Data på individ/hushålls/företags/organisationsnivå. Idag större datamänger än tidigare

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Data på individ/hushålls/företags/organisationsnivå. Idag större datamänger än tidigare"

Transkript

1 MIKROEKONOMETRI Data på individ/hushålls/företags/organisationsnivå Tvärsnittsdata och/eller longitudinella data o paneldata Idag större datamänger än tidigare Tekniska framsteg erbjuder möjligheter till förbättrade och förenklade insamlingsmetoder Mer specifika exempel; scanners i varuhus biljettbokning via nätet elektroniska avläsare inom kollektivtrafiken. men också ökade möjligheter till analys av komplexa datamängder Vi ser nu också mer av data från sociala/ekonomiska experiment 1

2 Ökat informationsinnehåll och stora stickprov men också ökade krav på modellformulering och metodval! Inferens baseras på, ofta mer komplicerad, asymptotisk teori och ofta krav på icke-linjär estimation Antaganden om bakomliggande sannolikhetsfördelning central och betydligt viktigare än vid användande av linjära metoder Kan formulera detaljerade modeller (modeller med många parametrar) men då ofta också modeller som är svåra att skatta vanligare att minimera komplexiteten och basera inferens på formulering av modeller där Var( i ) är robust vad gäller olika komplikationer 2

3 Ekonomisk analys handlar oftast om att härleda samband vilket också kräver att man använder metoder som kan urskilja och fånga upp dessa samband instrumentvariabler, simultana ekvationsmodeller, error correction models, fixed effects, differences - in differences etc Ofta komplexa undersökningsmetoder, inte alltid slumpmässiga urval, mätfel, ofullständig information i materialet och/eller bortfall etc 3

4 Eftersom mikrodata vanligen uppvisar en låg aggregeringsnivå måste man också kunna hantera problem med heterogenitet hos individer, företag etc. Den (beroende)variabeln har även i många fall starkt begränsat utfallsrum, man talar om limited dependent variables (LDV). I praktiken kan mikrodata också uppvisa mycket brus. Oförutsedda och oväntade beteenden spelar en större roll osv lägre R 2 -värden etc i regressioner baserade på mikrodata. 4

5 Den ekonomiska teorins roll kan variera vid formulerandet av ekonometriska modeller. Målet med analysen dock i ett första steg att identifiera och skatta fundamentala parametrar, ibland kallade djupa parametrar, som fångar upp preferenser och/eller tekniska samband en strukturell approach Man förlitar sig på ekonomisk teori och önskar analysera kausala samband. Strukturella modeller kan ofta kräva mer precisa specifikationer av exempelvis kostnads- och produktionsfunktioner och/eller av fördelningsfunktioner för modellernas slumptermer. 5

6 Ett annat mål med analysen kan vara att modellera samband mellan beroendevariabeln och variabler som tas för givna eller som anses som exogena modeller i reducerad form En modellform som inte alltid beaktar alla kausala beroenden mellan de olika ingående variablerna (behövs ju inte om variablerna verkligen är exogena). 6

7 Disaggregerade data och heterogenitet Ju mindre aggregerade data desto högre grad av heterogenitet mellan observationerna. Heterogenitet i form av kön, sociala och demografiska faktor, utbildning etc är möjlig att observera och kan därför också beaktas i modellerna. Heterogenitet i form av förmåga och motivation osv däremot svårare att observera och därmed mäta. Att inte beakta denna typ av skillnader mellan individer ger problem med confounding. Både utbildning och förmåga kan antas påverka en individs lön men om vi bara kan observera och mäta utbildning kommer denna variabels betydelse för lönebildningen att överskattas confounding bias (bias p g a att relevanta variabler uteslutits från modellen och ersatts med proxyvariabler istället) 7

8 Hur hanterar man heterogenitetsproblemet i praktiken? Ignorerar alla icke observerbara skillnader mellan individer. Om dessa egenskaper är okorrelerade med de skillnader mellan individer som man observerar och beaktar och om de icke observerade skillnaderna inte heller ger en påverkan på observerbara egenskaper över tiden (om paneldata) finns inget problem med specifikationsbias. Beaktar de icke observerbara skillnaderna m hj av individsspecifika dummyvariabler; D1 = 1 om individ 1, 0 annars osv fixed effect ansatsen. Innebär dock att för varje ny individ som tillkommer kommer en ytterligare parameter att införlivas i ekvationen. Men om paneldata med T observationer för varje individ i kan denna ansats fungera Möjligt att antingen estimera eller genom differentiering) eliminera denna effekt.(gäller då linjära modeller) Använder sig av random effect ansatsen. E g beaktar heterogeniteten genom formulering av särskilt schema för slumptermen. 8

9 Olika typer av mikrodata Traditionellt insamlade, intervjuundersökningar, frågeformulär om faktiska förhållanden, gjorda val mm Experimentella data, sociala experiment, för att avgöra effekter av en behandling, utvärdera en potentiell reform eller policy Sociala experiment kan kontrolleras, specialdesignas och övervakas möjligt att jämföra en kontrollgrupp med en grupp utsatt för behandling, lottdragning kan avgöra om behandling eller inte underlättar identifikation och ger möjlighet att isolera effekter av olika behandlingar Experimentella data har sedan länge använts inom medicinsk forskning, relativt nytt inom ekonomisk 9

10 Vissa begräsningar finns; höga kostnader för datainsamling inte alltid försöken är helt slumpmässiga problem om individer i kontrollgruppen söker alternativ behandling individer följer inte anvisningar problem om individer i kontrollgruppen avbryter för tidigt och dessa individer har särskilda egenskaper som kan påverka utfallet Hawthorne effekten individer beter sig annorlunda i experimentsituationen 10

11 Data från naturliga experiment Om en delmängd av populationen är exponerade för en exogen händelse samtidigt som miljön, situationen, för den andra gruppen är oförändrad får vi en datamängd liknande den vid experimentella data. Vi får möjlighet att jämföra effekter av händelsen på en behandlad och en obehandlad grupp. Alternativt ex En grupp, två perioder; före och efter införande av en åtgärd y it = + D t + it, i = 1,., N, t = 0,1 D t = 1 period 1 (efter händelsen) D t = 0 period 0 (före händelsen), En regression skattad baserad på poolade data ger betydelsen av händelsen genom parametern. 11

12 Givet modellformuleringen ovan antar vi dock att gruppen i övrigt uppvisar samma egenskaper period 1 som period 0, annars skulle inte kunna identifieras som effekten av händelsen Om vi istället inkluderar en obehandlad grupp för vilken vi också har tillgång till data från båda perioderna och givet antagandet att E[( 1 i1 1 i0) ( 0 i1 0 i0)] = 0 kan vi få en unbiased skattning av genom stickprovsmedelvärdet för (y 1 i1 y 1 i0) (y 0 i1 y 0 i0) differences in differences. (Mer om detta senare när paneldata behandlas.) 12

13 Revealed Preference Data; Avser faktiska observationer och utfall av dessa. Nackdelen att vi oftast inte vet priser etc för de alternativ som individen övervägde Stated Preference Data; Svar på hypotetiska frågeställningar där man kan lista samtliga möjliga alternativ. Kan dock finnas problem med mått på exempelvis betalningsvilja, lätt att överdriva eller hålla igen beroende på frågans art. 13

Poolade data över tiden och över tvärsnittet. Oberoende poolade tvärsnittsdatamängder från olika tidpunkter.

Poolade data över tiden och över tvärsnittet. Oberoende poolade tvärsnittsdatamängder från olika tidpunkter. PANELDATA Poolade data över tiden och över tvärsnittet Alternativ 1: Oberoende poolade tvärsnittsdatamängder från olika tidpunkter. Oberoende stickprov dragna från stora populationer vid olika tidpunkter.

Läs mer

Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar

Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar ICKE-LINJÄRA MODELLER Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Y i = 1 + 2 X 2i + u i Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar cov(x i,u i )

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Modeller för fler än två valmöjligheter. Förekommer både som logit- och som probitmodeller.

Modeller för fler än två valmöjligheter. Förekommer både som logit- och som probitmodeller. Multinominella modeller Modeller för fler än två valmöjligheter. Förekommer både som logit- och som probitmodeller. Möjligt att, genom olika modellformuleringar, beakta att vissa regressorer varierar mellan

Läs mer

F1 Introduktion. Statistisk undersökning. Vad är statistik? Vad är en statistisk undersökning? Klassificering efter mål eller syfte med undersökningen

F1 Introduktion. Statistisk undersökning. Vad är statistik? Vad är en statistisk undersökning? Klassificering efter mål eller syfte med undersökningen F1 Introduktion. Statistisk undersökning. Leif Ruckman och Christina Andersson Avdelningen för Nationalekonomi och Statistik Karlstads universitet Vad är statistik? 1. Statistiska uppgifter. T ex som underlag

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Beteendevetenskaplig metod. Metodansats. För och nackdelar med de olika metoderna. Fyra huvudkrav på forskningen Forskningsetiska principer

Beteendevetenskaplig metod. Metodansats. För och nackdelar med de olika metoderna. Fyra huvudkrav på forskningen Forskningsetiska principer Beteendevetenskaplig metod Ann Lantz alz@nada.kth.se Introduktion till beteendevetenskaplig metod och dess grundtekniker Experiment Fältexperiment Fältstudier - Ex post facto - Intervju Frågeformulär Fyra

Läs mer

Metod1. Intervjuer och observationer. Ex post facto, laboratorie -, fältexperiment samt fältstudier. forskningsetik

Metod1. Intervjuer och observationer. Ex post facto, laboratorie -, fältexperiment samt fältstudier. forskningsetik Metod1 Intervjuer och observationer Ex post facto, laboratorie -, fältexperiment samt fältstudier forskningsetik 1 variabelbegreppet oberoende variabel beroende variabel kontroll variabel validitet Centrala

Läs mer

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland Upprepade mätningar och tidsberoende analyser Stefan Franzén Statistiker Registercentrum Västra Götaland Innehåll Stort område Simpsons paradox En mätning per individ Flera mätningar per individ Flera

Läs mer

Forskningsprocessens olika faser

Forskningsprocessens olika faser Forskningsprocessens olika faser JOSEFINE NYBY JOSEFINE.NYBY@ABO.FI Steg i en undersökning 1. Problemformulering 2. Planering 3. Datainsamling 4. Analys 5. Rapportering 1. Problemformulering: intresseområde

Läs mer

Metodologier Forskningsdesign

Metodologier Forskningsdesign Metodologier Forskningsdesign 1 Vetenskapsideal Paradigm Ansats Forskningsperspek6v Metodologi Metodik, även metod används Creswell Worldviews Postposi'vist Construc'vist Transforma've Pragma'c Research

Läs mer

STATISTISK ANALYS AV KOMPLEXA DATA

STATISTISK ANALYS AV KOMPLEXA DATA STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet 12 December Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 12 December 1 / 12 Explorativ Faktoranalys

Läs mer

Poissonregression. E(y x1, x2,.xn) = exp( 0 + 1x1 +.+ kxk)

Poissonregression. E(y x1, x2,.xn) = exp( 0 + 1x1 +.+ kxk) Poissonregression En lämplig utgångspunkt om vi har en beroende variabel som är en count variable, en variabel som antar icke-negativa heltalsvärden med ganska liten variation E(y x1, x2,.xn) = exp( 0

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

Introduktion till kausala effekter

Introduktion till kausala effekter Introduktion till kausala effekter Ronnie Pingel Institutionen f or folkh also- och v ardvetenskap och Statistiska institutionen 2016-09-03 Utgångspunkten Introduktion Vanligt mål i empirisk forskning

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Studietyper, inferens och konfidensintervall

Studietyper, inferens och konfidensintervall Studietyper, inferens och konfidensintervall Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Studietyper Experimentella studier Innebär

Läs mer

Dekomponering av löneskillnader

Dekomponering av löneskillnader Lönebildningsrapporten 2013 133 FÖRDJUPNING Dekomponering av löneskillnader Den här fördjupningen ger en detaljerad beskrivning av dekomponeringen av skillnader i genomsnittlig lön. Först beskrivs metoden

Läs mer

Några extra övningsuppgifter i Statistisk teori

Några extra övningsuppgifter i Statistisk teori Statistiska institutionen Några extra övningsuppgifter i Statistisk teori 23 JANUARI 2009 2 Sannolikhetsteorins grunder 1. Tre vanliga symmetriska tärningar kastas. Om inte alla tre tärningarna visar sexa,

Läs mer

Samplingfördelningar 1

Samplingfördelningar 1 Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi

Läs mer

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer

Läs mer

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

STATISTISK ANALYS AV KOMPLEXA DATA

STATISTISK ANALYS AV KOMPLEXA DATA STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet 9 December Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 9 December 1 / 43 Longitudinella data

Läs mer

Olika datainsamlingsmetoder

Olika datainsamlingsmetoder Olika datainsamlingsmetoder F6 Datainsamlingsmetoder för primärdata, datorstöd (kap 2.2, 3, 7.2) Ursprung: Linda Wänström Definition: Respondent = person (eller dylikt) som ska besvara en enkät/intervju/observeras

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-19 Motivering Vi motiverade enkel linjär regression som ett

Läs mer

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013 Föreläsning 9 Logistisk regression och Indexteori Patrik Zetterberg 7 januari 2013 1 / 33 Logistisk regression I logistisk regression har vi en binär (kategorisk) responsvariabel Y i som vanligen kodas

Läs mer

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

Statistikens grunder (an, 7,5 hsp) Tatjana Nahtman Statistiska institutionen, SU

Statistikens grunder (an, 7,5 hsp) Tatjana Nahtman Statistiska institutionen, SU Statistikens grunder (an, 7,5 hsp) Tatjana Nahtman Statistiska institutionen, SU KURSENS INNEHÅLL Statistiken ger en empirisk grund för ekonomin. I denna kurs betonas statistikens idémässiga bakgrund och

Läs mer

MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data

MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data Pär-Ola Bendahl IKVL, Avdelningen för Onkologi Lunds Universitet Par-Ola.Bendahl@med.lu.se Översikt Introduktion till problemet Enkla

Läs mer

Att utvärdera offentlig politik med registerdata

Att utvärdera offentlig politik med registerdata Att utvärdera offentlig politik med registerdata Anders Forslund anders.forslund@ifau.uu.se IFAU och Nationalekonomiska institutionen, Uppsala universitet 22 mars 2013 Anders Forslund (IFAU) Utvärdering

Läs mer

Propensity Scores. Bodil Svennblad UCR 16 september 2014

Propensity Scores. Bodil Svennblad UCR 16 september 2014 Propensity Scores Bodil Svennblad UCR 16 september 2014 Jämföra två behandlingar Randomiserad studie A B Inte alltid etiskt försvarbart Dyrt Restriktioner på studiepopulationen (generaliserbart?) Real

Läs mer

Skattning av kausala effekter vid effektmodifiering genom matchning på funktioner av prognostic scores

Skattning av kausala effekter vid effektmodifiering genom matchning på funktioner av prognostic scores Skattning av kausala effekter vid effektmodifiering genom matchning på funktioner av prognostic scores Elin Moritz Student VT 2011 Examensarbete, 15 hp Statistik C, 30 hp Handledare: Ingeborg Waernbaum

Läs mer

Urvalsmetoder: Stratifierat urval (kap 9.5)

Urvalsmetoder: Stratifierat urval (kap 9.5) F4 Urvalsmetoder: Stratifierat urval (kap 9.5) Tidigare exempel Vi undersökte tidigare medellönen i ett företag med N = 500 anställda. Vi fick ett konfidensintervall: Vi vet att några förklaringsvariabler

Läs mer

Metoder för att mäta effekter av arbetsmarknadspolitiska program WORKING PAPER 2012:2

Metoder för att mäta effekter av arbetsmarknadspolitiska program WORKING PAPER 2012:2 Metoder för att mäta effekter av arbetsmarknadspolitiska program WORKING PAPER 22:2 AV: MARIE GARTELL, CHRISTER GERDES OCH PETRA NILSSON. Sammanfattning De arbetsmarknadspolitiska programmen är en viktig

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

OBS! Vi har nya rutiner.

OBS! Vi har nya rutiner. KOD: Kurskod: PM2315 Kursnamn: Metoder för psykologisk forskning (15 hp) Ansvarig lärare: Leif Strömwall Tentamensdatum: 2012-04-28 Tillåtna hjälpmedel: Miniräknare samt bifogad formel- och tabellsamling

Läs mer

Sannolikheter och kombinatorik

Sannolikheter och kombinatorik Sannolikheter och kombinatorik En sannolikhet är ett tal mellan 0 och 1 som anger hur frekvent en händelse sker, där 0 betyder att det aldrig sker och 1 att det alltid sker. När vi talar om sannolikheter

Läs mer

Några begrepp. Vad är statistik? Data. Grundläggande begrepp Olika slag av undersökningar

Några begrepp. Vad är statistik? Data. Grundläggande begrepp Olika slag av undersökningar Några begrepp F1 Grundläggande begrepp Olika slag av undersökningar Element, enhet, individ, unit, object, individual, subject Människor, bilar, företag, olika händelser, Population En mängd av enheter

Läs mer

Restid och resebeteende

Restid och resebeteende Lunds universitet Ht 2010 Nationalekonomiska institutionen Handledare: Jerker Holm Restid och resebeteende - Hur en minskning av tågets restid kan få flygresenärer att övergå till tåget. Författare: Max

Läs mer

Forskningsläget betr värdet av restidsvinster för privatresor i Sverige

Forskningsläget betr värdet av restidsvinster för privatresor i Sverige Lars Hultkrantz 1998-12-30 Forskningsläget betr värdet av restidsvinster för privatresor i Sverige Inledning Nuvarande tidsvärden för restidsförändringar för resenärer som betalar sina resa med egna medel

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström April 8, 2011 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Psykologi som vetenskap

Psykologi som vetenskap Psykologi som vetenskap Begrepp och metoder Forskningsetik Av Jenny Wikström, KI till Psykologprogrammet HT10 Kurslitteratur: Myers Psychology, Kap.1 Kurs: Introduktion till psykologi 7,5 hp Psykologi

Läs mer

Kausalitet 2012-03-26. Kausalitet. Vad är kausal inferens? Seminariets agenda. P(Y a=1 =1) P(Y a=0 =1) Kausal effekt för en individ i:

Kausalitet 2012-03-26. Kausalitet. Vad är kausal inferens? Seminariets agenda. P(Y a=1 =1) P(Y a=0 =1) Kausal effekt för en individ i: Seminariets agenda Vad är kausal inferens? nna Ekman rbets- och miljömedicin Kausalitet Statistiska samband kontra kausalitet Konfounding DG ett grafiskt stöd Inverse propability weights Kausalitet ounterfactual

Läs mer

Sahlgrenska akademin VID GÖTEBORGS UNIVERSITET Avdelningen för samhällsmedicin och folkhälsa / Allmänmedicin vid institutionen för Medicin

Sahlgrenska akademin VID GÖTEBORGS UNIVERSITET Avdelningen för samhällsmedicin och folkhälsa / Allmänmedicin vid institutionen för Medicin Sahlgrenska akademin VID GÖTEBORGS UNIVERSITET Avdelningen för samhällsmedicin och folkhälsa / Allmänmedicin vid institutionen för Medicin Forskningsmetodik- en introduktion 8 hp (kurskod MFM330) Projektledare

Läs mer

Tillvägaghångssätt för skattning av körkortsmodell

Tillvägaghångssätt för skattning av körkortsmodell Siamak Baradaran sia@kth.se Tillvägaghångssätt för skattning av körkortsmodell 1 Syfte med modellen Syftet med denna forskning har varit att utveckla en beskrivande modell som kan hjälpa oss att förstå

Läs mer

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng

Läs mer

Ex post facto forskning Systematisk, empirisk undersökning. om rökning så cancer?

Ex post facto forskning Systematisk, empirisk undersökning. om rökning så cancer? Metod2 Experimentell och icke experimentell forskning Ex post facto forskning Laboratorie - och fältexperiment Fältstudier Etnografiska studier Forskningsetiska aspekter 1 Ex post facto forskning Systematisk,

Läs mer

Föreläsning 4. Kapitel 5, sid Stickprovsteori

Föreläsning 4. Kapitel 5, sid Stickprovsteori Föreläsning 4 Kapitel 5, sid 127-152 Stickprovsteori 2 Agenda Stickprovsteori Väntevärdesriktiga skattningar Samplingfördelningar Stora talens lag, Centrala gränsvärdessatsen 3 Statistisk inferens Population:

Läs mer

Introduktion Kritiskt förhållningssätt Olika typer av undersökningar

Introduktion Kritiskt förhållningssätt Olika typer av undersökningar F1 Introduktion Kritiskt förhållningssätt Olika typer av undersökningar Kursupplägg 12 föreläsningar 7 seminarieövningar (Ö1 och Ö7 är obligatoriska) 1 inlämningsuppgift (i grupp) Del 1: tillämpa stickprovsteori

Läs mer

SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015

SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 14 PASSNING AV FÖRDELNING: χ 2 -METODER. Tatjana Pavlenko 12 oktober 2015 PLAN FÖR DAGENS FÖRELÄSNING Icke-parametsriska metoder. (Kap. 13.10) Det grundläggande

Läs mer

Vad beror skillnaden på? Systematiska och slumpmässiga fel

Vad beror skillnaden på? Systematiska och slumpmässiga fel Vad beror skillnaden på? Systematiska och slumpmässiga fel Typer av fel och rätt Verklig skillnad Stort slumpfel! En studie genomförs Vi observerar en skillnad! Vi observerar ingen skillnad Slumpfel Systematiska

Läs mer

Undersökningsplanering Datakällor: officiell statistik, olika databaser, registerstatistik

Undersökningsplanering Datakällor: officiell statistik, olika databaser, registerstatistik F2 Undersökningsplanering Datakällor: officiell statistik, olika databaser, registerstatistik Planeringen av en statistisk undersökning Tre huvudfrågor: Vem ska undersökas? Vad ska undersökas? Hur ska

Läs mer

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts. Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:

Läs mer

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet 1/31 REGRESSIONSANALYS F1 Linda Wänström Statistiska institutionen, Stockholms universitet 2/31 Kap 4: Introduktion till regressionsanalys. Introduktion Regressionsanalys är en statistisk teknik för att

Läs mer

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tid: Måndagen den 2015-06-01, 8.30-12.30. Examinator och Jour: Olle Nerman, tel. 7723565, rum 3056, MV, Chalmers. Hjälpmedel: Valfri

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala

Läs mer

Bygga linjära modeller! Didrik Vanhoenacker 2007

Bygga linjära modeller! Didrik Vanhoenacker 2007 Bygga linjära modeller! Didrik Vanhoenacker 2007 1 Bygga enkla modeller Tänk att vi ska försöka förstå vad som styr hur många blommor korsblommiga växter har. T ex hos Lomme och Penningört. Hittills har

Läs mer

Missing data och imputation eller Får man hitta på data? Lars Lindhagen, UCR 2014-05-21

Missing data och imputation eller Får man hitta på data? Lars Lindhagen, UCR 2014-05-21 Missing data och imputation eller Får man hitta på data? Lars Lindhagen, UCR 2014-05-21 Inledning Saknat data finns alltid, åtminstone i stora registerstudier. Ett problem som måste hanteras på något sätt.

Läs mer

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012 Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig

Läs mer

Föreläsning 7. Statistikens grunder.

Föreläsning 7. Statistikens grunder. Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande

Läs mer

Bortfall Konsekvenser Varför det kan vara allvarligt med bortfall. Ann-Marie Flygare Metodstatistiker, SCB

Bortfall Konsekvenser Varför det kan vara allvarligt med bortfall. Ann-Marie Flygare Metodstatistiker, SCB Bortfall Konsekvenser Varför det kan vara allvarligt med bortfall. Ann-Marie Flygare Metodstatistiker, SCB Konsekvenser av Bortfall Introduktion Illustration av hur bortfall påverkar resultaten i en statistisk

Läs mer

F22, Icke-parametriska metoder.

F22, Icke-parametriska metoder. Icke-parametriska metoder F22, Icke-parametriska metoder. Christian Tallberg Statistiska institutionen Stockholms universitet Tidigare när vi utfört inferens, dvs utifrån stickprov gjort konfidensintervall

Läs mer

F10. Ytterligare urvalsmetoder och skattningsmetoder (kap 9.8, 9.9) Flerstegsurval

F10. Ytterligare urvalsmetoder och skattningsmetoder (kap 9.8, 9.9) Flerstegsurval F10 Ytterligare urvalsmetoder och skattningsmetoder (kap 9.8, 9.9) Flerstegsurval Anta att man vill göra ett urval som täcker ett stort geografiskt område vill använda besöksintervju som insamlingsmetod

Läs mer

STATISTISK ANALYS AV KOMPLEXA DATA

STATISTISK ANALYS AV KOMPLEXA DATA STATISTISK ANALYS AV KOMPLEXA DATA HIERARKISKA DATA Linda Wänström Linköpings universitet 25 November Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 1 / 53 Regressionsmodell för icke-hierarkiska

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan

Läs mer

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen Sannolikhetslära och inferens II Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen 1 Statistikor och samplingfördelningar I Kapitel 6 studerades metoder för att bestämma sannolikhetsfördelningen

Läs mer

KVANTITATIV FORSKNING

KVANTITATIV FORSKNING KVANTITATIV FORSKNING Teorier innehåller begrepp som byggstenar. Ofta är kvantitativa forskare intresserade av att mäta företeelser i verkligheten och att koppla denna kvantitativa information till begrepp

Läs mer

Kursbeskrivning för Statistikens grunder, 15 högskolepoäng (kvällskurs)

Kursbeskrivning för Statistikens grunder, 15 högskolepoäng (kvällskurs) STOCKHOLMS UNIVERSITET Statistiska institutionen Raul Cano HT12 (reviderad 2012-10-16) Kursbeskrivning för Statistikens grunder, 15 högskolepoäng (kvällskurs) KURSENS INNEHÅLL I denna kurs betonas statistikens

Läs mer

Marknadsstruktur och dynamik i dagligvaruhandeln

Marknadsstruktur och dynamik i dagligvaruhandeln Marknadsstruktur och dynamik i dagligvaruhandeln nr 1 2012 årgång 40 Många marknader kännetecknas av omfattande förändringar i marknadsstrukturen över tid. Ett exempel är dagligvaruhandeln som under de

Läs mer

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden

Läs mer

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4) Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

Hyror i bostadslägenheter (HiB)

Hyror i bostadslägenheter (HiB) Statistiska centralbyrån SCBDOK 3.2 1 (17) Hyror i bostadslägenheter (HiB) 2014 BO0406 Innehåll 0 Allmänna uppgifter... 2 0.1 Ämnesområde... 2 0.2 Statistikområde... 2 0.3 SOS-klassificering... 2 0.4 Statistikansvarig...

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

Forskningsdesign. Experiment

Forskningsdesign. Experiment Forskningsdesign Experiment 1 Vetenskapsideal Paradigm Ansats Forskningsperspek6v Metodologi Metodik, även metod används Forskningsdesign Metoder (tekniker) för datainsamling, analys och validering Creswell

Läs mer

Ytterligare urvalsmetoder och skattningsmetoder

Ytterligare urvalsmetoder och skattningsmetoder F6 Ytterligare urvalsmetoder och skattningsmetoder Flerstegsurval Anta att man vill göra ett urval som täcker ett stort geografiskt område vill använda besöksintervju som insamlingsmetod Praktiskt omöjligt

Läs mer

Checklista för systematiska litteraturstudier 3

Checklista för systematiska litteraturstudier 3 Bilaga 1 Checklista för systematiska litteraturstudier 3 A. Syftet med studien? B. Litteraturval I vilka databaser har sökningen genomförts? Vilka sökord har använts? Har författaren gjort en heltäckande

Läs mer

Verksamhetsutvärdering av Mattecentrum

Verksamhetsutvärdering av Mattecentrum Verksamhetsutvärdering av Mattecentrum April 2016 www.numbersanalytics.se info@numbersanalytics.se Presskontakt: Oskar Eriksson, 0732 096657 oskar@numbersanalytics.se INNEHÅLLSFÖRTECKNING Inledning...

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

Annette Lennerling. med dr, sjuksköterska

Annette Lennerling. med dr, sjuksköterska Annette Lennerling med dr, sjuksköterska Forskning och Utvecklingsarbete Forskning - söker ny kunskap (upptäcker) Utvecklingsarbete - använder man kunskap för att utveckla eller förbättra (uppfinner) Empirisk-atomistisk

Läs mer

VANLIGA TERMER OCH BEGREPP INOM MEDICINSK VETENSKAP OCH STATISTIK

VANLIGA TERMER OCH BEGREPP INOM MEDICINSK VETENSKAP OCH STATISTIK VANLIGA TERMER OCH BEGREPP INOM MEDICINSK VETENSKAP OCH STATISTIK TERM Analytisk statistik Bias Confounder (förväxlingsfaktor)) Deskriptiv statistik Epidemiologi Fall-kontrollstudie (case-control study)

Läs mer

Skattning av matchningseffektiviteten. arbetsmarknaden FÖRDJUPNING

Skattning av matchningseffektiviteten. arbetsmarknaden FÖRDJUPNING Lönebildningsrapporten 9 FÖRDJUPNING Skattning av matchningseffektiviteten på den svenska arbetsmarknaden I denna fördjupning analyseras hur matchningseffektiviteten på den svenska arbetsmarknaden har

Läs mer

Stokastiska processer med diskret tid

Stokastiska processer med diskret tid Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna

Läs mer

Modell för löneökningar

Modell för löneökningar Lönebildningsrapporten 13 35 FÖRDJUPNING Modell för löneökningar I denna fördjupning redovisas och analyseras en modell för löneökningar. De centralt avtalade löneökningarna förklarar en stor del av den

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:

Läs mer

Räkneövning 3 Variansanalys

Räkneövning 3 Variansanalys Räkneövning 3 Variansanalys Uppgift 1 Fyra sorter av majshybrider har utvecklats för att bli resistenta mot en svampinfektion. Nu vill man också studera deras produktionsegenskaper. Varje hybrid planteras

Läs mer

Profilering av sjukskrivna. Per Johansson Uppsala Universitet Nationalekonomi och UCLS, IFAU och ISF

Profilering av sjukskrivna. Per Johansson Uppsala Universitet Nationalekonomi och UCLS, IFAU och ISF Profilering av sjukskrivna Per Johansson Uppsala Universitet Nationalekonomi och UCLS, IFAU och ISF Introduktion En vanlig uppfattning (t.ex. OECD, 2009) är att tidiga insatser leder till kortare sjukfall

Läs mer

för att komma fram till resultat och slutsatser

för att komma fram till resultat och slutsatser för att komma fram till resultat och slutsatser Bearbetning & kvalitetssäkring 6:1 E. Bearbetning av materialet Analys och tolkning inleds med sortering och kodning av materialet 1) Kvalitativ hermeneutisk

Läs mer

Beteendevetenskaplig metod

Beteendevetenskaplig metod Beteendevetenskaplig metod Experiment och fältexperiment Eva-Lotta Sallnäs Ph.D. CSC, Kungliga Tekniska Högskolan evalotta@csc.kth.se Experiment - hypoteser om orsakssamband - beroende variabler och oberoende

Läs mer

F23 forts Logistisk regression + Envägs-ANOVA

F23 forts Logistisk regression + Envägs-ANOVA F23 forts Logistisk regression + Envägs-ANOVA Repetition Detta går inteattbeskriva på någotrimligtsättmed en linjär funktion PY Xx) β 0 +β x Den skattade linjen går utanför intervallet0, ): Y ärenbinärvariabel0-,dikotom)manvillmodellera,

Läs mer

Analytisk statistik. Tony Pansell, optiker Universitetslektor

Analytisk statistik. Tony Pansell, optiker Universitetslektor Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp

Läs mer

Härledning av Black-Littermans formel mha allmänna linjära modellen

Härledning av Black-Littermans formel mha allmänna linjära modellen Härledning av Black-Littermans formel mha allmänna linjära modellen Ett sätt att få fram Black-Littermans formel är att formulera problemet att hitta lämpliga justerade avkastningar som ett skattningsproblem

Läs mer

Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013

Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013 Föreläsning 11 Slumpvandring och Brownsk Rörelse Patrik Zetterberg 11 januari 2013 1 / 1 Stokastiska Processer Vi har tidigare sett exempel på olika stokastiska processer: ARIMA - Kontinuerlig process

Läs mer