STATISTISK ANALYS AV KOMPLEXA DATA

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "STATISTISK ANALYS AV KOMPLEXA DATA"

Transkript

1 STATISTISK ANALYS AV KOMPLEXA DATA HIERARKISKA DATA Linda Wänström Linköpings universitet 25 November Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 1 / 53

2 Regressionsmodell för icke-hierarkiska data (repetition) Antag att vi observerar n oberoende värden y 1,..., y n och vill förklara dem med n värden på p förklarande variabler x 11,...x 1p, x 21,..., x 2p, x n1,..., x np. Standardregressionsmodellen är, för individ i, y i = β 0 + β 1 x i β p x ip + ɛ i där ɛ i N(0, σ 2 ɛ). I matrisform kan modellen skrivas som där e N(0, σ 2 ɛi). Y = Xβ + e Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 2 / 53

3 Hierarkiska data Hierarkiska data, "Clustered" data, fler-nivå data, grupperade data Enheter grupperade i olika nivåer Vi har ett urval av skolor - inom varje skola har vi ett antal klasser - inom varje klass har vi ett urval av elever Nivå 1: elever Nivå 2: klasser Nivå 3: skolor Vi har ett urval av familjer - inom varje familj undersöker vi alla/några barn Nivå 1: barn Nivå 2: familjer Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 3 / 53

4 Exempel: Samband mellan medelbetyg och poäng på prov Inritad regressionslinje Score Grade 4 5 Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 4 / 53

5 Exempel: Samband mellan medelbetyg och poäng på prov Inritad regressionslinje för varje skola School Score Grade 4 5 Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 5 / 53

6 Varför ska vi ta hänsyn till den hierarkiska strukturen på data? Vi kan väl bara använda den lägsta nivån (tex elev) som enhet och använda vanliga analysmetoder? Eller - vi kan väl använda den högre nivån (tex klass / skola) som enhet och använda vanliga metoder? Individer (observationer) inom en grupp tenderar att vara lika varandra Familjer: syskon (samma föräldrar, samma miljöpåverkan) Skolor: klasser: elever (påverkar varandra, mer lika från början?) Ignorerar vi grupperingar kan vi missa viktiga gruppeffekter Ignorerar vi korrelationen mellan observationer inom grupper får vi missvisande skattningar på varianser Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 6 / 53

7 Exempel: Studie om läsinlärning i skolan (Bennet, 1976) Slutsats: Barn som lär sig läsa enligt den "traditionella tekniken" lär sig fortare än de som inte gör det Multipel regressionsmodell med elever som enheter (inga grupperingar) Statistisk signifikant skillnad Aitkin et el (1981) analyserade om datamaterialet och tog hänsyn till att eleverna var grupperade i klasser Inte längre statistiskt signifikant skillnad Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 7 / 53

8 Exempel: Mean PIAT Scores Data från Rodgers, J.L., Cleveland, H.H., van den Oord, E., & Rowe, D.C. (2000). Resolving the debate over birth order, family size and intelligence. American Psychologist, 55, Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 8 / 53

9 Mean Piat Score uppdelat på familjestorlek Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 9 / 53

10 Fixed effects modeller Definiera dummyvariabler för att skatta skillnader mellan skolor, klasser, familjer... Detta fungerar om vi har ett mindre antal skolor, klasser, familjer... och endast vill generalisera till dem Vill vi generalisera resultaten till ett större antal skolor, klasser, familjer - använd inte fixed effects modeller Fungerar inte heller bra om vi har få observationer (tex elever) i några av grupperna (tex klasser) Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 10 / 53

11 General linear mixed model Multilevel model (Goldstein) Hierarchical linear model (Raudenbush & Bryk) Variance component model (Longford) Random coeffi cient model (De Leeuw & Kreft, Longford) Random effects model, mixed effects model etc... Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 11 / 53

12 Notation Antag att vi har ett urval av klasser - inom varje klass har vi ett urval av elever där vi har observerat en respons. För den j:te klassen kan vi skriva responsvektorn y j1 Y j = y j2..., j = 1, 2,..., n y jkj där n är antalet klasser och k j är antalet elever i klass j. Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 12 / 53

13 Har vi även observerat oberoende variabler kan vi skriva Klass(j) Elev(i) y ij x ij1 x ij2... x ijp 1 1 y 11 x 111 x x 11p 1 2 y 21 x 211 x x 21p k 1 y k1 1 x k1 11 x k x k1 1p j 1 y 1j x 1j1 x 1j2... x 1jp j 2 y 2j x 2j1 x 2j2... x 2jp j k j y kj j x kj j1 x kj j2... x kj jp n 1 y 1n x 1n1 x 1n2... x 1np n 2 y 2n x 2n1 x 2n2... x 2np n k n y kn n x kn n1 x kn n2... x kn np Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 13 / 53

14 General linear mixed model (GLMM) Y = Xβ + Zu + e e N (0, R) u N (0, G) Cov [u, e] = 0 Modellens parametrar består av fixa effekter i vektorn β och alla okända parametrar i matriserna G och R. De slumpmässiga effekterna u och e är inte parametrar utan består av slumpmässiga variabler. Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 14 / 53

15 General linear mixed model Betingade fördelningen Y u och marginalfödelningen för Y är Y u N (Xβ + Zu, R) Y N (Xβ, V) V = Var [Y] = ZGZ + R Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 15 / 53

16 Skattning av parametrar 2LL för GLMM är 2l(θ, β; y) = log V + (y Xβ) V 1 (y Xβ) + c ML-skattningen av fix effekt-parametrarna är ( θ) 1 β = (X V( θ) 1 X) 1 X V y Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 16 / 53

17 Skattning av parametrar Vid känd varians V är GLS-skattning av fixa parametrar β = (X T V 1 X) 1 X T V 1 y V( β) = (X T V 1 X) 1 Vanliga startvärden för fixa parametrar: OLS Vektor med residualer skapas, och används för att uttryckas som funktion av varianser för slumptermerna och dessa skattas (krävs att dessa är normalfördelade) Skattad V används för att ta fram nya GLS-skattningar, och nya varianser för slumptermerna skattas osv till konvergens Om slumptermerna (residualerna) är normalfördelade är skattningarna ML-skattningar Skattningarna för varianserna för slumptermerna är inte VVR (tar inte hänsyn till samplingvariation av fixa parametrar) En modifikation ger REML - VVR skattningar (används i SAS) Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 17 / 53

18 Multilevelmodell - enklaste fallet: Varianskomponentmodell y ij = β 0j + ɛ ij β 0j = β 0 + u 0j y ij = β 0 + u 0j + ɛ ij y ij = (β 0 ) + (u 0j + ɛ ij ) ɛ ij N ( 0, σ 2 ) e u 0j N ( 0, σ 2 ) u0 En fix (intercept) och två slumpmässiga parametrar (två varianser) att skatta Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 18 / 53

19 Multilevelmodell: Varianskomponentmodell y ij = β 0 + (u 0j + ɛ ij ) ɛ ij N ( 0, σ 2 ) e u 0j N ( 0, σ 2 ) u0 var(y ij ) = var(u 0j + ɛ ij ) = σ 2 u0 + σ2 e cov(y 1j, y 2j ) = cov(u 0j + ɛ 1j, u 0j + ɛ 2j ) = σ 2 u0 Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 19 / 53

20 Intraklass-korrelation Varianskomponentmodell ρ = σ2 u0 σ 2 u0 +σ2 e Andelen av variationen som är mellan grupper (klasser) Om den är större än noll bör vi inte använda vanliga metoder (som tex OLS) som inte tar hänsyn till varianser på flera nivåer Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 20 / 53

21 Multilevelmodell: "random coeffi cent"-modell y ij = β 0j + β 1j x ij + ɛ ij β 0j = β 0 + u 0j β 1j = β 1 + u 1j y ij = β 0 + u 0j + β 1 x ij + u 1j x ij + ɛ ij y ij = (β 0 + β 1 x ij ) + (u 0j + u 1j x ij + ɛ ij ) ɛ ij N ( 0, σ 2 ) [ ] e([ u0j 0 N 0 u 1j ] [ σ 2, u0 σ u01 σ u10 σ 2 u1 Två fixa (intercept och slope) och fyra slumpmässiga parametrar (tre varianser och en kovarians) att skatta ]) Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 21 / 53

22 Hypotestest Test för fixa parametrar "Vanliga" hypotestest / konfidensintervall baserade på skattningarna och standradavvikleserna för skattningarna från IGLS (REML) Test för slumpmässiga parametrar (varianser och kovarianser) Z-test (vid stora stickprov) Bättre med Likelhood ratio test D 01 = 2LL(λ 0 /λ 1 ) där λ 0, λ 1 är likelihood under noll respektive alternativhypotesen. D 01 är χ 2 fördelad med q frihetsgrader, där q är skillnaden i antalet skattade parametrar under de två modellerna. Vid REML-skattning bör likelihood ratio-testet endast användas vid jämförande av modeller som skiljer sig åt endast genom slumpmässiga parametrar (ej fixa). Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 22 / 53

23 Exempel (data från Hox (2010). Multilevel Analysis) 2000 elever från 100 olika klasser (skolor) Popularity (skala 0-10, elevnivå) Sex (elevnivå) Extraversion (skala 0-10, elevnivå) Teacher experience (År, klassnivå) Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 23 / 53

24 Spridningsdiagram mellan popularity-scores och extraversion för eleverna i de två första klasserna Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 24 / 53

25 Uppdelat på de två klasserna Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 25 / 53

26 Varianskomponent-modell Basmodell popular ij = β 0j + ɛ ij, β 0j = β 0 + u 0j popular ij = β 0 + u 0j + ɛ ij ɛ 0ij N(0, σ 2 e) u 0j N(0, σ 2 u0 ) Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 26 / 53

27 Data Z p Z p p o Z p o C e o p e o p e c p x p t x Z p t x C l u c t t u e t Z t u e t t C O a p o r s e l a r s e l a r e s b s i n a e x a c a e x a c a x e s s l s v x p r h v x p r h v p x Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 27 / 53

28 Varianskomponent-modell SAS proc mixed data=popdata covtest; class class; model popular= /solution; random intercept / subject=class; run; Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 28 / 53

29 The Mixed Procedure Model Information Data Set Dependent Variable Covariance Structure Subject Effect Estimation Method Residual Variance Method Fixed Effects SE Method Degrees of Freedom Method WORK.POPDATA popular Variance Components class REML Profile Model Based Containment Class Level Information Class Levels Values class Dimensions Covariance Parameters 2 Columns in X 1 Columns in Z Per Subject 1 Subjects 100 Max Obs Per Subject 26 Number of Observations Number of Observations Read 2000 Number of Observations Used 2000 Number of Observations Not Used 0 Iteration History Iteration Evaluations 2 Res Log Like Criterion Convergence criteria met. Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 29 / 53

30 Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr > Z UN(1,1) class <.0001 Residual <.0001 Fit Statistics 2 Res Log Likelihood AIC (smaller is better) AICC (smaller is better) BIC (smaller is better) Null Model Likelihood Ratio Test DF Chi Square Pr > ChiSq <.0001 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > t Intercept <.0001 Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 30 / 53

31 Resultat: skattning och test β 0 = ( ), p <.0001 σ 2 e = ( ), p <.0001 σ 2 u0 = (0.1086), p <.0001 Intraklass-korrelation: ρ = = Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 31 / 53

32 Varianskomponent-modell med kön (sex) på individnivå - fix effekt Vi lägger till kön (sex) som fix effekt popularity ij = β 0j + β 1 sex ij + ɛ ij β 0j = β 0 + u 0j popularity ij = β 0 + u 0j + β 1 sex ij + ɛ ij ɛ 0ij N(0, σ 2 e) u 0j N(0, σ 2 u0 ) Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 32 / 53

33 Varianskomponent-modell med kön (sex) på individnivå - fix effekt SAS proc mixed data=popdata covtest; class class; model popular = Csex / solution; random intercept / subject=class; run; Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 33 / 53

34 Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr > Z UN(1,1) class <.0001 Residual <.0001 Fit Statistics 2 Res Log Likelihood AIC (smaller is better) AICC (smaller is better) BIC (smaller is better) Null Model Likelihood Ratio Test DF Chi Square Pr > ChiSq <.0001 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > t Intercept <.0001 Csex <.0001 Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 34 / 53

35 Resultat: skattning och test β 0 = ( ), p <.0001 β 1 = ( ), p <.0001 σ 2 e = ( ), p <.0001 σ 2 u0 = ( ), p <.0001 Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 35 / 53

36 Multilevel-modell med kön (sex) på individnivå - fix och slumpmässig effekt Vi lägger till kön (sex) också som slumpmässig effekt popularity ij = β 0j + β 1j sex ij + ɛ ij β 0j = β 0 + u 0j β 1j = β 1 + u 1j popularity ij = β 0 + u 0j + β 1 sex ij + u 1j sex ij + ɛ ij ɛ ij N ( 0, σ 2 ) [ ] e([ u0j 0 N 0 u 1j ] [ σ 2, u0 σ u01 σ u10 σ 2 u1 ]) Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 36 / 53

37 Multilevel-modell med kön (sex) på individnivå - fix och slumpmässig effekt SAS proc mixed data=popdata covtest; class class; model popular = Csex / solution; random intercept Csex/ subject=class type=un; run; Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 37 / 53

38 Covariance Parameter Estimates Standard Cov Parm Subject Estimate Error Value Pr Z Z UN(1,1) class <.0001 UN(2,1) class UN(2,2) class Covariance Parameter Estimates Standard Cov Parm Subject Estimate Error Value Pr Z Z Residual <.0001 Fit Statistics 2 Res Log Likelihood AIC (smaller is better) AICC (smaller is better) BIC (smaller is better) Null Model Likelihood Ratio Test DF Chi Square Pr > ChiSq <.0001 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > t Intercept <.0001 Csex <.0001 Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 38 / 53

39 Resultat: skattning och test β 0 = ( ), p <.0001 β 1 = ( ), p <.0001 σ 2 e = ( ), p <.0001 σ 2 u0 = ( ), p <.0001 σ 2 u1 = ( ), p =.0621 σ u01 = ( ), p =.2194 D 01 = = 5 q = 2 Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 39 / 53

40 Varianskomponent-modell med individnivåvariabler - fixa effekter Vi lägger till extraversion som fix effekt popularity ij = β 0j + β 1 sex ij + β 2 extra ij + ɛ ij β 0j = β 0 + u 0j popularity ij = β 0 + u 0j + β 1 sex ij + β 2 extra ij + ɛ ij ɛ 0ij N(0, σ 2 e) u 0j N(0, σ 2 u0 ) Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 40 / 53

41 Varianskomponent-modell med individnivåvariabler - fixa effekter SAS proc mixed data=popdata covtest; class class; model popular = Csex Cextrav / solution; random intercept / subject=class; run; Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 41 / 53

42 Covariance Parameter Estimates Cov Parm Subject Estimate Standard Error Z Value Pr > Z UN(1,1) class <.0001 Residual <.0001 Fit Statistics 2 Res Log Likelihood AIC (smaller is better) AICC (smaller is better) BIC (smaller is better) Null Model Likelihood Ratio Test DF Chi Square Pr > ChiSq <.0001 Solution for Fixed Effects Effect Estimate Standard Error DF t Value Pr > t Intercept <.0001 Csex <.0001 Cextrav <.0001 Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 42 / 53

43 Resultat: skattning och test β 0 = ( ), p <.0001 β 1 = ( ), p <.0001 β 2 = ( ), p <.0001 σ 2 e = ( ), p <.0001 σ 2 u0 = ( ), p <.0001 Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 43 / 53

44 Multilevel-modell med individnivåvariabler: kön (fix) och extraversion (fix och slumpmässig) Vi lägger till extraversion också som slumpmässig effekt popularity ij = β 0j + β 1 sex ij + β 2j extra ij + ɛ ij β 0j = β 0 + u 0j β 2j = β 2 + u 2j popularity ij = β 0 + u 0j + β 1 sex ij + β 2 extra ij + u 2j extra ij + ɛ ij ɛ ij N ( 0, σ 2 ) [ ] e([ u0j 0 N 0 u 2j ] [ σ 2, u0 σ u02 σ u20 σ 2 u2 ]) Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 44 / 53

45 Multilevel-modell med individnivåvariabler: kön (fix) och extraversion (fix och slumpmässig) SAS proc mixed data=popdata covtest; class class; model popular = Csex Cextrav / solution; random intercept Cextrav/ subject=class type=un; run; Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 45 / 53

46 Covariance Parameter Estimates Cov Parm Subject Estimate Standard Error Z Value Pr Z UN(1,1) class <.0001 UN(2,1) class <.0001 UN(2,2) class <.0001 Residual <.0001 Fit Statistics 2 Res Log Likelihood AIC (smaller is better) AICC (smaller is better) BIC (smaller is better) Null Model Likelihood Ratio Test DF Chi Square Pr > ChiSq <.0001 Solution for Fixed Effects Effect Estimate Standard Error DF t Value Pr > t Intercept <.0001 Csex <.0001 Cextrav <.0001 Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 46 / 53

47 Resultat: skattning och test β 0 = ( ), p <.0001 β 1 = ( ), p <.0001 β 2 = ( ), p <.0001 σ 2 e = ( ), p <.0001 σ 2 u0 = (0.1020), p <.0001 σ 2 u2 = ( ), p <.0001 σ u02 = ( ), p <.0001 D 01 = = 75.2 q = 2 Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 47 / 53

48 Multilevel-modell med individnivåvariabler kön (fix), extraversion (fix, random) och teacher experience (klassnivå) Vi lägger till teacher experience på klassnivå popularity ij = β 0j + β 1 sex ij + β 2j extra ij + ɛ ij β 0j = β 0 + β 3 tex j + u 0j β 2j = β 2 + β 4 tex j + u 2j popularity ij = β 0 + β 3 tex j + u 0j + β 1 sex ij + β 2 extra ij + β 4 tex j extra ij + u 2j extra ij + ɛ ij ɛ ij N ( 0, σ 2 ) [ ] e([ u0j 0 N 0 u 2j ] [ σ 2, u0 σ u02 σ u20 σ 2 u2 ]) Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 48 / 53

49 Multilevel-modell med individnivåvariabler kön (fix), extraversion (fix, random) och teacher experience (klassnivå) SAS proc mixed data=popdata covtest; class class; model popular = Csex Ctexp Cextrav Ctexp*Cextrav/ solution; random intercept Cextrav / subject=class type=un; run; Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 49 / 53

50 Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z UN(1,1) class <.0001 UN(2,1) class UN(2,2) class Residual <.0001 Fit Statistics 2 Res Log Likelihood AIC (smaller is better) AICC (smaller is better) BIC (smaller is better) Null Model Likelihood Ratio Test DF Chi Square Pr > ChiSq <.0001 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > t Intercept <.0001 Csex <.0001 Ctexp <.0001 Cextrav <.0001 Ctexp*Cextrav <.0001 Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 50 / 53

51 Resultat: skattning och test av parametrar β 0 = ( ), p <.0001 β 1 = ( ), p <.0001 β 2 = ( ), p <.0001 β 3 = ( ), p <.0001 β 4 = ( ), p <.0001 σ 2 e = ( ), p <.0001 σ 2 u0 = ( ), p <.0001 σ 2 u2 = ( ), p =.1101 σ u02 = ( ), p =.6531 Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 51 / 53

52 Fler än två nivåer: föregående modeller kan enkelt utvecklas till fler nivåer Y ijh = β 0jh + β 1jh x ijh + ɛ ijh β 0jh = β 0h + u 0jh β 1jh = β 1h + u 1jh β 0h = β 0 + v 0h β 1h = β 1 + v 1h ijh är tex i:te eleven i j:te klassen i h:te området. y ijh = β 0 + β 1 x ijh + v 0h + v 1h x ijh + u 0jh + u 1jh x ijh + ɛ ijh ɛ ijh N ( 0, σ 2 ) [ ] e([ ] [ ]) u0jh 0 σ 2 N, u0 σ u01 u 1jh 0 σ u10 σ [ ] ([ ] [ 2 u1 ]) v0h 0 σ 2 N, v 0 σ v 01 v 1h 0 σ v 10 σ 2 v 1 Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 52 / 53

53 Exempel på SAS-kod 3 nivåer, varianskomponentmodell proc mixed data=popdata2 covtest; class class area; model popular = / solution; random intercept / subject=area; random intercept / subject=class(area); run; Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 53 / 53

STATISTISK ANALYS AV KOMPLEXA DATA

STATISTISK ANALYS AV KOMPLEXA DATA STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet 9 December Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 9 December 1 / 43 Longitudinella data

Läs mer

Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå

Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå Användning Multilevel Modeling (MLM) Var sak på sin nivå Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Kärt barn har många namn: (1) Random coefficient models; () Mixed effect models; (3)

Läs mer

STATISTISK ANALYS AV KOMPLEXA DATA

STATISTISK ANALYS AV KOMPLEXA DATA STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet 12 December Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 12 December 1 / 12 Explorativ Faktoranalys

Läs mer

Multivariata metoder

Multivariata metoder Multivariata metoder F5 Linda Wänström Linköpings universitet 1 oktober Wänström (Linköpings universitet) Multivariata metoder 1 oktober 1 / 18 Kanonisk korrelationsanalys Syfte: Undersöka om en grupp

Läs mer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna

Läs mer

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,

Läs mer

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp

Läs mer

Regressions- och Tidsserieanalys - F7

Regressions- och Tidsserieanalys - F7 Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet 1/31 REGRESSIONSANALYS F1 Linda Wänström Statistiska institutionen, Stockholms universitet 2/31 Kap 4: Introduktion till regressionsanalys. Introduktion Regressionsanalys är en statistisk teknik för att

Läs mer

Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8

Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 1 Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 Dessa instuderingsfrågor är främst tänkta att stämma överens med innehållet i föreläsningarna,

Läs mer

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när

Läs mer

7.5 Experiment with a single factor having more than two levels

7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan och att en inblandning mellan 10% och 40% är bra. För att

Läs mer

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för:

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för: Datorövning 5 Statistisk teori med tillämpningar Hypotestest i SAS Syfte Lära sig beräkna konfidensintervall och utföra hypotestest för: 1. Populationsmedelvärdet, µ. 2. Skillnaden mellan två populationsmedelvärden,

Läs mer

Poolade data över tiden och över tvärsnittet. Oberoende poolade tvärsnittsdatamängder från olika tidpunkter.

Poolade data över tiden och över tvärsnittet. Oberoende poolade tvärsnittsdatamängder från olika tidpunkter. PANELDATA Poolade data över tiden och över tvärsnittet Alternativ 1: Oberoende poolade tvärsnittsdatamängder från olika tidpunkter. Oberoende stickprov dragna från stora populationer vid olika tidpunkter.

Läs mer

Regressions- och Tidsserieanalys - F4

Regressions- och Tidsserieanalys - F4 Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F3 1 / 21 Interaktion Ibland ser sambandet mellan en

Läs mer

Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4.

Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4. Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet November 6, 2013 Wänström (Linköpings universitet) F3 November 6, 2013 1 / 22 Interaktion

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström April 8, 2011 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att

Läs mer

STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA

STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Mattias Villani Statistik Institutionen för Datavetenskap Linköpings Universitet MATTIAS VILLANI (STATISTIK, LIU) LONGITUDINELLA DATA 1 / 44 MOMENTETS

Läs mer

Sannolikhetsteori. Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik,

Sannolikhetsteori. Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 5p. Tid: Torsdagen den 22 december, 2006 kl 14.00-18.00 i M-huset. Examinator: Olle Nerman, tel 7723565. Jour: Alexandra

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Regressions- och variansanalys, 5 poäng MSTA35 Leif Nilsson TENTAMEN 2003-01-10 TENTAMEN I MATEMATISK STATISTIK Regressions- och variansanalys, 5

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser: 1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt

Läs mer

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 732G71 Statistik B Föreläsning 7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 Detaljhandelns försäljning (fasta priser, kalenderkorrigerat) Bertil Wegmann

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland Upprepade mätningar och tidsberoende analyser Stefan Franzén Statistiker Registercentrum Västra Götaland Innehåll Stort område Simpsons paradox En mätning per individ Flera mätningar per individ Flera

Läs mer

Matematiska Institutionen Silvelyn Zwanzig 13 mar, 2006

Matematiska Institutionen Silvelyn Zwanzig 13 mar, 2006 UPPSALA UNIVERSITET Sannolikhetslära och Statistik Matematiska Institutionen F Silvelyn Zwanzig 3 mar, 006 Tillåtna hjälpmedel: Miniräknare, Formel- och Tabellsamling med egna handskrivna tillägg Skrivtid:5-0.

Läs mer

3 Maximum Likelihoodestimering

3 Maximum Likelihoodestimering Lund Universitet med Lund Tekniska Högskola Finansiell Statistik Matematikcentrum, Matematisk Statistik VT 2006 Parameterestimation och linjär tidsserieanalys Denna laborationen ger en introduktion till

Läs mer

Lösningar till SPSS-övning: Analytisk statistik

Lösningar till SPSS-övning: Analytisk statistik UMEÅ UNIVERSITET Statistiska institutionen 2006--28 Lösningar till SPSS-övning: Analytisk statistik Test av skillnad i medelvärden mellan två grupper Uppgift Testa om det är någon skillnad i medelvikt

Läs mer

Provmoment: Forskningsmetod, Salstentamen nr 1 Ladokkod:

Provmoment: Forskningsmetod, Salstentamen nr 1 Ladokkod: Forskningsmetod 6,0 högskolepoäng Provmoment: Forskningsmetod, Salstentamen nr 1 Ladokkod: 11OP90/TE01 samt 11PS30/TE01 Tentamen ges för: OPUS kull H12 termin 5 inriktning Psykologi samt fristående grundkurs

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Uppsala universitet Statistiska institutionen A5 2014-08-26 Tentamen Tillämpad statistik A5 (15hp) 2014-08-26 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det finns inget så praktiskt som en bra teori" November 2011 Bakgrund Introduktion till test Introduktion Formulera lämplig hypotes Bestäm en testvariabel Bestäm en beslutsregel Fatta ett beslut När det

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar

Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar ICKE-LINJÄRA MODELLER Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Y i = 1 + 2 X 2i + u i Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar cov(x i,u i )

Läs mer

Uppgift 1. Produktmomentkorrelationskoefficienten

Uppgift 1. Produktmomentkorrelationskoefficienten Uppgift 1 Produktmomentkorrelationskoefficienten Både Vikt och Längd är variabler på kvotskalan och således kvantitativa variabler. Det innebär att vi inte har så stor nytta av korstabeller om vi vill

Läs mer

χ 2, chi-två Test av anpassning: sannolikheter specificerade Data: n observationer klassificerade i K olika kategorier:

χ 2, chi-två Test av anpassning: sannolikheter specificerade Data: n observationer klassificerade i K olika kategorier: Stat. teori gk, ht 006, JW F1 χ -TEST (NCT 16.1-16.) Ordlista till NCT Goodness-of-fit-test χ, chi-square Test av anpassning χ, chi-två Test av anpassning: sannolikheter specificerade i förväg Data: n

Läs mer

English Version. Number of sold cakes Number of days

English Version. Number of sold cakes Number of days Kurskod: TAMS24 (Statistisk teori / Provkod: TEN 206-0-04 (kl. 8-2 Examinator/Examiner: Xiangfeng Yang (Tel: 070 089666. Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator;

Läs mer

ANOVA Mellangruppsdesign

ANOVA Mellangruppsdesign ANOVA Mellangruppsdesign Envägs variansanlays, mellangruppsdesign Variabler En oberoende variabel ( envägs ): Nominalskala eller ordinalskala. Delar in det man undersöker (personerna?) i grupper/kategorier,

Läs mer

OBS! Vi har nya rutiner.

OBS! Vi har nya rutiner. Försättsblad KOD: Kurskod: PC1546 Kursnamn: Forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Ansvarig lärare: Sara Landström & Pär Bjälkebring Tentamensdatum: 10/1-2015 Tillåtna hjälpmedel:

Läs mer

Ht Patientupplevd vårdkvalité utifrån. olika bakgrunder. Författare: Åsa Hjort Hedenberg

Ht Patientupplevd vårdkvalité utifrån. olika bakgrunder. Författare: Åsa Hjort Hedenberg Patientupplevd vårdkvalité utifrån olika bakgrunder Författare: Åsa Hjort Hedenberg Ht 2013 Det är vår egen upplevelse av vår hälsa och vår ålder som har störst betydelse för vad vi tycker om vårdkvalitén.

Läs mer

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat

Läs mer

Bakgrundsvariablers påverkan på enkätsvaren i en telefonintervju

Bakgrundsvariablers påverkan på enkätsvaren i en telefonintervju Linköpings universitet Kandidatprogrammet i Statistik och dataanalys Kandidatuppsats i Statistik, 15 hp 2017-06-25 ISRN- nummer: LIU-IDA/STAT-G--17/004--SE Bakgrundsvariablers påverkan på enkätsvaren i

Läs mer

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs TE/RC Datorövning 6 Syfte: 1. Lära sig utföra godness of fit-test 2. Lära sig utföra test av homogenitet 3. Lära sig utföra prövning av hypoteser

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall

Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Anna Lindgren 7+8 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F11: Konfidensintervall 1/19 Stickprov & Skattning Ett

Läs mer

Skrivning i ekonometri lördagen den 25 augusti 2007

Skrivning i ekonometri lördagen den 25 augusti 2007 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA10:3 Skrivning i ekonometri lördagen den 5 augusti 007 1. Vi vill undersöka hur variationen i ölförsäljningen i ett bryggeri i en stad i USA

Läs mer

Tentamen i Tillämpad statistisk analys, GN, 7.5 hp 23 maj 2013 kl. 9 14

Tentamen i Tillämpad statistisk analys, GN, 7.5 hp 23 maj 2013 kl. 9 14 STOCKHOLMS UNIVERSITET MT4003 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 23 maj 2013 Tentamen i Tillämpad statistisk analys, GN, 7.5 hp 23 maj 2013 kl. 9 14 Examinator: Gudrun Brattström,

Läs mer

732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 3 Bertil Wegmann IDA, Linköpings universitet November 4, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 4, 2015 1 / 22 Kap. 4.8, interaktionsvariabler Ibland

Läs mer

FACIT!!! (bara facit,

FACIT!!! (bara facit, STOCKHOLMS UNIVERSITET Psykologiska institutionen Psykologi III, VT 2012. Fristående kurs FACIT!!! (bara facit, inga tolkningar) Skrivning i Psykologi III metod, fristående kurs: Metod och Statistik avsnitt

Läs mer

Statistiska analyser C2 Inferensstatistik. Wieland Wermke

Statistiska analyser C2 Inferensstatistik. Wieland Wermke + Statistiska analyser C2 Inferensstatistik Wieland Wermke + Signifikans och Normalfördelning + Problemet med generaliseringen: inferensstatistik n Om vi vill veta ngt. om en population, då kan vi ju fråga

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

Kroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts.

Kroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts. Syfte: Bestämma normal kroppstemperatur med tillgång till data från försök. Avgöra eventuell skillnad mellan män och kvinnor. Utforska ett eventuellt samband mellan kroppstemperatur och hjärtfrekvens.

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Härledning av Black-Littermans formel mha allmänna linjära modellen

Härledning av Black-Littermans formel mha allmänna linjära modellen Härledning av Black-Littermans formel mha allmänna linjära modellen Ett sätt att få fram Black-Littermans formel är att formulera problemet att hitta lämpliga justerade avkastningar som ett skattningsproblem

Läs mer

I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt

I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt Introduktion Vi har fått ta del av 13 mätningar av kroppstemperatur och hjärtfrekvens, varav på hälften män, hälften kvinnor, samt en studie på 77 olika flingsorters hyllplaceringar och sockerhalter. Vi

Läs mer

Statistik för teknologer, 5 poäng Skrivtid:

Statistik för teknologer, 5 poäng Skrivtid: UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för teknologer, MSTA33, p Statistik för kemister, MSTA19, p TENTAMEN 2004-06-03 TENTAMEN I MATEMATISK STATISTIK Statistik för teknologer,

Läs mer

Examinationsuppgifter del 2

Examinationsuppgifter del 2 UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).

Läs mer

Enkel linjär regression. Enkel linjär regression. Enkel linjär regression

Enkel linjär regression. Enkel linjär regression. Enkel linjär regression Enkel linjär regression Exempel.7 i boken (sida 31). Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben och höjder på sockeln. De halvledare

Läs mer

Psykologiska institutionen tillämpar anonymitet i samband med tentor i skrivsal, som går till så här:

Psykologiska institutionen tillämpar anonymitet i samband med tentor i skrivsal, som går till så här: GÖTEBORGS UNIVERSITET Psykologiska institutionen Tentamen Kurs: PC1307 Kurs 7: Samhällsvetenskaplig forskningsmetodik PC1546 Forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Tentamensdatum:

Läs mer

Formler och tabeller till kursen MSG830

Formler och tabeller till kursen MSG830 Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)

Läs mer

Del A: Schema för ifyllande av svar nns på sista sidan

Del A: Schema för ifyllande av svar nns på sista sidan Del A: Schema för ifyllande av svar nns på sista sidan 1 1 Nedladdningstiden (i sekunder) för en bestämd l registrerades 16 gånger vid var och en av tre olika tidpunkter på dygnet. ANOVA-analys av dessa

Läs mer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. 1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)

Läs mer

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en

Läs mer

Statistisk försöksplanering

Statistisk försöksplanering Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare

Läs mer

Föreläsning 8: Konfidensintervall

Föreläsning 8: Konfidensintervall Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga

Läs mer

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval Martin Singull Matematisk statistik Matematiska institutionen Innehåll Repetition (t-test för H 0 : β i = 0) Residualanalys Modellval Framåtvalsprincipen

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen Finansiell Statistik (GN, 7,5 hp,, HT 8) Föreläsning 7 Multipel regression (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,

Läs mer

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent

Läs mer

Maximalt antal poäng för hela skrivningen är 31 poäng. För Godkänt krävs minst 19 poäng. För Väl Godkänt krävs minst 25 poäng.

Maximalt antal poäng för hela skrivningen är 31 poäng. För Godkänt krävs minst 19 poäng. För Väl Godkänt krävs minst 25 poäng. Försättsblad KOD: Kurskod: PC1546 Kursnamn: Forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Ansvarig lärare: Sara Landström Tentamensdatum: 26 april, 2014 kl. 9:00 13:00 Tillåtna hjälpmedel:

Läs mer

Följande resultat erhålls (enhet: 1000psi):

Följande resultat erhålls (enhet: 1000psi): Variansanalys Exempel Aluminiumstavar utsätts för uppvärmningsbehandlingar enligt fyra olika standardmetoder. Efter behandlingen uppmäts dragstyrkan hos varje stav. Fem upprepningar görs för varje behandling.

Läs mer

Uppgift a b c d e f (vet ej) Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Uppgift a b c d e f (vet ej) Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 查 询 TMS160 供 应 商 捷 多 邦, 专 业 PCB 打 样 工 厂,24 小 时 加 急 出 货 TENTAMEN: Statistisk modellering för I3, TMS160, fredagen den 26 Augusti kl? på?. Jour: Holger Rootzén, ankn. 3578 Hjälpmedel: Utdelad formelsamling

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-19 Motivering Vi motiverade enkel linjär regression som ett

Läs mer

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts. Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012

Läs mer

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden

Läs mer

Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik,

Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 7,5 hp. Tid: Lördag den 18 april 2009, kl 14:00-18:00 Väg och vatten Examinator: Olle Nerman, tel 7723565. Jour: Frank Eriksson,

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 5 Johan Lindström 12 september 216 Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 1/23 Repetition Gauss approximation Delta metoden

Läs mer

Regressionsanalys av lägenhetspriser i Spånga

Regressionsanalys av lägenhetspriser i Spånga Regressionsanalys av lägenhetspriser i Spånga Mahamed Saeid Ali Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2016:11 Matematisk statistik Juni 2016

Läs mer

Modeller för fler än två valmöjligheter. Förekommer både som logit- och som probitmodeller.

Modeller för fler än två valmöjligheter. Förekommer både som logit- och som probitmodeller. Multinominella modeller Modeller för fler än två valmöjligheter. Förekommer både som logit- och som probitmodeller. Möjligt att, genom olika modellformuleringar, beakta att vissa regressorer varierar mellan

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Stokastiska processer med diskret tid

Stokastiska processer med diskret tid Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna

Läs mer

2. Lära sig beskriva en variabel numeriskt med "proc univariate" 4. Lära sig rita diagram med avseende på en annan variabel

2. Lära sig beskriva en variabel numeriskt med proc univariate 4. Lära sig rita diagram med avseende på en annan variabel Datorövning 1 Statistikens Grunder 2 Syfte 1. Lära sig göra betingade frekvenstabeller 2. Lära sig beskriva en variabel numeriskt med "proc univariate" 3. Lära sig rita histogram 4. Lära sig rita diagram

Läs mer

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs Statistikens grunder och 2, GN, hp, deltid, kvällskurs TE/RC Datorövning 3 Syfte:. Lära sig göra betingade frekvenstabeller 2. Lära sig beskriva en variabel numeriskt med proc univariate 3. Lära sig rita

Läs mer

Kurskod: TAMS11 Provkod: TENB 12 January 2015, 08:00-12:00. English Version

Kurskod: TAMS11 Provkod: TENB 12 January 2015, 08:00-12:00. English Version Kurskod: TAMS Provkod: TENB 2 January 205, 08:00-2:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel -och tabellsamling

Läs mer

T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen

T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen 1. One-Sample T-Test 1.1 När? Denna analys kan utföras om man vill ta reda på om en populations medelvärde på en viss variabel kan antas

Läs mer