Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå

Storlek: px
Starta visningen från sidan:

Download "Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå"

Transkript

1 Användning Multilevel Modeling (MLM) Var sak på sin nivå Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Kärt barn har många namn: (1) Random coefficient models; () Mixed effect models; (3) Multilevel regression models; () Hierarchical linear models; (5) Multilevel covariance structure models; etc. Denna metod används när man skall predicera/förklara individuella värden (t.ex. skolbetyg) utifrån prediktorer som är både på gruppnivå (t.ex. lärarstabens kompetens) och på individnivå (t.ex. hur mycket man pluggar). Data är hierarkiska. Precis som vid vanlig regressionsanalys måste utfallsvariabeln (den beroende variabeln) vara kontinuerlig. (Det finns dock även logistisk multilevel modeling ). Fixed & Random Fixed effects: Effekten av en prediktor (lägre nivå) antas vara den samma i alla subgrupper (högre nivå). Random effects: Effekten av en prediktor (lägre nivå) antas (tillåts) variera mellan olika subgrupper (högre nivå). Fixed & Random Intercept = Värdet i utfallsvariabeln när prediktorerna har värdet noll. Det är vanligt att man centrerar variabler och då är värdet noll = medelvärdet. Fixed intercept: Värdet i utfallsvariabeln antas vara det samma i alla subgrupper (högre nivå) när prediktorerna (lägre nivå) har värdet noll. Random intercept: Värdet i utfallsvariabeln tillåts variera mellan subgrupper (högre nivå) när prediktorerna (lägre nivå) har värdet noll. Fixed & Random Centrering Utfallsvärde Utfallsvärde Prediktorvärde Fixed intercept, Fixed effect Prediktorvärde Fixed intercept, Random effect A B C D E F G H A B C D E F G H Utfallsvärde Utfallsvärde Prediktorvärde Random intercept, Fixed effect Prediktorvärde Random intercept, Random effect A B C D E F G H A B C D E F G H För att intercept skall bli meningsfulla är det vanligt att man centrerar prediktorer. Centreringen kan göras utifrån hela stickprovet eller utifrån subsamples Centrerat värde x ij x.. Intercept = Predicerad vikt om man är cm lång. Intercept = Predicerad vikt om man är av medellängd. 1

2 Centrering Varför inte OLS? Säg att vi skall predicera elevers betyg i ett visst ämne utifrån lärares estimerade kompetens. Vi samlar in data från 3 elever som har sex olika lärare (alltså 5 elever per lärare). Med OLS analys skulle vi tvingas att antingen: (1) Ge varje elev ett värde i lärarkompetens som motsvarar hans/hennes lärare och sedan predicera de 3 elevernas individuella betyg utifrån lärarkompetens. Problem: Analysen utgår ifrån att vi har 3 av varandra oberoende observerade värden på prediktorn (lärarkompetens) fast vi egentligen bara har estimerad kompetens från sex lärare. Vi får dopade frihetsgrader. () Beräkna genomsnittligt betyg för de sex lärarnas elever och sedan predicera genomsnittligt betyg utifrån de sex lärarnas individuella kompetens. Nu får vi istället endast sex värden i prediktor och utfallsvariabel, trots att vi har data från 3 elever. Analysen får låg power. Dessutom: Båda förfarandena ovan ignorerar det faktum att även värden i utfallsvariabeln (betyg) samt värden i individuella prediktorer tenderar att vara mer lika inom grupper. Dessa problem undviks genom att använda Multilevel Modeling istället för OLS. Estimeringsmetod Estimeringsmetod Maximum Likelihood (ML): För kombinationer av parametervärden estimeras sannolikheten för att erhålla aktuella data om detta är parametervärdena i populationen. Kombinationen av parametervärden som maximerar denna sannolikhet väljs ut. Restricted Maximum Likelihood (REML, RML): ML ger biased estimat i vissa situationer (t.ex. med små sample). REML algoritmen kompenserar för detta. Modellanpassning ML räknar fram en sannolikhet för att få de data vi har om de utvalda parametervärdena gäller i populationen som stickprovet representerar (Likelihood, varierar mellan och 1, ju högre värde desto bättre modell). Man tar den naturliga logaritmen av denna sannolikhet (Log Likelihood, varierar mellan och, ju högre värde desto bättre modell). Sedan multipliceras detta värde med ( LL, varierar mellan och, ju lägre värde desto bä re modell). Varför gör man så? Jo, LL har en chi fördelning och därmed kan man signifikanspröva modellens anpassning samt skillnaden mellan nestade modeller. Modellanpassning, Differens En enklare (färre parametrar) modell A sägs vara nestad i en mer generell (fler parametrar) modell B om alla parametrar som finns i A också finns i B. Anpassningen för B anpassningen för A, men är skillnaden signifikant? Detta kan testas genom att beräkna skillnaden mellan de två modellernas anpassning ( LN(Likelihood)) och se om denna skillnad är signifikant enligt chi fördelningen (df = parametrar i B minus parametrar i A). Detta är möjligt eftersom skillnaden mellan två chi värden också har en chi fördelning. OBS: Detta är möjligt endast om estimeringen gjorts med Maximum Likelihood (ML) och INTE med REML.

3 Nestning Modell A: Resultat = Intercept + Residual Modell B: Resultat = Intercept + Effekt av pluggande + Residual Modell C: Resultat = Intercept + Effekt av lärarens kompetens + Effekt av skolans ekonomi + Residual Modell D: Resultat = Intercept + Effekt av pluggande + Effekt av lärarens kompetens + Effekt av skolans ekonomi + Residual Två nivåer, Data A är nestad i B, C, och D Bär nestad i D C är nestad i D Där inte nestad i någon Modell 1 (M1), Specifikation Resultat = Grand mean + Residual (för att testa om det finns en variation mellan elevers provresultat. Modell 1 (M1), Specifikation Kan den genomsnittliga avvikelsen (kvadrerade) från medelvärdet vara lika med noll i populationen? M1, Parametrar Modell (M), Specifikation Grand mean = medelvärdet för Prov1 över hela stickprovet Vi lägger till en prediktor på individnivå (nivå 1): Resultat = Grand mean + B1 x Pluggar.cent(n1) + Residual. Enligt modellen är effekten av pluggande den samma över alla lärare (den är fixed)). Det finns en signifikant variation mellan elevernas resultat. 3

4 Modell (M), Specifikation Kan pluggandet förklara varians i resultat? All varians? M, Anpassning och Parametrar Genom att ta med pluggande som en prediktor sjönk missanpassningen från 5955 till 5, vilket är jättesignifikant, χ (df = 1) = 1375, p <.1 Både interceptet och effekten av pluggande är signifikant skilda från noll Interceptet ( = predicerat resultat om man pluggar genomsnittligt ) är signifikant högre än noll. När pluggandet ökar med en timme så ökar provresultatet med.7 poäng och denna effekt är signifikant högre än noll. M, Random effect Modell 1 (utan pluggande som prediktor) Tar vi med pluggande som prediktor så sjunker residualerna från 1 till 13. Detta innebär att 15% av variationen mellan elevernas resultat kan förklaras av skillnader i pluggande. Nedan ser vi dock att det finns en signifikant andel varians kvar att förklara. Modell 3 (M3), Specifikation Vi lägger till ett random intercept på lärarnivå (nivå ) för att testa om det finns någon signifikant skillnad i det genomsnittliga resultat mellan lärare. Resultat = Grand mean + B1 x Pluggar.cent(n1) + Intercept för lärare(n) + Residual Intercept Modell (med pluggande som prediktor) Modell 3 (M3), Specifikation Får vi en bättre anpassning om varje grupp (klass) får en egen regressionslinje? Dessa linjer skall dock vara parallella och har ett intercept som är lika med gruppens medelvärde på den beroende variabeln. M3, Anpassning och Random Genom att ta låta det genomsnittliga resultatet variera mellan lärare sjönk missanpassningen från 5 till 3, vilket är signifikant, χ (df = 1) = 1, p <.1 Genom att ta låta det genomsnittliga resultatet variera mellan lärare sjönk Residualerna från 135 (M) till 1. Alltså: 5% av variationen mellan elevers resultat som inte kan förklaras av skillnader i pluggande finns mellan lärarna. Variationen i det genomsnittliga resultatet mellan lärare är signifikant.

5 Modell (M), Specifikation Vi lägger till två prediktorer på lärarnivå (n) för att se om dessa kan förklara variationen i genomsnittligt resultat mellan lärare: Resultat = Grand mean + B1 x Pluggar(n1) + B x Lärarkomp(n) + B3 x Pluggmedel(n) + Intercept för lärare(n) + Residual Intercept M, Anpassning och Parametrar Genom att inkludera de två prediktorerna sjönk missanpassningen från 3 till 39, vilket är signifikant, χ (df = ) = 15, p <.1 Interceptet och alla effekter är signifikant skilda från noll Interceptet = predicerat provresultat om man är genomsnittlig på alla prediktorer Kontrollerat för de andra prediktorerna, associeras ett stegs ökning i eget pluggande med en ökning i resultat med,1 poäng, lärarens kompetens med en ökning med, poäng samt de andra elevernas (med samma lärare) pluggande med en ökning med,5 poäng. M, Random effects M3 Genom att inkludera lärarens kompetens samt genomsnittligt pluggande bland lärarens elever kan vi förklara 3 % av variationen i genomsnittligt provresultat mellan lärare. Residualen är variation mellan elever inom lärare (nivå 1) och påverkas inte av inkluderandet av prediktorer på lärarnivå (nivå ). Modell 5 (M5), Specifikation Vi lägger till en random effekt av pluggande (n1) för att se om effekten av pluggande (n1) skiljer sig åt mellan lärare. Intercept + Pluggar.cent M Modell 5 (M5), Specifikation Vi låter lutningen, såväl som interceptet, på regressionslinjen variera mellan grupper (klasser). M5, Anpassning och Random Genom att ta låta effekten av eget pluggande variera mellan lärare sjönk missanpassningen från 39 till 39, vilket är signifikant, χ (df = 1) =, p <.1. Variationen i effekten av elevens eget pluggande mellan lärare är signifikant. 5

6 Modell (M), Specifikation Vi lägger till två interaktioner mellan nivåerna, nämligen (a) eget pluggande (n1) x lärarkompetens (n); (b) eget pluggande (n1) x genomsnittligt pluggande (n). Detta görs för att försöka förklara varför effekten av eget pluggande varierar mellan lärare. Intercept + Pluggar.cent M, Anpassning och Parametrar Genom att inkludera de två interaktionstermerna sjönk missanpassningen från 39 till 3, vilket inte riktigt är signifikant, χ (df = ) = 5, p =. Effekten av eget pluggande interagerar signifikant med genomsnittligt pluggande för elever med samma lärare men inte med lärarens kompetens. När det genomsnittliga pluggandet för de andra eleverna med samma lärare ökar med ett, så minskar den positiva effekten av det egna pluggandet på resultatet med, M, Random effects M5 Ungefär 5% av variationen i effekten av eget pluggande som finns mellan lärare kan förklaras med lärarens kompetens och det genomsnittliga pluggandet bland lärarens elever. M, Figur M Tre nivåer, Data M, Figur

7 Upprepade mätningar Upprepade mätningar Tid (månader) Undersökningsdeltagare Första Andra Tredje Fjärde Femte Sjätte Skulle vi jämföra de olika mättillfällena med varandra (vad gäller någon utfallsvariabel) så skulle vi inte ta hänsyn till det faktum att tiden (t.ex. under behandling) är olika vid de olika mättillfällena för olika personer. Data organiseras vertikalt. En fördel med detta är att en person stryks inte helt om han/hon har ett saknat värde på utfallsvariabeln. Modell 7 (M7), Specifikation Vi beräknar om en patients grad av depression vid en viss tidpunkt är en funktion av tid under behandling. Vi testar även om startvärdet (intercept) samt effekten av tid varierar mellan individer (vi specar dem som random). M7, Anpassning och Parametrar Det finns en signifikant effekt av tid på graden av depression. Graden av depression ges av formeln Dep. = 7,99 1,1 Tid. Graden av depression sjunker alltså med tiden. M7, Random effects Varje person får sin egen regressionslinje. M7, Figur Personernas grad av depression kan inte helt förklaras av tid (Residual variansen är signifikant). Det finns en skillnad i startvärde mellan individer (Intercept), samt vad gäller effekten av tid på graden av depression mellan individer. 7

8 Modell (M), Specifikation Vi lägger till typ av behandling samt interaktionen mellan behandling och tid. M, Anpassning och Parametrar Genom att ta med behandling samt tid behandling sjönk missanpassningen från 9 till 5, vilket är signifikant, χ (df = ) = 1, p <.1. Behandling har fyra kategorier och detta blir tre dummyvariabler Effekten av tid interagerar med behandling. M, Parametrar M, Figur För behandling (= D) sjunker graden av depression med,5 per månad. Behandling 1 (= A): Linjens lutning är = +.9 (depressionen ökar alltså per månad) Behandling (= B): Linjens lutning är = 1. Behandling 3 (= C): Linjens lutning är =.3 Depressionen sjunker signifikant mer över tid för de med behandling D jämfört med de tre andra behandlingarna. M, Random effects M7 Variansen i effekten av tid på depression som finns mellan individer kan till 7,3 % förklaras av behandling (variansen sjunker från, till 1,7), men det finns fortfarande signifikant med residual variation mellan individer kvar att förklara. Modell 9 (M9), Specifikation Vi backar lite: Varför sjunker graden av depression över tid och varför är sänkningen större för vissa än för andra? Kan det ha att göra med serotonin? Serotonin är en prediktor på nivå 1. M

9 M9, Parametrar M9, Random effects M7 M7 M9 M9.7 % av förändringen (sänkningen) i depression över tid kan förklaras av förändringen (ökningen) i serotonin (effekten av tid sjunker från 1.97 till.35 när vi kontrollerar för serotonin). 7 % av skillnaden i förändringen i depression över tid mellan patienter kan förklaras av skillnaden i serotonin (variansen i effekten av tid sjunker från. till. när vi kontrollerar för serotonin). Modell 1 (M1), Specifikation Kan det vara så att skillnaden i behandlingars effektivitet kan förklaras av skillnader i serotoninhalter? M1, Parametrar 51,9 % av skillnaden i förändringen över tid mellan behandling D och A kan förklaras av skillnader i serotoninhalter (skillnaden sjunker från.3 till 1. när vi kontrollerar för serotonin). 5 % av skillnaden mellan behandling D och B och % av skillnaden mellan behandling D och C kan förklaras av skillnader i serotoninhalter. M M1 M1, Figur Serotoninhalten ökar signifikant mer för dem med behandling D än för de tre andra behandlingsgrupperna. 9

Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8

Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 1 Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 Dessa instuderingsfrågor är främst tänkta att stämma överens med innehållet i föreläsningarna,

Läs mer

Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL)

Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL) Innehåll: 1. Risk & Odds 1.1 Risk Ratio 1.2 Odds Ratio 2. Logistisk Regression 2.1 Ln Odds 2.2 SPSS Output 2.3 Estimering (ML) 2.4 Multipel 3. Survival Analys 3.1 vs. Logistisk 3.2 Censurerade data 3.3

Läs mer

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet 1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet För att bli godkänd på inlämningsuppgiften krävs att man utför uppgiften om

Läs mer

Regressionsanalys med SPSS Kimmo Sorjonen (2010)

Regressionsanalys med SPSS Kimmo Sorjonen (2010) 1 Regressionsanalys med SPSS Kimmo Sorjonen (2010) 1. Multipel regression 1.1. Variabler I det aktuella exemplet ingår följande variabler: (1) life.sat, anger i vilket utsträckning man är nöjd med livet;

Läs mer

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet 1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet Uppdaterad: 130114 För att bli godkänd på inlämningsuppgiften krävs att man

Läs mer

Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum:

Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum: Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum: 120203 Ovanstående nummer är ditt identifikationsnummer! Skriv in detta nummer på varje blad i tentan

Läs mer

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet 1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet Uppdaterad: 120113 För att bli godkänd på inlämningsuppgiften krävs att man

Läs mer

Risk Ratio, Odds Ratio, Logistisk Regression och Survival Analys med SPSS Kimmo Sorjonen, 2012

Risk Ratio, Odds Ratio, Logistisk Regression och Survival Analys med SPSS Kimmo Sorjonen, 2012 Risk Ratio, Odds Ratio, Logistisk Regression och Survival Analys med SPSS Kimmo Sorjonen, 2012 1. Risk Ratio & Odds Ratio Risk- och odds ratio beräknar sambandet mellan två dikotoma variabler. Inom forskning

Läs mer

Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum:

Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum: Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum: 110319 Ovanstående nummer är ditt identifikationsnummer! Skriv in detta nummer på varje blad i tentan

Läs mer

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat

Läs mer

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland Upprepade mätningar och tidsberoende analyser Stefan Franzén Statistiker Registercentrum Västra Götaland Innehåll Stort område Simpsons paradox En mätning per individ Flera mätningar per individ Flera

Läs mer

Innehåll. Data. Skillnad SEM & Regression. Exogena & Endogena variabler. Latenta & Manifesta variabler

Innehåll. Data. Skillnad SEM & Regression. Exogena & Endogena variabler. Latenta & Manifesta variabler Innehåll Structural Equation Modeling (SEM) Ingenting är omöjligt Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Data Latenta och manifesta variabler Typ av modell (path, CFA, SEM) Specificera

Läs mer

Sambandsmått. Centralmått. Det mest frekventa värdet. Det mittersta värdet i en rangordnad fördelning. Aritmetiska medelvärdet.

Sambandsmått. Centralmått. Det mest frekventa värdet. Det mittersta värdet i en rangordnad fördelning. Aritmetiska medelvärdet. PM315 HT016 Emma äck Formelsamling Centralmått Typvärde T Median Md ritmetiska medelvärdet Det mest frekventa värdet Det mittersta värdet i en rangordnad fördelning = n Spridningsmått Variationsvidd (Range)

Läs mer

Instruktioner till Examinationen Kursen Introduktion till Multivariat Dataanalys Karolinska Institutet

Instruktioner till Examinationen Kursen Introduktion till Multivariat Dataanalys Karolinska Institutet 1 Instruktioner till Examinationen Kursen Introduktion till Multivariat Dataanalys Karolinska Institutet Uppdaterad: 120412 För att bli godkänd skall man utföra alla sex uppgifter som beskrivs nedan. OBS:

Läs mer

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att

Läs mer

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Spridningsdiagrammen nedan representerar samma korrelationskoefficient, r = 0,8. 80 80 60 60 40 40 20 20 0 0 20 40 0 0 20 40 Det finns dock två

Läs mer

Structural Equation Modeling med Amos Kimmo Sorjonen (2012-01-24)

Structural Equation Modeling med Amos Kimmo Sorjonen (2012-01-24) 1 Structural Equation Modeling med Amos Kimmo Sorjonen (2012-01-24) 1. Variabler och tänkt modell Data simulerar de som använts i följande studie (se Appendix A): Hull, J. G., & Mendolia, M. (1991). Modeling

Läs mer

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen

T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen 1. One-Sample T-Test 1.1 När? Denna analys kan utföras om man vill ta reda på om en populations medelvärde på en viss variabel kan antas

Läs mer

Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING

Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING När vi gör en regressionsanalys så bygger denna på vissa antaganden: Vi antar att vi dragit ett slumpmässigt sampel från en population

Läs mer

Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT

Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT Regressionsanalys handlar om att estimera hur medelvärdet för en variabel (y) varierar med en eller flera oberoende variabler (x). Exempel: Hur

Läs mer

I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska

I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska Innehåll I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser Univariata analyser Univariata analyser

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-19 Motivering Vi motiverade enkel linjär regression som ett

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Linjär regressionsanalys. Wieland Wermke

Linjär regressionsanalys. Wieland Wermke + Linjär regressionsanalys Wieland Wermke + Regressionsanalys n Analys av samband mellan variabler (x,y) n Ökad kunskap om x (oberoende variabel) leder till ökad kunskap om y (beroende variabel) n Utifrån

Läs mer

ANOVA Faktoriell (tvåvägs)

ANOVA Faktoriell (tvåvägs) ANOVA Faktoriell (tvåvägs) Faktoriell ANOVA (tvåvägs) Två oberoende variabel ( tvåvägs ): Nominalskala eller ordinalskala. Delar in det man undersöker (personerna?) i grupper/kategorier, dvs. betingelser.

Läs mer

Analytisk statistik. Mattias Nilsson Benfatto, PhD.

Analytisk statistik. Mattias Nilsson Benfatto, PhD. Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik

Läs mer

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts. Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

FACIT!!! (bara facit,

FACIT!!! (bara facit, STOCKHOLMS UNIVERSITET Psykologiska institutionen Psykologi III, VT 2012. Fristående kurs FACIT!!! (bara facit, inga tolkningar) Skrivning i Psykologi III metod, fristående kurs: Metod och Statistik avsnitt

Läs mer

Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik.

Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik. Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik Urvalsstorlek Mätnivå/skaltyp Fördelning av data Studiedesign Frida Eek

Läs mer

Differentiell psykologi

Differentiell psykologi Differentiell psykologi Torsdag 8 september 2011 Reliabilitet Dagens agenda MDI skattningsövning resultat av kriterietolkning Värt att veta om normalfördelningen Frågesport Kort info om kursboken : Personality

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet November 6, 2013 Wänström (Linköpings universitet) F3 November 6, 2013 1 / 22 Interaktion

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

Faktoranalys, Cronbach s Alpha, Risk Ratio, & Odds Ratio

Faktoranalys, Cronbach s Alpha, Risk Ratio, & Odds Ratio Faktoranalys, Cronbach s Alpha, Risk Ratio, & Odds Ratio med SPSS Kimmo Sorjonen 1. Faktoranalys Innan man utför en faktoranalys kan det vara bra att testa om det finns några outliers i data. Detta kan

Läs mer

Uppgift 1. Produktmomentkorrelationskoefficienten

Uppgift 1. Produktmomentkorrelationskoefficienten Uppgift 1 Produktmomentkorrelationskoefficienten Både Vikt och Längd är variabler på kvotskalan och således kvantitativa variabler. Det innebär att vi inte har så stor nytta av korstabeller om vi vill

Läs mer

Poissonregression. E(y x1, x2,.xn) = exp( 0 + 1x1 +.+ kxk)

Poissonregression. E(y x1, x2,.xn) = exp( 0 + 1x1 +.+ kxk) Poissonregression En lämplig utgångspunkt om vi har en beroende variabel som är en count variable, en variabel som antar icke-negativa heltalsvärden med ganska liten variation E(y x1, x2,.xn) = exp( 0

Läs mer

Flerfaktorförsök. Blockförsök, randomiserade block. Modell: yij i bj eij. Förutsättningar:

Flerfaktorförsök. Blockförsök, randomiserade block. Modell: yij i bj eij. Förutsättningar: Flerfaktorförsök Blockförsök, randomiserade block Modell: yij i bj eij i 1,,, a j 1,,, b y ij vara en observation för den i:te behandlingen och det j:e blocket gemensamma medelvärdet ( grand mean ) effekt

Läs mer

Kvantitativ strategi Univariat analys 2. Wieland Wermke

Kvantitativ strategi Univariat analys 2. Wieland Wermke + Kvantitativ strategi Univariat analys 2 Wieland Wermke + Sammanfattande mått: centralmått n Beroende på skalnivån finns det olika mått, som betecknar variablernas fördelning n Typvärde eller modalvärde

Läs mer

Uppgift 1. Deskripitiv statistik. Lön

Uppgift 1. Deskripitiv statistik. Lön Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

7.5 Experiment with a single factor having more than two levels

7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan och att en inblandning mellan 10% och 40% är bra. För att

Läs mer

kodnr: 2) OO (5p) Klassindelningar

kodnr: 2) OO (5p) Klassindelningar kodnr: 1) KH (10p) a) Förklara innebörden av kausalitetsbegreppet i ett kvantitativt-metodologiskt sammanhang (2p) b) Förklara innebörden av begreppet nonsenssamband (2p) c) Argumentera för och motivera

Läs mer

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet 1/31 REGRESSIONSANALYS F1 Linda Wänström Statistiska institutionen, Stockholms universitet 2/31 Kap 4: Introduktion till regressionsanalys. Introduktion Regressionsanalys är en statistisk teknik för att

Läs mer

STATISTISK ANALYS AV KOMPLEXA DATA

STATISTISK ANALYS AV KOMPLEXA DATA STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet 12 December Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 12 December 1 / 12 Explorativ Faktoranalys

Läs mer

LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg

LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg Simulering i MINITAB Det finns goda möjligheter att utföra olika typer av simuleringar i Minitab. Gemensamt för dessa är att man börjar

Läs mer

Samverkande Expertnät

Samverkande Expertnät 1 Samverkande Expertnät 2 3 1 2 3 Parallella nätverk Sammanvägning av svaren Två olika fördelar Utjämna egenheter hos nätverken Låt nätverken specialisera sig Egenskaper hos ett enkelt nätverk Överträning

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen

Läs mer

Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar

Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar ICKE-LINJÄRA MODELLER Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Y i = 1 + 2 X 2i + u i Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar cov(x i,u i )

Läs mer

Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi

Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1(6) PCA/MIH Johan Löfgren 2016-11-10 Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1 Inledning Sveriges kommuner och landsting (SKL) presenterar varje år statistik över elevprestationer

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F3 1 / 21 Interaktion Ibland ser sambandet mellan en

Läs mer

Datorlaboration 2 Konfidensintervall & hypotesprövning

Datorlaboration 2 Konfidensintervall & hypotesprövning Statistik, 2p PROTOKOLL Namn:...... Grupp:... Datum:... Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta den statistiska

Läs mer

Variansanalys med SPSS Kimmo Sorjonen (2012-01-19)

Variansanalys med SPSS Kimmo Sorjonen (2012-01-19) 1 Variansanalys med SPSS Kimmo Sorjonen (2012-01-19) 1. Envägs ANOVA för oberoende mätningar 1.1 Variabler Data simulerar det som använts i följande undersökning (se Appendix A): Petty, R. E., & Cacioppo,

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

Analytisk statistik. Tony Pansell, optiker Universitetslektor

Analytisk statistik. Tony Pansell, optiker Universitetslektor Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när

Läs mer

Föreläsning 8: Konfidensintervall

Föreläsning 8: Konfidensintervall Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga

Läs mer

Till ampad statistik (A5) Förläsning 13: Logistisk regression

Till ampad statistik (A5) Förläsning 13: Logistisk regression Till ampad statistik (A5) Förläsning 13: Logistisk regression Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2016-03-08 Exempel 1: NTU2015 Exempel 2: En jobbannons Exempel 3 1 1 Klofstad, C.

Läs mer

Den svenska arbetslöshetsförsäkringen

Den svenska arbetslöshetsförsäkringen Statistiska Institutionen Handledare: Rolf Larsson Kandidatuppsats VT 2013 Den svenska arbetslöshetsförsäkringen En undersökning av skillnaden i genomsnittligt antal ersättningsdagar som kvinnor respektive

Läs mer

Beskrivning av litteraturen Kursen i Vetenskapsteori, Psykologprogrammet, T5

Beskrivning av litteraturen Kursen i Vetenskapsteori, Psykologprogrammet, T5 1 Beskrivning av litteraturen Kursen i Vetenskapsteori, Psykologprogrammet, T5 Chalmers bok Johanssons bok Ladymans bok Chalmers: Vad är vetenskap egentligen? Innehåll Boken beskriver, och problematiserar,

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. 1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende

Läs mer

Provmoment: Forskningsmetod, Salstentamen nr 1 Ladokkod:

Provmoment: Forskningsmetod, Salstentamen nr 1 Ladokkod: Forskningsmetod 6,0 högskolepoäng Provmoment: Forskningsmetod, Salstentamen nr 1 Ladokkod: 11OP90/TE01 samt 11PS30/TE01 Tentamen ges för: OPUS kull H12 termin 5 inriktning Psykologi samt fristående grundkurs

Läs mer

FACIT (korrekta svar i röd fetstil)

FACIT (korrekta svar i röd fetstil) v. 2013-01-14 Statistik, 3hp PROTOKOLL FACIT (korrekta svar i röd fetstil) Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta

Läs mer

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng

Läs mer

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,

Läs mer

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris

Läs mer

Antalet personer som skriver högskoleprovet minskar

Antalet personer som skriver högskoleprovet minskar STATISTISK ANALYS Nils Olsson Utredningsavdelningen 8-563 88 4 nils.olsson@hsv.se Mer information hittar du på www.hsv.se Nummer: 26/12 Antalet personer som skriver högskoleprovet minskar Antalet personer

Läs mer

Enkel linjär regression. Enkel linjär regression. Enkel linjär regression

Enkel linjär regression. Enkel linjär regression. Enkel linjär regression Enkel linjär regression Exempel.7 i boken (sida 31). Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben och höjder på sockeln. De halvledare

Läs mer

Stokastiska processer med diskret tid

Stokastiska processer med diskret tid Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna

Läs mer

KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!!

KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!! Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod OCH Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2011-09-19 kl. 09:00 13:00

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Bygga linjära modeller! Didrik Vanhoenacker 2007

Bygga linjära modeller! Didrik Vanhoenacker 2007 Bygga linjära modeller! Didrik Vanhoenacker 2007 1 Bygga enkla modeller Tänk att vi ska försöka förstå vad som styr hur många blommor korsblommiga växter har. T ex hos Lomme och Penningört. Hittills har

Läs mer

Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4.

Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4. Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen Finansiell Statistik (GN, 7,5 hp,, HT 8) Föreläsning 7 Multipel regression (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,

Läs mer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna

Läs mer

Lektion 1: Fördelningar och deskriptiv analys

Lektion 1: Fördelningar och deskriptiv analys Density Lektion 1: Fördelningar och deskriptiv analys 1.,3 Uniform; Lower=1; Upper=6,3,2,2,1,, 1 2 3 X 4 6 7 Figuren ovan visar täthetsfunktionen för en likformig fördelning. Kurvan antar värdet.2 över

Läs mer

F23 forts Logistisk regression + Envägs-ANOVA

F23 forts Logistisk regression + Envägs-ANOVA F23 forts Logistisk regression + Envägs-ANOVA Repetition Detta går inteattbeskriva på någotrimligtsättmed en linjär funktion PY Xx) β 0 +β x Den skattade linjen går utanför intervallet0, ): Y ärenbinärvariabel0-,dikotom)manvillmodellera,

Läs mer

Föreläsning 7. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 7. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 7 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Fortsättning envägs-anova Scheffes test (kap 11.4) o Tvåvägs-ANOVA Korsade faktorer (kap 12.1, 12.3) Randomiserade blockförsök

Läs mer

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, VT2014 2014-05-26 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

Kossor, tallsteklar och sockerärter Statistik vid Sveriges Lantbruksuniversitet

Kossor, tallsteklar och sockerärter Statistik vid Sveriges Lantbruksuniversitet Kossor, tallsteklar och sockerärter Statistik vid Sveriges Lantbruksuniversitet Mikael Andersson Franko Universitetslektor i matematisk statistik Enheten för tillämpad statistik och matematik SLU i hela

Läs mer

Multipel regression och Partiella korrelationer

Multipel regression och Partiella korrelationer Multipel regression och Partiella korrelationer Joakim Westerlund Kom ihåg bakomliggande variabelproblemet: Temperatur Jackförsäljning Oljeförbrukning Bakomliggande variabelproblemet kan, som tidigare

Läs mer

Statistik 2 2010, 3.-9.5.2010. Stansens PC-klass ASA-huset. Schema: mån ti ons to fre 9.15-12.00 9.15-12.00 10.15-13.00 10.15-12.00 10.15-12.

Statistik 2 2010, 3.-9.5.2010. Stansens PC-klass ASA-huset. Schema: mån ti ons to fre 9.15-12.00 9.15-12.00 10.15-13.00 10.15-12.00 10.15-12. Statistik 2 2010, 3.-9.5.2010 Stansens PC-klass ASA-huset. Schema: mån ti ons to fre 9.15-12.00 9.15-12.00 10.15-13.00 10.15-12.00 10.15-12.00 13.15-15.00 13.15-15.00 13.15-16.00 13.15-16.00 Under kursens

Läs mer

MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data

MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data Pär-Ola Bendahl IKVL, Avdelningen för Onkologi Lunds Universitet Par-Ola.Bendahl@med.lu.se Översikt Introduktion till problemet Enkla

Läs mer

3 Maximum Likelihoodestimering

3 Maximum Likelihoodestimering Lund Universitet med Lund Tekniska Högskola Finansiell Statistik Matematikcentrum, Matematisk Statistik VT 2006 Parameterestimation och linjär tidsserieanalys Denna laborationen ger en introduktion till

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Analys av korstabeller 2 Innehåll 1 Analys av korstabeller 2 Korstabeller Vi har tidigare under kursen redan bekantat oss med korstabeller. I en korstabell redovisar man fördelningen på två

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.

Läs mer

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013 Föreläsning 9 Logistisk regression och Indexteori Patrik Zetterberg 7 januari 2013 1 / 33 Logistisk regression I logistisk regression har vi en binär (kategorisk) responsvariabel Y i som vanligen kodas

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer