Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin

Storlek: px
Starta visningen från sidan:

Download "Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin"

Transkript

1 Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1

2 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2

3 Tillämpad matematisk programming Korttidsplanering av vatten- och värmekraftsystem är en tillämpning av matematisk programmering (optimeringslära). I den här kursen lär vi ut hur man formulerar optimeringsproblem, men inte hur man löser dem. Lösningsmetoder lärs ut av Matematikinstitutionen, t.ex. - SF1811 Optimeringslära, 6 hp - SF2812 Tillämpad linjär optimering, 7,5 hp - SF2822 Tillämpad ickelinjär optimering, 7,5 hp För att formulera optimeringsproblem behöver man vara bekant med grundläggande koncept inom matematisk programmering. 3

4 Optimering Optimeringslära (kallas också matematisk programmering) är en gren av tillämpad matematik. Generellt exempel: minimera f(x) då x X, där x = vektor av optimeringsvariabler, X = mängd av tillåtna lösningar. 4

5 Tillåtna lösningar Mängden av tillåtna lösningar definieras med olika matematiska uttryck. Bivillkor (definierar samband mellan optimeringsvariabler) Exempel: g(x) b. Variabelgränser Exempel: x x x, x heltal. 5

6 Minimering eller maximering Observera att man alltid kan växla mellan minimerings- och maximeringsproblem, eftersom Exempel: minimera f(x) maximera f(x) minimera x maximera x då 0 x 10. då 0 x 10. 6

7 Linjärprogrammering (LP) Klass av optimeringsproblem med linjär målfunktion och linjära bivillkor. Standardform: minimera c T x då Ax = b, 0 x. Man kan relativt snabbt lösa även stora LP problem med fler än variabler! Kommersiell programvara finns tillgänglig - GAMS, Matlab, Excel 7

8 Exempel A.1 Formulera LP problem på standardform Alice ska köpa något till hennes mammas fest. 2 liter frukt behövs för att fylla fruktskålen. Alices mamma vill att var och en av de fem gästerna ska få minst två var av det som Alice köper, d.v.s. Alice behöver köpa minst 10 saker. Alice får 100 kr och kan behålla växeln. Ett päron kostar 3 kr, varje päron har en volym på 1/6 liter. Ett äpple kostar 5 kr, varje päron har en volym på 0,3 liter. 8

9 Exempel A.1 LP-formulering Inför x 1 = antal päron, x 2 = antal äpplen. Formulera optimeringsproblemet: maximera 100 3x 1 5x 2 {vinst} då 1 --x ,3x 2 2, x 1 + x 2 10, x 1 0, x 2 0. {volymbivillkor} {kvantitetsbivillkor} {variabelgränser} 9

10 Exempel A.1 Minimering Ett LP-problem på standardform formuleras som ett minimeringsproblem. Maximera vinst Minimera kostnad maximera 100 3x 1 5x 2 {vinst} minimera 3x 1 + 5x 2 {kostnad} Observera att den konstanta termen i målfunktionen inte har någon inverkan på lösningen, eftersom den inte påverkas av vilka värden vi väljer på optimeringsvariablerna! Inför z = målfunktion. 10

11 Exempel A.1 Slackvariabler Ett LP-problem på standardform formuleras med likhetsbivillkor. Inför slackvariabler: x 3 = extra volym, x 4 = extra kvantitet. Formulera om bivillkoren: 1 --x x 2 x 3 = 2, {volymbivillkor} x 1 + x 2 x 4 = 10, {kvantitetsbivillkor} Lägg till variabelgränser: x 1 0, x 2 0, x 3 0, x 4 0. {variabelgränser} 11

12 Exempel A.1 LP-formulering på standardsform min z = 3x 1 + 5x 2 {kostnad} då 1 --x x 2 x 3 = 2, x 1 + x 2 x 4 = 10, {volymbivillkor} {kvantitetsbivillkor} x 1 0, x 2 0, x 3 0, x 4 0. {variabelgränser} 12

13 Exempel A.1 Optimal lösning Optimum: x 1 = 7,5 x 2 = 2,5 Optimalt värde på målfunktionen: z = 35 13

14 Extrempunkter Hörnen i det tillåtna området kallas extrempunkter. Den optimala lösningen till ett LP-problem kan alltid hittas i en av extrempunkterna. 14

15 Standardform Standardformen är användbar för matematisk analys. Dessutom förutsätter vissa lösare att LP-problemet är formulerat på standardform. Inom ingenjörskonsten är det viktigare med en tydlig problemformulering, d.v.s. optimeringsproblem ska formuleras så att det är lätt att känna igen det bakomliggande ingenjörsproblemet. - Använd tydligare beteckningar än x 1, x 2, - Välj mellan maximering och minimering utifrån vad som är naturligt för ingenjörsproblemet. - Välj mellan likhets- och olikhetsbivillkor utifrån vad som är naturligt för ingenjörsproblemet. 15

16 Exempel A.2 Ingen tillåten lösning Alices pappa säger Köp inte mer än 1 kg. Ett päron väger 1/6 kg. Ett äpple väger 0,3 kg. Lösning Lägg till ytterligare ett bivillkor: 1 --x ,3x 2 1. {viktbivillkor} 16

17 Exempel A.2 Optimal lösning Det finns inga tillåtna lösningar. (Eng.: infeasible problem). 17

18 Inga tillåtna lösningar Om ett problem saknar tillåten lösning så finns motstridiga bivillkor som inte kan vara uppfyllda samtidigt. Korttidsplaneringsproblem ska under normal omständigheter ha en tillåten lösning! Hur hittar man felet? - Vissa lösare kan ange vilka bivillkor som inte går att uppfylla. - Lägg till slackvariabler. I exempel A.2 kan vi t.ex. formulera det nya bivillkoret så här i stället: 1 --x {viktbivillkor} x 2 + x 5 x 6 1. x 5 0, x

19 Exempel A.3 Icke bindande bivillkor Det finns bara 13 päron kvar i affären. Lösning Lägg till ytterligare ett bivillkor: x {päronbegränsning} 19

20 Exempel A.3 Optimal lösning Optimum: x 1 = 7,5 x 2 = 2,5 Optimalvärde: z = 35 Det nya bivillkoret ändrar inte den optimala lösningen! 20

21 Exempel A.4 Problem utan ändlig lösning Alices mamma säger: Du får 1 kr för varje sak du köper i affären. Lösning Ny målfunktion: max z = x 1 + x 2 {inkomst} 21

22 Exempel A.4 Optimal lösning Optimum: x 1 = x 2 = Optimalvärde: z = 22

23 Problem utan ändlig lösning Ett problem utan ändlig lösning innebär att det inte finns tillräckligt med bivillkor. Korttidsplaneringsproblem ska inte sakna lösning! Hur hittar man felet? - Det troligaste är att några bivillkor saknas eller är felaktigt formulerade! - Titta på de optimala värdena på variablerna! Är det någon variabel som ligger utanför det intervall man kan förvänta sig? - Lägg till tillfälliga bivillkor. 23

24 Exempel A.5 Ändring i målfunktionen Ett päron kostar 4 kr i stället för 3 kr. Lösning Ny målfunktion: min z = 4x 1 + 5x 2 {kostnad} 24

25 Exempel A.5 Optimal lösning Optimum: x 1 = 7,5 x 2 = 2,5 Optimalvärde: z = 42,5 Samma lösning, men nytt optimal värde på målfunktionen! 25

26 Exempel A.6 Degenererad lösning Ett päron kostar 5 kr i stället för 3 kr. Lösning Ny målfunktion: min z = 5x 1 + 5x 2 {kostnad} 26

27 Exempel A.7 Optimal lösning Optimum: x 1 [0, 7,5] x 2 = 10 x 1 Optimalvärde: z = 50 Många lösningar med samma optimalvärde! 27

28 Degenererade problem Ett degenererat problem har ingen unik optimal lösning. Många korttidsplaneringsproblem är degenererade! Lösningen till ett degenererat problem kan skilja sig från lösare till lösare och kan t.o.m. bero på i vilken ordning man angett variabler och bivillkor! För att kontrollera om två lösningar till ett degenererat problem är likvärdiga måste man studera målfunktionsvärdet, inte de optimala värdena på optimeringsvariablerna! 28

29 Exempel A.7 Flackt optimum Jämför lösningen till följande två fall: - Ett päron kostar 4,90 kr och ett äpple kostar 5 kr. - Ett päron kostar 5 kr och ett äpple kostar 4,90 kr. 29

30 Exempel A.7 Optimal lösning Optimum: x 1 = 7.5 x 2 = 2.5 eller x 1 = 0 x 2 = 10 Optimalvärde: z = eller z = 49 30

31 Flackt optimum Ett flackt optimum innebär att det finns extrempunkter som inte är optimal, men som resulterar i ett målfunktionsvärde som är väldigt nära det optimala värdet. Vissa lösare söker inte alltid efter den exakt optimala lösningen, utan nöjer sig med en lösning som är tillräckligt bra. 31

32 LP-dualitet Alla LP problem (primalt problem) har ett motsvarande dualt problem. Primalt problem Dualt problem min c T x max b T då Ax = b, då A T c. x 0, ( obegränsad) där x = primalvariabler, = dualvariabler. 32

33 Stark dualitet Sats: Om ett primalt problem har en optimal lösning så har även det duala problemet en optimal lösning och de optimala målfunktionsvärdena är desamma. Beviset överlämnas till lämplig matematikkurs Den praktiska nyttan av LP-dualitet är att dualvariablerna (vars värde ändå beräknas då man löser LP-problemet) kan användas för känslighetsanalyser av den optimala lösningen. 33

34 Marginalvärden Högerledet i det primala problemet återfinns som målfunktion i det duala problemet. En liten ändring i målfunktionen till det duala problemet ändrar inte lösningen till det duala problemet (jfr exempel A.5)T lätt att beräkna nytt optimalt värde på målfunktionen. Tack vare den starka dualiteten så är det nya optimala målfunktionsvärdet för det primala problemet lika med det nya värdet för det duala problemet. Vi kan således använda dualvariablerna för att beräkna hur en liten ändring i högerledet på ett LP-problem påverkar det optimala målfunktionsvärdet. Dualvariablerna kan tolkas som marginalvärdet för högerledet i ett bivillkor, eftersom de anger hur målfunktionen kommer att ändras för en liten ändring i högerledet: z = T b. 34

35 Exempel A.9 Tillämpning av dualvariabler Antag att Alice skulle lura sin mamma och endast köpa 1,9 liter frukt. Hur mycket extra skulle hon kunna tjäna på detta bedrägeri?* * Föreläsaren önskar betona att syftet med detta exempel absolut inte är att uppmuntra ett sådant beteende! 35

36 Exempel A.9 Lösning Det duala problemet lyder max då , 0, , 1 0, 2 0. Att dualvariablerna måste vara icke-negativa beror på att olikhetsbivillkoren i Alices primala problem då det formuleras utan slackvariabler. 36

37 Exempel A.9 Optimal lösning Optimum: 1 = 15 2 = 0.5 Optimalvärde: z = 35 37

38 Exempel A.9 Känslighetsanalys Om Alice köper 1,9 liter frukt så ändras högerledet till volymbivillkoret med 0,1. Det optimala målfunktionsvärdet ändras då 0,1 1 = 1,5. Detta innebär att Alice sparar in en kostnad på 1,5 kr. 38

39 Blandad heltalsprogrammering (MILP) Klass av optimeringsproblem med linjär målfunktion och linjära bivillkor, där några variabler endast kan anta heltalsvärden. minimera c T x då Ax = b, x {0, 1, } Snälla MILP-problem kan lösas relativt fort. Besvärliga MILP-problem tar betydligt längre tid att lösa en ett LP-problem av samma storlek! Undvik heltalsvariabler om de inte är nödvändiga! 39

40 Exempel A.10 Heltalslösning Kunderna kan enbart köpa hela frukter. Lösning Lägg till variabelgränser: x 1, x 2 heltal. 40

41 Exempel A.10 Optimal lösning Optimum: x 1 = 7 x 2 = 3 Optimalvärde: z = 36 41

42 Styckvis linjära funktioner Ibland behöver man approximera en ickelinjär funktion i ett LP-problem. I en styckvis linjär funktion delas variabeln in i olika segment. Det lägsta värdet i varje segment är lika med 0, vilket ger oss att x = x j, j där x j är värdet i det j:e segmentet. Observera att vi inte tillåter vilka kombinationer av x j som helst; vi kan inte börja använda ett segment innan det föregående segmentet är fullt utnyttjat, d.v.s. om x j > 0 så är x j = x j 1, där x j 1 är det maximala värdet i segment j 1. 42

43 Exempel A.10 Mängdrabatt De första fem päronen kostar 5 kr/st. För ytterligare päron utöver detta får Alice rabatt och betalar bara 3 kr/st. 43

44 Exempel A.10 Lösning Omformulera problemet med en styckvis linjär funktion och introducera en binär variabel: min 5x 1, 1 + 3x 1, 2 + 5x 2 {kostnad} 1 1 då --x {volymbivillkor} x ,3x 2 2, x 1, 1 + x 1, 2 + x 2 10, {kvantitetsbivillkor} x 1, 1 5s, x 1, 2 M s, x 1, 1 0, x 1, 2 0, x 2 0, s {0, 1}. {variabelgränser} där M är ett godtyckligt, stort tal. 44

45 Exempel A.10 Den binära variabelns funktion Antag M = 100. Det är optimalt att undvika att använda x 1, 1 och i stället använda x 1, 2 så mycket som möjligt, eftersom kostnaden för x 1, 2 är lägre! För s = 0 erhålls x 1, 1 5s x 1, 1 0 x 1, 1 0 x 1, 2 M s x 1, 2 0 x 1, 2 = 0 För s = 1 erhålls x 1, 1 5s x 1, 1 5 x 1, 1 5 x 1, 2 M s x 1, x 1,

46 Exempel A.11 Begränsat erbjudande Affären erbjuder rabatt (3 kr/st) på upp till fem päron. Köper Alice ytterligare päron får hon betala fullt pris, d.v.s. 5 kr/st. 46

47 Exempel A.10 Lösning Omformulera problemet med en styckvis linjär funktion. min 3x 1, 1 + 5x 1, 2 +5x 2 {kostnad} 1 1 då --x {volymbivillkor} x ,3x 2 2, x 1, 1 + x 1, 2 + x 2 10, {kvantitetsbivillkor} x 1, 1 5, x 1, 1 0, x 1, 2 0, x 2 0. {variabelgränser} I det här fallet är det fördelaktigt att använda x 1, 1 i stället för x 1, 2 och därför är det tillräckligt att ange en övre gräns för x 1, 1 ingen binär variabel behövs! 47

48 Ickelinjär programmering (NLP) Klass av optimeringsproblem där åtminstone ett bivillkor eller målfunktionen är ickelinjär. Vissa snälla NLP-problem kan lösas relativt snabbt. Andra NLP-problem kan ta lång tid att lösa och det är inte säkert att vi hittar ett globalt optimum. Undvik ickelinjära problem om det inte är nödvändigt! Globalt minimum Lokala minimum 48

1 Duala problem vid linjär optimering

1 Duala problem vid linjär optimering Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi

Läs mer

Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform.

Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. Föreläsning 2: Simplexmetoden. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. 3. Simplexalgoritmen. 4. Hur bestämmer man tillåtna startbaslösningar? Föreläsning

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN 1 OPTIMERINGSLÄRA GRUNDKURS för I, Ii och TB Datum: 24 augusti 2009 Tid: 8.00-13.00 Hjälpmedel: Lundgren m fl: Optimeringslära och/eller Lundgren

Läs mer

Optimeringslära 2013-11-01 Kaj Holmberg

Optimeringslära 2013-11-01 Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 23-- Kaj Holmberg Uppgift a: Problemet skrivet i standardform är: Lösningar min

Läs mer

Optimeringslära för T (SF1861)

Optimeringslära för T (SF1861) Optimeringslära för T (SF1861) 1. Kursinformation 2. Exempel på optimeringsproblem 3. Introduktion till linjärprogrammering Introduktion - Ulf Jönsson & Per Enqvist 1 Linjärprogrammering Kursinformation

Läs mer

De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas. 1 2 xt Hx + c T x. minimera

De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas. 1 2 xt Hx + c T x. minimera Krister Svanberg, mars 2012 1 Introduktion De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas på följande allmänna form: f(x) (1.1) x F, där x = (x 1,..., x n ) T

Läs mer

Lösningar till 5B1762 Optimeringslära för T, 24/5-07

Lösningar till 5B1762 Optimeringslära för T, 24/5-07 Lösningar till 5B76 Optimeringslära för T, 4/5-7 Uppgift (a) Först använder vi Gauss Jordans metod på den givna matrisen A = Addition av gånger första raden till andra raden ger till resultat matrisen

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 6 Det duala problemet Relationer primal dual Optimalitetsvillkor Nätverksoptimering (introduktion) Agenda Motivering av det duala problemet (kap 6.)

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 9--7 Kaj Holmberg Lösningar Uppgift a: Inför slackvariabler x 5, x 6 och x 7 Starta med slackvariablerna

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-08-31 Kaj Holmberg Lösningar Uppgift 1 1a: Inför slackvariabler x 5, x 6 och

Läs mer

LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter

LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter LP-problem Vårt första exempel Ett LP-problem: max z = c T x då Ax b, x 0. Den tillåtna mängden är en polyeder och konvex. Målfunktionen är linjär och konvex. Så problemet är konvext. Var ligger optimum?

Läs mer

z = min 3x 1 2x 2 + y Fixera y, vilket ger subproblemet

z = min 3x 1 2x 2 + y Fixera y, vilket ger subproblemet Bendersdekomposition Blandade heltalsproblem med ett stort antal kontinuerliga variabler och få heltalsvariabler. Mycket lättare att lösa om heltalsvariablerna fixeras. Bendersdekomposition (primal dekomposition)

Läs mer

TNSL05 Optimering, Modellering och Planering. Föreläsning 6

TNSL05 Optimering, Modellering och Planering. Föreläsning 6 TNSL05 Optimering, Modellering och Planering Föreläsning 6 Agenda Kursens status Tolkning av utdata Intro lösningsmetoder Linjära optimeringsproblem (LP) på standardform Algebraisk formulering av LP Konveitet

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler

Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j j= a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland

Läs mer

1(8) x ijt = antal mobiltelefoner av typ i=1,,m, Som produceras på produktionslina 1,, n, Under vecka t=1,,t.

1(8) x ijt = antal mobiltelefoner av typ i=1,,m, Som produceras på produktionslina 1,, n, Under vecka t=1,,t. 1(8) (5p) Uppgift 1 Företaget KONIA tillverkar mobiltelefoner I en stor fabrik med flera parallella produktionslinor. För att planera produktionen de kommande T veckorna har KONIA definierat följande icke-negativa

Läs mer

TNSL05 Optimering, Modellering och Planering. Föreläsning 4

TNSL05 Optimering, Modellering och Planering. Föreläsning 4 TNSL05 Optimering, Modellering och Planering Föreläsning 4 2018-11-14 2 Kursmål: idag Studenten ska efter avslutad kurs kunna: Analysera och formulera optimeringsmodeller inom ekonomiska tillämpningsområden

Läs mer

Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Onsdag 25 augusti 2010 kl

Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Onsdag 25 augusti 2010 kl Lösningsförslag till tentamen i SF86 Optimeringslära för T. Onsdag 25 augusti 2 kl. 4. 9. Examinator: Per Enqvist, tel. 79 62 98. (a) Vi har ett nätverksflödesproblem med 5 noder. Låt x = (x 2, x 3, x

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 3 Problemklassificering Global/lokal optimalitet Konvexitet Generella sökmetoder Agenda Problemklassificering (kap 1.4, 2.1 2.3) Lokalt/globalt optimum

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 26-6- Kaj Holmberg Lösningar Uppgift Hinkpackning (hink = tur med cykeln. Jag använder

Läs mer

Linjärprogrammering (Kap 3,4 och 5)

Linjärprogrammering (Kap 3,4 och 5) Linjärprogrammering (Kap 3,4 och 5) Fredrik Olsson, fredrik.olsson@iml.lth.se Avdelningen för produktionsekonomi Lunds tekniska högskola, Lunds universitet 16 september 2015 Dessa sidor innehåller kortfattade

Läs mer

Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722)

Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722) Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722) Februari 2004 Avdelningen för Optimeringslära och Systemteori Institutionen för Matematik Kungliga Tekniska Högskolan Stockholm Allmän information

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-01-02 Kaj Holmberg Lösningar Uppgift 1 1a: Den givna startlösningen är tillåten

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 1 november 2013 Tid:.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 28--24 Kaj Holmberg Uppgift Lösningar a: Målfunktionen är summan av konvexa funktioner (kvadrater och

Läs mer

Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Torsdag 28 maj 2010 kl

Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Torsdag 28 maj 2010 kl Lösningsförslag till tentamen i SF86 Optimeringslära för T. Torsdag 28 maj 2 kl. 4. 9. Examinator: Per Enqvist, tel. 79 62 98. (a) Inför variablerna x = (x sr, x sm, x sp, x sa, x sd, x gr, x gm, x gp,

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 26 augusti 2014 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: januari 2013 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: 2 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får

Läs mer

1 LP-problem på standardform och Simplexmetoden

1 LP-problem på standardform och Simplexmetoden Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 28-5-3 Kaj Holmberg Lösningar Uppgift a: P: Grafisk lösning ger x = 2/7 = 2 6/7,

Läs mer

min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:

min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ: Heltalsprogrammering Speciell användning av heltalsvariabler max z = då n c j x j j= n a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner TNSL05 (6) TENTAMEN Datum: augusti 07 Tid: 8- Provkod: TEN Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt p, betyg kräver

Läs mer

1 Konvexa optimeringsproblem grundläggande egenskaper

1 Konvexa optimeringsproblem grundläggande egenskaper Krister Svanberg, april 2012 1 Konvexa optimeringsproblem grundläggande egenskaper Ett optimeringsproblem är i viss mening godartat om det tillåtna området är en konvex mängd och den målfunktion som ska

Läs mer

Lösningar till SF1861/SF1851 Optimeringslära, 24/5 2013

Lösningar till SF1861/SF1851 Optimeringslära, 24/5 2013 Lösningar till SF86/SF85 Optimeringslära, 4/5 03 Uppgift (a) Inför de 3 variablerna x ij = kvantitet (i sorten ton) som fabrik nr i åläggs att tillverka av produkt nr j, samt t = tiden (i sorten timmar)

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM. Tentamensinstruktioner. När Du löser uppgifterna

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM. Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 11 januari 2017 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 29 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Lösningar till SF1861 Optimeringslära, 28 maj 2012

Lösningar till SF1861 Optimeringslära, 28 maj 2012 Lösningar till SF86 Optimeringslära, 28 maj 202 Uppgift.(a) Då det primala problemet P är så är det motsvarande duala problemet D minimera 3x + x 2 då 3x + 2x 2 6 x + 2x 2 4 x j 0, j =, 2. maximera 6 +

Läs mer

Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.

Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3. TNSL05 2(8) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F2. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Hemuppgift 2, SF1861 Optimeringslära för T, VT-10

Hemuppgift 2, SF1861 Optimeringslära för T, VT-10 Hemuppgift 2, SF1861 Optimeringslära för T, VT-1 Kursansvarig: Per Enqvist, tel: 79 6298, penqvist@math.kth.se. Assistenter: Mikael Fallgren, werty@kth.se, Amol Sasane, sasane@math.kth.se. I denna uppgift

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 23 augusti 2016 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:

Läs mer

Lösningar/svar. Uppgift 1. Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system. Optimeringslära Kaj Holmberg

Lösningar/svar. Uppgift 1. Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system. Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system Matematiska Institutionen Lösning till tentamen Optimeringslära 2017-08-22 Kaj Holmberg Lösningar/svar Uppgift 1 1a: Variabeldefinition:

Läs mer

Tentamensinstruktioner. Vid skrivningens slut

Tentamensinstruktioner. Vid skrivningens slut Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN1 OPTIMERINGSLÄRA GRUNDKURS för I och Ii Datum: 13:e januari 2011 Tid: 8.00 13.00 Hjälpmedel: Kurslitteratur av Lundgren m fl: Optimeringslära

Läs mer

Optimeringslara = matematik som syftar till att analysera och. Optimeringslara ar en gren av den tillampade matematiken.

Optimeringslara = matematik som syftar till att analysera och. Optimeringslara ar en gren av den tillampade matematiken. Optimal = basta mojliga. Optimeringslara = matematik som syftar till att analysera och nna det basta mojliga. Anvands oftast till att nna ett basta handlingsalternativ i tekniska och ekonomiska beslutsproblem.

Läs mer

min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:

min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ: Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j a ij x j b i x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland u j

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner TNSL05 1(8) TENTAMEN Datum: 1 april 2016 Tid: XXX Sal: XXX Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt

Läs mer

Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition

Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition Optimum? När man har formulerat sin optimeringsmodell vill man lösa den Dvs finna en optimal lösning, x, till modellen Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan (bättre Upprepa, tills

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för EMM Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 16 mars 010 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Kombinatorisk

Läs mer

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 19 oktober 2017 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM. Tentamensinstruktioner. När Du löser uppgifterna

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM. Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 13 januari 2016 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:

Läs mer

SF1545 Laboration 1 (2015): Optimalt sparande

SF1545 Laboration 1 (2015): Optimalt sparande Avsikten med denna laboration är att: SF1545 Laboration 1 (215: Optimalt sparande - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen, - lösa

Läs mer

Lösningar till tentan i SF1861 Optimeringslära, 1 juni 2017

Lösningar till tentan i SF1861 Optimeringslära, 1 juni 2017 Lösningar till tentan i SF86 Optimeringslära, juni 7 Lösningarna är på svenska, utom lösningen av (a som är på engelska (a The considered network is illustrated in FIGURE below, where the supply at the

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: oktober 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING

Läs mer

Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.

Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3. TNSL05 (10) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: januari 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 9 Icke-linjär optimering Konveitet Metoder ör problem utan bivillkor Optimalitetsvillkor ör icke-linjära problem Icke-linjär programmering Non-linear

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner TNSL05 1(9) TENTAMEN Datum: augusti 017 Tid: 8-1 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 1 p, betyg

Läs mer

Olinjär optimering med bivillkor: KKT min f (x) då g i (x) 0 för alla i

Olinjär optimering med bivillkor: KKT min f (x) då g i (x) 0 för alla i Olinjär optimering med bivillkor min då f (x) g i (x) 0 för alla i Specialfall: Konvext problem. Linjära bivillkor: Ax b. Linjära likhetsbivillkor: Ax = b. Inga bivillkor: Hanterat tidigare. Metodprinciper:

Läs mer

TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.

TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad. Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 27 augusti 2013 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 2 oktober 2013 Tid:.00-13.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer

TAOP14: Optimeringslära SAMMANFATTNING OSKAR QVIST:

TAOP14: Optimeringslära SAMMANFATTNING OSKAR QVIST: 2015 TAOP14: Optimeringslära SAMMANFATTNING OSKAR QVIST: OSKQV953@STUDENT.LIU.SE Innehållsförteckning Allmänt... 2 Om optimering... 3 Matematiska formuleringar av optimeringsproblem... 3 Linjärprogrammering

Läs mer

Optimering, exempel. Funktionens enda stationära punkt är alltså origo. Den ligger också i det inre av mängden.

Optimering, exempel. Funktionens enda stationära punkt är alltså origo. Den ligger också i det inre av mängden. Optimering, exempel Exempel 1 (optimering över kompakt mängd) Bestäm största och minsta värdet till funktionen f(x,y) = x 4 + y 4 + 4x 2 + 16 i cirkelskivan {x 2 + y 2 4}. Lösning: Cirkelskivan är kompakt

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 18 januari 2019 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:

Läs mer

1. Vad är optimering?

1. Vad är optimering? . Vad är optimering? Man vill hitta ett optimum, när något är bäst, men att definiera vad som är bäst är inte alltid så självklart. För att kunna jämföra olika fall samt avgöra vad som är bäst måste man

Läs mer

Laboration 1 - Simplexmetoden och Modellformulering

Laboration 1 - Simplexmetoden och Modellformulering Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 30 januari 2013 Laboration 1 - Simplexmetoden och Modellformulering Den första delen av laborationen

Läs mer

Föreläsning 7: Kvadratisk optimering. 4. Kvadratisk optimering under linjära bivillkor

Föreläsning 7: Kvadratisk optimering. 4. Kvadratisk optimering under linjära bivillkor Föreläsning 7: Kvadratisk optimering 1. Kvadratisk optimering utan bivillkor 2. Positivt definita och semidefinita matriser 3. LDL T faktorisering 4. Kvadratisk optimering under linjära bivillkor 5. Minsta

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 19 april 2017 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:

Läs mer

Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att:

Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att: Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen,

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP6/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

När det gäller en motor kanske man vill maximera verkningsgraden för att hålla nere bränslekostnaden men inte till vilket pris som helst.

När det gäller en motor kanske man vill maximera verkningsgraden för att hålla nere bränslekostnaden men inte till vilket pris som helst. Vad är optimering? Man vill hitta ett optimum, när något är bäst. Men att definiera vad som är bäst är inte alltid så självklart. När det gäller en motor kanske man vill maximera verkningsgraden för att

Läs mer

TNSL05 Optimering, Modellering och Planering. Föreläsning 2: Forts. introduktion till matematisk modellering

TNSL05 Optimering, Modellering och Planering. Föreläsning 2: Forts. introduktion till matematisk modellering TNSL05 Optimering, Modellering och Planering Föreläsning 2: Forts. introduktion till matematisk modellering 2017-11-01 2 Dagordning Matematisk modellering, Linjära Problem (LP) Terminologi Målfunktion

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 augusti 2015 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Lösningar till SF1852 Optimeringslära för E, 16/1 08

Lösningar till SF1852 Optimeringslära för E, 16/1 08 Lösningar till SF8 Optimeringslära för E, 6/ 8 Uppgift (a) Problemet är ett transportproblem, ett specialfall av minkostnadsflödesproblem Nätverket består av 7 st noder A,B,C,P,Q,R,S, alternativt kallade,,,7,

Läs mer

Lösningar till tentan i SF1861 Optimeringslära, 3 Juni, 2016

Lösningar till tentan i SF1861 Optimeringslära, 3 Juni, 2016 Lösningar till tentan i SF86 Optimeringslära, 3 Juni, 6 Uppgift (a) We note that each column in the matrix A contains one + and one, while all the other elements in the column are zeros We also note that

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner TNSL05 1(7) TENTAMEN Datum: 21 april 2017 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,

Läs mer

TNSL05 Optimering, Modellering och Planering. Föreläsning 9

TNSL05 Optimering, Modellering och Planering. Föreläsning 9 TNSL05 Optimering, Modellering och Planering Föreläsning 9 Agenda Kursens status Dualitet Billigaste väg problem 208-2- Kursens status Föreläsning (), 2-5: Modellering Föreläsning 6-0, () Lösningsmetod/känslighetsanalys

Läs mer

Optimeringsproblem. 1 Inledning. 2 Optimering utan bivillkor. CTH/GU STUDIO 6 TMV036c /2015 Matematiska vetenskaper

Optimeringsproblem. 1 Inledning. 2 Optimering utan bivillkor. CTH/GU STUDIO 6 TMV036c /2015 Matematiska vetenskaper CTH/GU STUDIO TMV3c - 1/15 Matematiska vetenskaper Optimeringsproblem 1 Inledning Vi skall söka minsta eller största värdet hos en funktion på en mängd, dvs. vi skall lösa s.k. optimeringsproblem min f(x)

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 0 augusti 201 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner TNSL05 1(7) TENTAMEN Datum: 1 april 2016 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,

Läs mer

5B1817 Tillämpad ickelinjär optimering. Kvadratisk programmering med olikhetsbivillkor Active-set metoder

5B1817 Tillämpad ickelinjär optimering. Kvadratisk programmering med olikhetsbivillkor Active-set metoder 5B1817 Tillämpad ickelinjär optimering Föreläsning 7 Kvadratisk programmering med olikhetsbivillkor Active-set metoder A. Forsgren, KTH 1 Föreläsning 7 5B1817 2006/2007 Kvadratisk programmering med olikhetsbivillkor

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 1 oktober 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

Laboration 1: Optimalt sparande

Laboration 1: Optimalt sparande Avsikten med denna laboration är att: Laboration 1: Optimalt sparande - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen, - lösa ett optimeringsproblem

Läs mer

Optimering med bivillkor

Optimering med bivillkor Optimering med bivillkor Vi ska nu titta på problemet att hitta max och min av en funktionen f(x, y), men inte över alla möjliga (x, y) utan bara för de par som uppfyller ett visst bivillkor g(x, y) =

Läs mer

Modellering och optimering av schemaläggning vid en ridskola

Modellering och optimering av schemaläggning vid en ridskola Modellering och optimering av schemaläggning vid en ridskola En fallstudie i heltalsprogrammering Kandidatarbete inom civilingenjörsutbildningen vid Chalmers Rasmus Einarsson Patrik Johansson Oskar Redlund

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 8 januari 201 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: april 2018 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg: Optimering

Läs mer

Laboration 1 - Simplexmetoden och modellformulering

Laboration 1 - Simplexmetoden och modellformulering Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 29 januari 2017 Laboration 1 - Simplexmetoden och modellformulering Den första delen av laborationen

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 24 oktober 204 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 maj 2014 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING

Läs mer