera

De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas. 1 2 xt Hx + c T x. minimera Krister Svanberg, mars 2012 1 Introduktion De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas på följande allmänna form: f(x) (1.1) x F, där x = (x 1,..., x n ) T

Läs mer

Prestanda och skalbarhet

Prestanda och skalbarhet Prestanda och skalbarhet Grama et al. Introduction to Parallel Computing Kapitel 5 Erik Elmroth Översikt 2 Exekveringstid Uppsnabbning Effektivitet Kostnad Kostnadsoptimal algoritm Ahmdals lag Gustafson-Barsis

Läs mer

1 Konvexa optimeringsproblem grundläggande egenskaper

1 Konvexa optimeringsproblem grundläggande egenskaper Krister Svanberg, april 2012 1 Konvexa optimeringsproblem grundläggande egenskaper Ett optimeringsproblem är i viss mening godartat om det tillåtna området är en konvex mängd och den målfunktion som ska

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 16 mars 010 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Kombinatorisk

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare och enkäter "Det finns inget så praktiskt som en bra teori" September 2011 och enkäter Inledning Inledning Om vi vill mäta en egenskap hos en population individer (individer kan vara personer, företag

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

1 Kvadratisk optimering under linjära likhetsbivillkor

1 Kvadratisk optimering under linjära likhetsbivillkor Krister Svanberg, april 0 Kvadratisk optimering under linjära likhetsbivillkor I detta kapitel behandlas följande kvadratiska optimeringsproblem under linjära likhetsbivillkor: xt Hx + c T x + c 0 då Ax

Läs mer

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism En civilingenjör ska kunna idealisera ett givet verkligt problem, göra en adekvat fysikalisk modell och behandla modellen med matematiska

Läs mer

R LÖSNINGG. Låt. (ekv1) av ordning. x),... satisfierar (ekv1) C2,..., Det kan. Ekvationen y (x) har vi. för C =4 I grafen. 3x.

R LÖSNINGG. Låt. (ekv1) av ordning. x),... satisfierar (ekv1) C2,..., Det kan. Ekvationen y (x) har vi. för C =4 I grafen. 3x. Armin Halilovic: EXTRA ÖVNINGAR, SF676 Begynnelsevärdesproblem Enkla DE ALLMÄN LÖSNING PARTIKULÄR LÖSNING SINGULÄR R LÖSNINGG BEGYNNELSEVÄRDESPROBLEM (BVP) Låt ( n) F(,,,, y ( )) vara en ordinär DE av

Läs mer

Högre ordnings ekvationer och system av 1:a ordningen

Högre ordnings ekvationer och system av 1:a ordningen Institutionen för matematik, KTH 05020 Tillägg för 5B209/HT05/E.P. Högre ordnings ekvationer och system av :a ordningen Vi har hittills lärt oss lösa linjära ekvationer med konstanta koefficienter och

Läs mer

Optimeringslära 2013-11-01 Kaj Holmberg

Optimeringslära 2013-11-01 Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 23-- Kaj Holmberg Uppgift a: Problemet skrivet i standardform är: Lösningar min

Läs mer

TSIU61: Reglerteknik. Matematiska modeller Laplacetransformen. Gustaf Hendeby.

TSIU61: Reglerteknik. Matematiska modeller Laplacetransformen. Gustaf Hendeby. TSIU61: Reglerteknik Föreläsning 2 Matematiska modeller Laplacetransformen Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 2 Gustaf Hendeby HT1 2017 1 / 21 Innehåll föreläsning 2 ˆ Sammanfattning

Läs mer

Välkomna till Reglerteknik Föreläsning 2

Välkomna till Reglerteknik Föreläsning 2 Välkomna till Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer

Läs mer

= 0 vara en given ekvation där F ( x,

= 0 vara en given ekvation där F ( x, DERIVERING AV IMPLICIT GIVNA FUNKTIONER Eempel. Vi betraktar som en funktion av och,,), given på implicit form genom + + 6 0. Bestäm partiella derivator och i punkten P,, ) a) med hjälp av implicit derivering

Läs mer

8.3 Variabeltransformationer Frånkoppling. Betrakta ett 2x2-system, som beskrivs med modellen (8.3.1)

8.3 Variabeltransformationer Frånkoppling. Betrakta ett 2x2-system, som beskrivs med modellen (8.3.1) 8.3 Variabeltransformationer Betrakta ett 2x2-system, som beskrivs med modellen y () s G () s G () s u () s 1 11 12 1 y2() s = G21() s G22() s u2() s (8.3.1) Figuren till höger visar ett blockschema över

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för EMM Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Välkomna till TSRT15 Reglerteknik Föreläsning 2

Välkomna till TSRT15 Reglerteknik Föreläsning 2 Välkomna till TSRT15 Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN 1 OPTIMERINGSLÄRA GRUNDKURS för I, Ii och TB Datum: 24 augusti 2009 Tid: 8.00-13.00 Hjälpmedel: Lundgren m fl: Optimeringslära och/eller Lundgren

Läs mer

N = {i}: noder (hörn) Graf: G = (N, B) Definitioner. Väg: Sekvens av angränsande bågar. Cykel: Väg som startar och slutar i samma nod.

N = {i}: noder (hörn) Graf: G = (N, B) Definitioner. Väg: Sekvens av angränsande bågar. Cykel: Väg som startar och slutar i samma nod. Polyeder 0 x, 0 x, 0 x, x + x + x, x + x + x Grafdefinitioner N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar

Läs mer

Reglerteknik Z / Bt/I/Kf/F

Reglerteknik Z / Bt/I/Kf/F Reglerteknik Z / Bt/I/Kf/F Kurskod: SSY 050, ERE 080, ERE 091 Tentamen 2007-05-29 Tid: 8:30-12:30, Lokal: M-huset Lärare: Knut Åkesson tel 3717, 0701-74 95 25 Tentamen omfattar 25 poäng, där betyg tre

Läs mer

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 1 januari 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer

Reglerteknik I: F1. Introduktion. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik

Reglerteknik I: F1. Introduktion. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik Reglerteknik I: F1 Introduktion Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 14 Vad är reglerteknik? Läran om dynamiska system och deras styrning. System = Process = Ett objekt vars

Läs mer

= = i K = 0, K =

= = i K = 0, K = ösningsförslag till tentamensskrivning i SF1633, Differentialekvationer I Tisdagen den 14 augusti 212, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

7 Extremvärden med bivillkor, obegränsade områden

7 Extremvärden med bivillkor, obegränsade områden Nr 7, 1 mars -5, Amelia 7 Extremvärden med bivillkor, obegränsade områden Största och minsta värden handlar om en funktions värdemängd. Värdemängden ligger givetvis mellan det största och minsta värdet,

Läs mer

z = min 3x 1 2x 2 + y Fixera y, vilket ger subproblemet

z = min 3x 1 2x 2 + y Fixera y, vilket ger subproblemet Bendersdekomposition Blandade heltalsproblem med ett stort antal kontinuerliga variabler och få heltalsvariabler. Mycket lättare att lösa om heltalsvariablerna fixeras. Bendersdekomposition (primal dekomposition)

Läs mer

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg

Läs mer

Exempel: reglering av en plattreaktor. Varför systemteknik/processreglering? Blockdiagram. Blockdiagram för en (del)process. Exempel: tankprocess

Exempel: reglering av en plattreaktor. Varför systemteknik/processreglering? Blockdiagram. Blockdiagram för en (del)process. Exempel: tankprocess Systemteknik/reglering Föreläsning Vad är systemteknik oc reglerteknik? Blockdiagram Styrstrategier Öppen styrning, framkoppling Sluten styrning, återkoppling PID-reglering Läsanvisning: Control:..3 Vad

Läs mer

lim 1 x 2 lim lim x x2 = lim

lim 1 x 2 lim lim x x2 = lim Moment 8.-8. Viktiga eempel 8.,8.4-6,8.8,8.-,8.5,8.0 Övningsuppgifter Ö8.a, Ö8.cdef,Ö8.a,e,f, Ö8.4cde, Ö8.5d, Ö8.0- Gränsvärden Definition. Funktionen f har gränsvärdet G då går mot om vi kan få f) att

Läs mer

1 x dx Eftersom integrationskonstanten i (3) är irrelevant, kan vi använda oss av 1/x som integrerande faktor. Låt oss beräkna

1 x dx Eftersom integrationskonstanten i (3) är irrelevant, kan vi använda oss av 1/x som integrerande faktor. Låt oss beräkna Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del, för CTFYS2 och CMEDT3, SF629, den 30 maj 20, kl 8:00 3:00 Svar, uppgift : i sant, ii sant, iii falskt, iv sant, v falskt, vi sant,

Läs mer

d dx xy ( ) = y 2 x, som uppfyller villkoret y(1) = 1. x, 0 x<1, y(0) = 0. Bestäm även y( 2)., y(0) = 0 har entydig lösning.

d dx xy ( ) = y 2 x, som uppfyller villkoret y(1) = 1. x, 0 x<1, y(0) = 0. Bestäm även y( 2)., y(0) = 0 har entydig lösning. Bestäm den lösning till differentialekvationen Ange även lösningens eistensintervall SF6 Differentialekvationer I MODULUPPGIFTER Första ordningens differentialekvationer med modeller d d y ( ) = y 2, som

Läs mer

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R 1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 augusti 2015 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 24 mars 29 Entydighet Om vi har ett polynom som approimerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna i

Läs mer

Kurser inom profilen Teknisk matematik (Y)

Kurser inom profilen Teknisk matematik (Y) Kurser inom profilen Teknisk matematik (Y) Kurser i Optimeringslära Obligatorisk TAOP24 Optimeringslära fortsättningskurs Y Valbara TAOP04 Matematisk optimering TAOP34 Optimering av stora system TAOP87

Läs mer

REGLERTEKNIK Laboration 5

REGLERTEKNIK Laboration 5 6 SAMPLADE SYSTEM 6. Sampling av signaler När man använder en dator som regulator, kan man endast behandla signaler i diskreta tidpunkter. T.ex. mäts systemets utsignal i tidpunkter med visst mellanrum,

Läs mer

Hemuppgift 2, SF1861 Optimeringslära för T, VT-10

Hemuppgift 2, SF1861 Optimeringslära för T, VT-10 Hemuppgift 2, SF1861 Optimeringslära för T, VT-1 Kursansvarig: Per Enqvist, tel: 79 6298, penqvist@math.kth.se. Assistenter: Mikael Fallgren, werty@kth.se, Amol Sasane, sasane@math.kth.se. I denna uppgift

Läs mer

Lösning till tentamensskrivning i Diskret Matematik, SF1610 och 5B1118, torsdagen den 21 oktober 2010, kl

Lösning till tentamensskrivning i Diskret Matematik, SF1610 och 5B1118, torsdagen den 21 oktober 2010, kl Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik, SF6 och 5B8, torsdagen den 2 oktober 2, kl 4-9 Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen

Läs mer

Lite Kommentarer om Gränsvärden

Lite Kommentarer om Gränsvärden Lite Kommentarer om Gränsvärden På föreläsningen (Föreläsning 2 för att vara eakt) så introducerade vi denitionen Denition. Vi säger att f() går mot a då går mot oändligheten, uttryckt i symboler som f()

Läs mer

Föreläsning 13: Multipel Regression

Föreläsning 13: Multipel Regression Föreläsning 13: Multipel Regression Matematisk statistik Chalmers University of Technology Oktober 9, 2017 Enkel linjär regression Vi har gjort mätningar av en responsvariabel Y för fixerade värden på

Läs mer

TNSL05 Optimering, Modellering och Planering. Föreläsning 5

TNSL05 Optimering, Modellering och Planering. Föreläsning 5 TNSL5 Optimering, Modellering och Planering Föreläsning 5 Dagordning Kort repetition Graf/nätverk: Begrepp Representation Exempel: Minkostnadsflödeproblem Billigastevägproblem 28--5 4 Hittills Föreläsning

Läs mer

Att använda el. Ellära och Elektronik Moment DC-nät Föreläsning 3. Effekt och Anpassning Superposition Nodanalys och Slinganalys.

Att använda el. Ellära och Elektronik Moment DC-nät Föreläsning 3. Effekt och Anpassning Superposition Nodanalys och Slinganalys. llära och lektronik Moment DC-nät Föreläsning ffekt och Anpassning Superposition Nodanalys och Slinganalys Copyright 8 Börje Norlin Att använda el Sverige Fas: svart Nolla: blå Jord: gröngul Copyright

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #3 Biträdande professor Jan Jonsson Instittionen för data- och informationsteknik Chalmers tekniska högskola Från data till digitala byggblock: Krsens inledande föreläsningarna

Läs mer

Ellära och Elektronik Moment AC-nät Föreläsning 4

Ellära och Elektronik Moment AC-nät Föreläsning 4 Ellära och Elektronik Moment AC-nät Föreläsning 4 Kapacitans och Indktans Uppladdning av en kondensator Medelvärde och Effektivvärde Sinsvåg över kondensator och spole Copyright 8 Börje Norlin Kondensatorer

Läs mer

2. Reglertekniska grunder

2. Reglertekniska grunder 2.1 Signaler och system 2.1 Signaler och system Ett system växelverkar med sin omgivning via insignaler, som påverkar systemets beteende utsignaler, som beskriver dess beteende Beroende på sammanhanget

Läs mer

Laplacetransform, poler och nollställen

Laplacetransform, poler och nollställen Innehåll föreläsning 2 2 Reglerteknik, föreläsning 2 Laplacetransform, poler och nollställen Fredrik Lindsten fredrik.lindsten@liu.se Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY)

Läs mer

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a Elementa Årgång 50, 967 Årgång 50, 967 Första häftet 2603. Låt ξ, ξ 2,..., ξ n vara stokastiska variabler med väntevärden E[ξ i ], i =, 2,..., n. Visa att E[max(ξ, ξ 2,..., ξ n )] max(e[ξ ], E[ξ 2 ],...,

Läs mer

Några satser ur talteorin

Några satser ur talteorin Några satser ur talteorin LCB 997/2000 Fermats, Eulers och Wilsons satser Vi skall studera några klassiska satser i talteori, vilka är av betydelse bland annat i kodningsteknik och kryptoteknik. De kan

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: oktober 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Kort introduktion till Reglerteknik I

Kort introduktion till Reglerteknik I Kort introduktion till Reglerteknik I Vad är reglerteknik? Läran om dynamiska system och deras styrning. System = Process = Ett objekt vars egenskaper vi vill studera/styra. Vi betraktar system som har

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: 2 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod T0002N Kursnamn Logistik 1 Datum 2012-10-26 Material Fördjupningsuppgift Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift

Läs mer

Andra föreläsningen kapitel 7. Patrik Lundström

Andra föreläsningen kapitel 7. Patrik Lundström Andra föreläsningen kapitel 7 Patrik Lundström Kvantisering i klassisk fysik: Uppkomst av heltalskvanttal För att en stående våg i en ring inte ska släcka ut sig själv krävs att den är tillbaka som den

Läs mer

8 Minsta kvadratmetoden

8 Minsta kvadratmetoden Nr, april -, Amelia Minsta kvadratmetoden. Ekvationssystem med en lösning, -fallet Ett linjärt ekvationssystem, som ½ +7y = y = har en entydig lösning om koefficientdeterminanten, här 7, är skild från

Läs mer

Svar till S-uppgifter Endimensionell Analys för I och L

Svar till S-uppgifter Endimensionell Analys för I och L Svar till S-uppgifter Endimensionell Anals för I och L S a) ja, ja, ja, nej, ja S4 N = A(I σ MZ), Z = I (σ A N), A = I MA S5 Du har väl inte verkligen multiplicerat ut alla termer? a) resp. b) 4 resp.

Läs mer