Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland

Storlek: px
Starta visningen från sidan:

Download "Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland"

Transkript

1 Upprepade mätningar och tidsberoende analyser Stefan Franzén Statistiker Registercentrum Västra Götaland

2 Innehåll Stort område Simpsons paradox En mätning per individ Flera mätningar per individ Flera mätningar per individ och en endpoint (Mediering) (Tidsberoende confounding) (Anscombs Kvartett)

3 Disclaimer Statistisk modellering av upprepade mätningar och tidsberoende data är svårt Viktiga detaljer saknas Rådfråga en statistiker!

4 Krossektionella data

5 Upprepade mätningar

6 Upprepade mätningar och utfall

7 Simpsons paradox Vi har ett antal observationer på BMI från ett register BMI Det ser ut som om BMI minskar över tid Kalendertid

8 Simpsons paradox Vi har ett antal observationer på BMI från ett register BMI Det ser ut som om BMI minskar över tid Men vi hade glömt att vi har två mätningar per individ BMI ökar för alla individer! Kalendertid Vem kommer med i registret?

9 Modeller för variation inom och mellan individer En mätning per individ utfall = Systematisk modell mellan individer + Slumpmodell mellan individer Flera mätningar per individ utfall = Systematisk modell mellan individer Slumpmodell mellan individer Systematisk modell inom individ Slumpmodell inom individ

10 En observation per individ En grupp: Flera grupper: Regression: log y i = μ + ε i ε ij ~N 0, σ 2 i = 1,, n y ij = μ j + ε ij ε ij ~N 0, σ 2 i = 1,, n j = 1, 2 y i = α + βx i + ε i ε ij ~N 0, σ 2 i = 1,, n

11 Varför ha flera observationer på en individ? Man vill precisionen Medelvärde per individer Skillnad innom individer Man vill följan en individ över tid Uppföljning Övervakning Tid till händelse

12 Flera observationer per individ 10 patienter 1 mätning innan behandling 4 mätningar under behandling Analysstrategier: Ldl vid 4v. Förändring från baseline vid 4 v. Med baseline som kovariat Linjär regression Individuella regressioner Icke linjär modell Mixad ickelinjär modell Mixed repeated measures models 3 2,5 2 1,5 1 0,5 0 LDL (mg/dl) baseline 1 week 2 weeks 3 weeks 4 weeks G.E.P. Box: All models are wrong, but some models are useful

13 Förenkla till 2 observationer per individ Mätning av ldl före och efter behandling baseline 4 veckor 2, , , baseline LDL (mg/dl) 4 weeks

14 Om variation Vi kan dela upp variationen inom och mellan individer Individ 1 Individ 2 Y ij = μ + ξ i + ε ij ε ij ~N 0, σ 2 i=1,2 : individ j=1,2 : mätning oberoende ξ 1 ε 11 μ Fix effekt ξ 1, ξ 2 fixed Random effekt ξ i ~N 0, τ 2 1 vecka 2 veckor Det finns en korrelation på samma individ τ 2 σ 2 +τ 2 mellan mätningar

15 2 observationer per individ 3 2,5 2 1,5 1 0,5 0 LDL (mg/dl) baseline 4 weeks När lönar det sig att beräkna differenser inom individer? X ij = μ + γ T + ξ i + ε ij modellfel ~N 0, σ 2 Varians för ett värde efter behandling Var X i2 = τ 2 + σ 2 Individeffekt ~N 0, τ 2 Varians för skillnaden efter jämfört med före behandling Var X i2 X i1 = 2 σ 2 Skillnad inom individ är bra om variansen inom individer är större än variansen mellan individer

16 Förenkla till 2 observationer per individ Mätning av ldl före och efter behandling baseline 4 veckor difference 2, , , σ = 0.43 σ = baseline LDL (mg/dl) 4 weeks Här vinner man inget på att räkna differenser!

17 Flera observationer per individ LDL (mg/dl) 3 2,5 2 1,5 1 0, t En linje per grupp Modell: Y ij = α + β T t + ε ij Samma intercept Olika lutning ε ij ~N 0, σ 2

18 Flera observationer per individ LDL (mg/dl) 3 2,5 2 1,5 1 0, t En linje per grupp Modell: Y ij = α T + β T t + ε Olika intercept ij Olika lutning ε ij ~N 0, σ 2

19 Flera observationer per individ LDL (mg/dl) μ + ξ ii 3 2,5 2 1,5 1 0, Modell: Y ij = μ + ξ i + β T t + ε ij t En linje per individ

20 Flera observationer per individ LDL (mg/dl) 3 2,5 2 1,5 1 0, Modell: Y ij = μ + ξ i + β T t + ε ij ξ i ~N 0, τ 2 t En linje per individ Individuella intercept Lutning per behandling ε ij ~N 0, σ 2

21 Exempel på modeller

22 Flera observationer per individ LDL (mg/dl) 3 2,5 2 1,5 1 0, Modell: Y ij = y 0 e A α 1 e αt t + ε ij En linje per individ Olika parametrar Tolkningsbarhet! ε ij ~N 0, σ 2

23 Mixade generaliserade linjära modeller Exempel: Upprepade mätningar på fysisk aktivitet Y ij 0,1 logit P Y ij = 1 = μ + ξ i + τ + ε ij ε ij ~N 0, σ 2 ξ i ~N 0, τ 2 Funkar kanske inte så bra på rökning. eftersom variationen inom en individ ofta är mycket liten.

24 Mixade ickelinjära modeller Ibland är det inte realistiskt att ha linjära modeller Tillväxt av en tumör Det finns en undre (noll) övre gräns för tumörens storlek y ij = b 1 + μ 1i + ε ij 1 + exp t ij b 2 b 3 μ 1i ~N 0, σ u 2 ε ij ~N 0, σ ε 2 Mixade ickelinjära modeller är notoriskt besvärliga. Man måste nog kontrollera att beräkningen konvergerat. Kan vara känsligt för startvärden

25 Mixed repeated measure model Korrelationen inom en individ kan se olika ut Individ i Korrelationen är samma mellan alla värden de kommer från samma individ Individ i Korrelationen är mellan näraliggande värden är stark Man kan modellera korrelationsstrukturen!

26 Upprepade mätningar och tid till händelse

27 Patienter Tid-till-händelse-data Vi mäter tiden till en händelse för att kunna uttala oss om risk Observationerna är inte alltid kompletta - censurering Censurering Händelse Oobserverad händelse Tid

28 Ett exempel från NDR njursjuka NDR-patienter Median uppföljning: 5.15 år SBP, DBP, HbA1c, Hdl, Ldl, BMI Endpoint: Död Frågeställning: hur påverkar SBP (exempelvis) risken att dö?

29 Upprepade mätningar på SBP

30 Upprepade mätningar på SBP

31 Enkel analys, Kaplan-Meier Ofta ignorerar man alla mätningar på den förklarande variabeln, utom den första Vi har tid till död eller censurering och baseline blodtryck De med högt (>140) SBP verkar ha högst risk att dö

32 Hur modellera sambandet? Ibland jämför man värde för de med event med värdena för de som inte fick event under uppföljningen Problematiskt pga censurering prediktorer utfall Utfall=f(prediktorer)

33 Hur modellera sambandet? Hur beror risken för död på de förklarande variablerna? Coxregression! Lättast: Första mätningen lite knepigare: Senaste mätningen Fel: Genomsnitt av alla mätningar!! får ej se framåt i tiden!!

34 SBP Eller Coxregression λ t = λ 0 t exp β X När någon dör så jämförs dennes värde (här vid baseline) med värdena för de (andra) som fortfarande lever Oftas har den som dör högt SBP i förhållande till de andra som ännu lever Tid från index

35 Tids uppdaterade värden på SBP I stället för att använda värdet på SBP vid index kan vi använda senaste värdet λ t = λ 0 t exp β X t Vi försöker förklara risken att dö med det nuvarande värdet på SBP Vi skulle kunna använda det tidsuppdaterade medelvärdet

36 Det tiduppdaterade värdet är inte alltid aktuellt Vi vill jämföra värdet för den som dött med de senaste värdena på alla andra som ännu inte dött I praktiken har vi ofta inte så många mätningar så den senaste kan vara ganska gammal

37 Det tiduppdaterade värdet är inte alltid aktuellt Vi vill jämföra värdet för den som dött med de senaste värdena på alla andra som ännu inte dött I praktiken har vi ofta inte så många mätningar så den senaste kan vara ganska gammal Det blir lätt LVCF

38 Senaste värdet kan var problematiskt Den senaste mätningen av en förklarande variabel i en Coxregression kan vara påverkad av confounding Exempel Vi vill studera BMI som riskfaktor för cancer Cancer kan leda till hastig viktnedgång Ett BMI tätt innan en diagnos kan var påverkat av cancern Vi kan skippa senaste värdet, men hur blir det för individer vid risk?

39 Man får inte använda framtida värden Ibland används medelvärdet av samtliga mätningar av en förklarande variabel i en Coxregression Det kan leda till systematiska fel. Man får bara titta bakåt i tiden!

40 Varför är det fel att använda medelvärdet av alla mätnignar? Vid varje händelse fås ett bidrag till analysen där den aktuella personens värde jämförs med alla som ännu är vid risk Om det finns en underliggande trend (ex BMI ökar med ålder) så påverkas analysen av framtida värden Kan ge systematiska fel!

41 Att justera för confounders En Coxregression används ofta för att justera en jämförelse för potentiella confounders Man antar då en viss specifik loglinjär relation mellan varje confounder och utfallet. Så är inte alltid fallet

42 Allt är inte som man tror Ålder BMI SBP HbA1c Kreatinin Diabetesduration

43 Post index medierande variabler Exponering Utfall Mediering Exempel: Exponering: gastric bypass Mediering : BMI över tid Utfall: (tid till) död Analysmodell: coxregression Vad händer om vi har med post index BMI i en analysmodell?

44 Causal mediation analysis M X Y Y(x,M(x)) = utfallet* som observeras om vi sätter X=x och den mediatorn tar vädet M(x) dom den naturligt tar om X sätts till x Naturlig Direkt effekt: = Y(x,M(x)) Y(x*,M(x)) Naturlig Indirekt effekt: = Y(x*,M(x)) Y(x*,M(x*)) Total effekt: = Y(x,M(x)) Y(x*,M(x*)) Teori, SAS och R-kod finns (T Lange)

45 Exponering som ändras över tid - tidsberoende confounding Exponering Utfall Mediering Exempel: Exponering: behandling för blodtryck Mediering: blodtryck Utfall: (tid till) död En behandling ger ett tryck som i sin tur leder till en ändring av behandling

46 Summering Modellera variation mellan och inom individer Överlevnadsanalys kopplar förklarande variabler till risk Man kan bara se bakåt Enkelt är bra!

47 Backup

48 Om vikten av att plotta data Anscoms kvartett X1 Y1 X2 Y2 X3 Y3 X4 Y Abscombe Graphs in statistical analysis The American Statistician 1973

49 Om vikten av att plotta data Anscoms kvartett X1 Y1 X2 Y2 X3 Y3 X4 Y medelvärde

50 Om vikten av att plotta data Anpassa en regression per individ Y 1 =3+0.5X 1 Y 2 =3+0.5X 2 Y 3 =3+0.5X 3 Sum of squares x-x=110.0 Regression of of squares=27.5 Residual sum of squares=13.75 Degrees of freedom=9 Estimated standard error=0.118 R 2 =0.677 Y 4 =3+0.5X 4 Ingen skillnad!

51 Om vikten av att plotta data Y 1 mot X 1 Y 2 mot X Y 3 mot X 3 Y 4 mot X

Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8

Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 1 Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 Dessa instuderingsfrågor är främst tänkta att stämma överens med innehållet i föreläsningarna,

Läs mer

Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå

Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå Användning Multilevel Modeling (MLM) Var sak på sin nivå Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Kärt barn har många namn: (1) Random coefficient models; () Mixed effect models; (3)

Läs mer

Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL)

Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL) Innehåll: 1. Risk & Odds 1.1 Risk Ratio 1.2 Odds Ratio 2. Logistisk Regression 2.1 Ln Odds 2.2 SPSS Output 2.3 Estimering (ML) 2.4 Multipel 3. Survival Analys 3.1 vs. Logistisk 3.2 Censurerade data 3.3

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska

I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska Innehåll I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser Univariata analyser Univariata analyser

Läs mer

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat

Läs mer

STATISTISK ANALYS AV KOMPLEXA DATA

STATISTISK ANALYS AV KOMPLEXA DATA STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet 12 December Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 12 December 1 / 12 Explorativ Faktoranalys

Läs mer

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest

Läs mer

Upplägg Dag 1 Tid till händelse Censurering Livslängdstabeller Överlevnadsfunktionen Kaplan-Meier Parametrisk skattning Jämföra överlevnadskurvor

Upplägg Dag 1 Tid till händelse Censurering Livslängdstabeller Överlevnadsfunktionen Kaplan-Meier Parametrisk skattning Jämföra överlevnadskurvor Survival analysis (Dag 1) Upplägg Dag 1 Tid till händelse Censurering Livslängdstabeller Överlevnadsfunktionen Kaplan-Meier Parametrisk skattning Jämföra överlevnadskurvor Henrik Källberg, 2012 Survival

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts. Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:

Läs mer

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet 1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet För att bli godkänd på inlämningsuppgiften krävs att man utför uppgiften om

Läs mer

Missing data och imputation eller Får man hitta på data? Lars Lindhagen, UCR 2014-05-21

Missing data och imputation eller Får man hitta på data? Lars Lindhagen, UCR 2014-05-21 Missing data och imputation eller Får man hitta på data? Lars Lindhagen, UCR 2014-05-21 Inledning Saknat data finns alltid, åtminstone i stora registerstudier. Ett problem som måste hanteras på något sätt.

Läs mer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna

Läs mer

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet 1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet Uppdaterad: 130114 För att bli godkänd på inlämningsuppgiften krävs att man

Läs mer

Risk Ratio, Odds Ratio, Logistisk Regression och Survival Analys med SPSS Kimmo Sorjonen, 2012

Risk Ratio, Odds Ratio, Logistisk Regression och Survival Analys med SPSS Kimmo Sorjonen, 2012 Risk Ratio, Odds Ratio, Logistisk Regression och Survival Analys med SPSS Kimmo Sorjonen, 2012 1. Risk Ratio & Odds Ratio Risk- och odds ratio beräknar sambandet mellan två dikotoma variabler. Inom forskning

Läs mer

Föreläsning 7. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 7. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 7 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Fortsättning envägs-anova Scheffes test (kap 11.4) o Tvåvägs-ANOVA Korsade faktorer (kap 12.1, 12.3) Randomiserade blockförsök

Läs mer

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Spridningsdiagrammen nedan representerar samma korrelationskoefficient, r = 0,8. 80 80 60 60 40 40 20 20 0 0 20 40 0 0 20 40 Det finns dock två

Läs mer

Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi

Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1(6) PCA/MIH Johan Löfgren 2016-11-10 Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1 Inledning Sveriges kommuner och landsting (SKL) presenterar varje år statistik över elevprestationer

Läs mer

Statistiska samband: regression och korrelation

Statistiska samband: regression och korrelation Statistiska samband: regression och korrelation Vi ska nu gå igenom något som kallas regressionsanalys och som innebär att man identifierar sambandet mellan en beroende variabel (x) och en oberoende variabel

Läs mer

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013 Föreläsning 9 Logistisk regression och Indexteori Patrik Zetterberg 7 januari 2013 1 / 33 Logistisk regression I logistisk regression har vi en binär (kategorisk) responsvariabel Y i som vanligen kodas

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp

Läs mer

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris

Läs mer

MULTIPEL IMPUTATION. Ett sätt att fylla i hålen i ditt datamaterial?

MULTIPEL IMPUTATION. Ett sätt att fylla i hålen i ditt datamaterial? MULTIPEL IMPUTATION Ett sätt att fylla i hålen i ditt datamaterial? Pär Ola Bendahl IKVL, Avdelningen för Onkologi Lunds Universitet Par Ola.Bendahl@med.lu.se Översikt 1. Introduktion till problemet 2.

Läs mer

Sambandsmått. Centralmått. Det mest frekventa värdet. Det mittersta värdet i en rangordnad fördelning. Aritmetiska medelvärdet.

Sambandsmått. Centralmått. Det mest frekventa värdet. Det mittersta värdet i en rangordnad fördelning. Aritmetiska medelvärdet. PM315 HT016 Emma äck Formelsamling Centralmått Typvärde T Median Md ritmetiska medelvärdet Det mest frekventa värdet Det mittersta värdet i en rangordnad fördelning = n Spridningsmått Variationsvidd (Range)

Läs mer

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet 1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet Uppdaterad: 120113 För att bli godkänd på inlämningsuppgiften krävs att man

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. 1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende

Läs mer

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer

Läs mer

Uppgift 1. Deskripitiv statistik. Lön

Uppgift 1. Deskripitiv statistik. Lön Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot

Läs mer

MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data

MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data Pär-Ola Bendahl IKVL, Avdelningen för Onkologi Lunds Universitet Par-Ola.Bendahl@med.lu.se Översikt Introduktion till problemet Enkla

Läs mer

Multivariabel statistik

Multivariabel statistik Multivariabel statistik beware of the wolf Johan Lindbäck Uppsala Clinical Research Center Kvalitetsregisterforskningskonferens Arlanda 26 maj 2015 J Lindbäck (UCR) Multivariabla modeller 26/5 2015 2/36

Läs mer

Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik.

Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik. Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik Urvalsstorlek Mätnivå/skaltyp Fördelning av data Studiedesign Frida Eek

Läs mer

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser: 1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,

Läs mer

Överlevnadsanalys. 732G34 Statistisk analys av komplexa data

Överlevnadsanalys. 732G34 Statistisk analys av komplexa data Överlevnadsanalys 732G34 Statistisk analys av komplexa data 1 Tvärsnittsstudie Prospektiv Kohortstudie Observationsstudie Tvärsnittsstudie Retrospektiv Experimentell studie (alltid prospektiv) Klinisk

Läs mer

Överlevnadsanalys. Överlevnadsanalys med tidsberoende kovariater. Tid till en händelse: observationer i kalendertid och som tid från start.

Överlevnadsanalys. Överlevnadsanalys med tidsberoende kovariater. Tid till en händelse: observationer i kalendertid och som tid från start. Överlevnadsanalys Överlevnadsanalys med tidsberoende kovariater Peter Höglund USiL 10 februari 2010 Kaplan-Meier Logrank test Cox-regression Tidsberoende kovariater (Tidsuppdaterade kovariater tas inte

Läs mer

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att

Läs mer

Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4.

Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4. Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse

Läs mer

Hypotestestning och repetition

Hypotestestning och repetition Hypotestestning och repetition Statistisk inferens Vid inferens använder man urvalet för att uttala sig om populationen Centralmått Medelvärde: x= Σx i / n Median Typvärde Spridningsmått Används för att

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Poolade data över tiden och över tvärsnittet. Oberoende poolade tvärsnittsdatamängder från olika tidpunkter.

Poolade data över tiden och över tvärsnittet. Oberoende poolade tvärsnittsdatamängder från olika tidpunkter. PANELDATA Poolade data över tiden och över tvärsnittet Alternativ 1: Oberoende poolade tvärsnittsdatamängder från olika tidpunkter. Oberoende stickprov dragna från stora populationer vid olika tidpunkter.

Läs mer

Statistisk analys av komplexa data

Statistisk analys av komplexa data Statistisk analys av komplexa data Trunkerade data och Tobitregression Bertil Wegmann Avdelning statistik, IDA, Linköpings universitet November 10, 2015 Bertil Wegmann (statistik, LiU) Trunkerade data

Läs mer

Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, HT2013 2014-02-07 Skrivtid: 13.00-18.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.

Läs mer

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Svensk Dialysdatabas. Blodtryck och blodtrycksbehandling PD. Klinikdata hösten 2005 Översikt åren 2002 2005

Svensk Dialysdatabas. Blodtryck och blodtrycksbehandling PD. Klinikdata hösten 2005 Översikt åren 2002 2005 Svensk Dialysdatabas Blodtryck och blodtrycksbehandling PD Klinikdata hösten 5 Översikt åren 2 5 Innehållsförteckning Läsanvisningar och kommentarer...3 Figur 1. Systoliskt BT 5...4 Figur 2. Andel med

Läs mer

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet 1/31 REGRESSIONSANALYS F1 Linda Wänström Statistiska institutionen, Stockholms universitet 2/31 Kap 4: Introduktion till regressionsanalys. Introduktion Regressionsanalys är en statistisk teknik för att

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 11 & 12 Johan Lindström 5 & 14 oktober 2015 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F11 1/27 Johan Lindström - johanl@maths.lth.se

Läs mer

ANOVA Faktoriell (tvåvägs)

ANOVA Faktoriell (tvåvägs) ANOVA Faktoriell (tvåvägs) Faktoriell ANOVA (tvåvägs) Två oberoende variabel ( tvåvägs ): Nominalskala eller ordinalskala. Delar in det man undersöker (personerna?) i grupper/kategorier, dvs. betingelser.

Läs mer

Följande resultat erhålls (enhet: 1000psi):

Följande resultat erhålls (enhet: 1000psi): Variansanalys Exempel Aluminiumstavar utsätts för uppvärmningsbehandlingar enligt fyra olika standardmetoder. Efter behandlingen uppmäts dragstyrkan hos varje stav. Fem upprepningar görs för varje behandling.

Läs mer

Musselmatematik eller Stormusselstatistik

Musselmatematik eller Stormusselstatistik Musselmatematik eller Stormusselstatistik .Allmänt 2.Analys av förändringar (före efter) 3.Analys av förekomst och täthet vs omgivningsfaktorer .Allmänt Jämförelse av populationstäthet och minsta mussla

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel

Läs mer

Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum:

Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum: Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum: 120203 Ovanstående nummer är ditt identifikationsnummer! Skriv in detta nummer på varje blad i tentan

Läs mer

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden

Läs mer

Regressionsanalys av huspriser i Vaxholm

Regressionsanalys av huspriser i Vaxholm Regressionsanalys av huspriser i Vaxholm Rasmus Parkinson Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2015:19 Matematisk statistik Juni 2015 www.math.su.se

Läs mer

Regressions- och Tidsserieanalys - F8

Regressions- och Tidsserieanalys - F8 Regressions- och Tidsserieanalys - F8 Klassisk komponentuppdelning, kap 7.1.-7.2. Linda Wänström Linköpings universitet November 26 Wänström (Linköpings universitet) F8 November 26 1 / 23 Klassisk komponentuppdelning

Läs mer

732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 3 Bertil Wegmann IDA, Linköpings universitet November 4, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 4, 2015 1 / 22 Kap. 4.8, interaktionsvariabler Ibland

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Upplysningar 1. Tillåtna hjälpmedel: Miniräknare, A4/A8 Tabell- och formelsamling (alternativ Statistik

Läs mer

Kvantitativa metoder och datainsamling

Kvantitativa metoder och datainsamling Kvantitativa metoder och datainsamling Kurs i forskningsmetodik med fokus på patientsäkerhet 2015-09-23, Peter Garvin FoU-enheten för närsjukvården Kvantitativ och kvalitativ metodik Diskborsten, enkronan

Läs mer

Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10

Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10 Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10 Läsanvisningarna baseras på boken Björk J. Praktisk statistik för medicin och hälsa, Liber Förlag (2011), som är gemensam kursbok för statistikavsnitten

Läs mer

7.5 Experiment with a single factor having more than two levels

7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan och att en inblandning mellan 10% och 40% är bra. För att

Läs mer

Instruktioner till Inlämningsuppgift 1 och Datorövning 1

Instruktioner till Inlämningsuppgift 1 och Datorövning 1 STOCKHOLMS UNIVERSITET HT 2005 Statistiska institutionen 2005-10-14 MC Instruktioner till Inlämningsuppgift 1 och Datorövning 1 Kurs i Ekonometri, 5 poäng. Uppgiften ingår i examinationen för kursen och

Läs mer

Examinationsuppgifter del 2

Examinationsuppgifter del 2 UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).

Läs mer

Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter.

Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter. Laboration 5 Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter. Deluppgift 1: Enkel linjär regression Övning Under denna uppgift ska enkel

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Analys av korstabeller 2 Innehåll 1 Analys av korstabeller 2 Korstabeller Vi har tidigare under kursen redan bekantat oss med korstabeller. I en korstabell redovisar man fördelningen på två

Läs mer

I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt

I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt Introduktion Vi har fått ta del av 13 mätningar av kroppstemperatur och hjärtfrekvens, varav på hälften män, hälften kvinnor, samt en studie på 77 olika flingsorters hyllplaceringar och sockerhalter. Vi

Läs mer

Flerfaktorförsök. Blockförsök, randomiserade block. Modell: yij i bj eij. Förutsättningar:

Flerfaktorförsök. Blockförsök, randomiserade block. Modell: yij i bj eij. Förutsättningar: Flerfaktorförsök Blockförsök, randomiserade block Modell: yij i bj eij i 1,,, a j 1,,, b y ij vara en observation för den i:te behandlingen och det j:e blocket gemensamma medelvärdet ( grand mean ) effekt

Läs mer

Regressions- och Tidsserieanalys - F4

Regressions- och Tidsserieanalys - F4 Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

Vad Betyder måtten MAPE, MAD och MSD?

Vad Betyder måtten MAPE, MAD och MSD? Vad Betyder måtten MAPE, MAD och MSD? Alla tre är mått på hur bra anpassningen är och kan användas för att jämföra olika modeller. Den modell som har lägst MAPE, MAD och/eller MSD har bäst anpassning.

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum:

Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum: Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum: 110319 Ovanstående nummer är ditt identifikationsnummer! Skriv in detta nummer på varje blad i tentan

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-19 Motivering Vi motiverade enkel linjär regression som ett

Läs mer

Modeller för fler än två valmöjligheter. Förekommer både som logit- och som probitmodeller.

Modeller för fler än två valmöjligheter. Förekommer både som logit- och som probitmodeller. Multinominella modeller Modeller för fler än två valmöjligheter. Förekommer både som logit- och som probitmodeller. Möjligt att, genom olika modellformuleringar, beakta att vissa regressorer varierar mellan

Läs mer

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys) Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

Examensarbete 2008:7

Examensarbete 2008:7 Matematisk statistik Stockholms universitet Överlevnadsanalys baserad på upprepade oregelbundna mätningar Applicering av statistiska metoder för jämförelse av två behandlingsmetoder mot depression Tsegalem

Läs mer

En mycket vanlig frågeställning gäller om två storheter har ett samband eller inte, många gånger är det helt klart:

En mycket vanlig frågeställning gäller om två storheter har ett samband eller inte, många gånger är det helt klart: En mcket vanlig frågeställning gäller om två storheter har ett samband eller inte, många gånger är det helt klart: För en mätserie som denna är det ganska klart att det finns en koppling mellan -variabeln

Läs mer

Vetenskaplig metod och statistik

Vetenskaplig metod och statistik Vetenskaplig metod och statistik Innehåll Vetenskaplighet Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på

Läs mer

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION. MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen Finansiell Statistik (GN, 7,5 hp,, HT 8) Föreläsning 7 Multipel regression (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,

Läs mer

Samverkande Expertnät

Samverkande Expertnät 1 Samverkande Expertnät 2 3 1 2 3 Parallella nätverk Sammanvägning av svaren Två olika fördelar Utjämna egenheter hos nätverken Låt nätverken specialisera sig Egenskaper hos ett enkelt nätverk Överträning

Läs mer

Problem med analyser av EQ-5D data. Philippe Wagner Tomasz Czuba Jonas Ranstam

Problem med analyser av EQ-5D data. Philippe Wagner Tomasz Czuba Jonas Ranstam Problem med analyser av EQ-5D data Philippe Wagner Tomasz Czuba Jonas Ranstam Tänkte prata om Vad är EQ-5D? Hur analyseras EQ-5D data? Kort repetition av t-testet T-testet och EQ-5D data Kort repetition

Läs mer

1 Förberedelseuppgifter

1 Förberedelseuppgifter LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02 Syfte: Syftet med dagens laborationen är att du skall: bli

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

Kvantitativ strategi Univariat analys 2. Wieland Wermke

Kvantitativ strategi Univariat analys 2. Wieland Wermke + Kvantitativ strategi Univariat analys 2 Wieland Wermke + Sammanfattande mått: centralmått n Beroende på skalnivån finns det olika mått, som betecknar variablernas fördelning n Typvärde eller modalvärde

Läs mer

EPIDEMIOLOGI. Läran om sjukdomsförekomst i en befolkning (Ahlbom, Norell)

EPIDEMIOLOGI. Läran om sjukdomsförekomst i en befolkning (Ahlbom, Norell) EPIDEMIOLOGI Läran om sjukdomsförekomst i en befolkning (Ahlbom, Norell) Läran om utbredningen av och orsakerna till hälsorelaterade tillstånd eller förhållanden i specifika populationer och tillämpningen

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2 Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2 Rapporten till den här laborationen skall lämnas in senast den 19e December 2014.

Läs mer

Datorövning 4 Poissonregression

Datorövning 4 Poissonregression Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövning 4 Poissonregression När man hanterar två eller fler variabler är man ofta intresserad

Läs mer