Missing data och imputation eller Får man hitta på data? Lars Lindhagen, UCR

Storlek: px
Starta visningen från sidan:

Download "Missing data och imputation eller Får man hitta på data? Lars Lindhagen, UCR 2014-05-21"

Transkript

1 Missing data och imputation eller Får man hitta på data? Lars Lindhagen, UCR

2 Inledning Saknat data finns alltid, åtminstone i stora registerstudier. Ett problem som måste hanteras på något sätt. Om man gör tokigt, kan två saker hända: Bias (gentemot ett tänkt, fullständigt dataset). Fel precision (för hög eller för låg).

3 Lär känna ditt data Börja med att försöka förstå varför data saknas! Vilka variabler brukar saknas samtidigt? Jämför individer med och utan missing m.a.p. t.ex. utfall. Tabeller eller logistisk regression med missing som utfall. Ha inte för bråttom!

4 Rubins terminologi Vad för sorts mekanism har gett upphov till missing? Exempelstudie: Är lågt blodtryck (BP) en riskfaktor för äldre? BP inte alltid uppmätt.

5 Rubin: MCAR, MAR Missing completely at random (MCAR): Att ett värde saknas beror på något helt externt. Ex: BP mättes inte för att apparaten var trasig. Missing at random (MAR): MCAR inom strata av observerat data. Ex: BP mättes mer sällan på gamla. Men bland dessa mättes det lika ofta på dem med lågt som med högt BP. MAR MCAR!

6 Rubin: MNAR Missing not at random (MNAR, informativ missing): Sannolikhet för missing beror på själva värdet. Ex: BP mättes mindre ofta på patienter med lågt BP, även bland de gamla. Svårt att hantera. Kräver externa antaganden eller sensitivitetsanalys. Kan inte skilja MAR från MNAR genom att titta på data. Kräver sakkunskap/antaganden.

7 MAR MCAR Vad göra? 1. Försök hitta igen det saknade datat. 2. Stryk variabler med mycket missing från analysen. 3. Complete case-analys (CCA): Kasta bort individer med missing. 4. Enkel imputation: Gissa ett värde. 5. Multipel imputation (MI): Gissa flera värden.

8 En simulering Låtsas studera effekt av hjärtsvikt på mortalitet med rökning som confounder: Rökning Hjärtsvikt OR 5 Död Prob Rökning saknas = 40% om hjärtsvikt och död 5% annars Simulera 5000 patienter. 516 saknar information om rökning (10.3%).

9 Hjärtsvikt Död Rökning Complete case-analys Stryk alla individer med någon missing. Fördelar: Enkelt att göra och förstå. Ingen bias om MCAR. Nackdelar: Bias om inte MCAR. Dålig precision om mycket data slängs. Kastar bort

10 Simulering: CCA Stryk de 516 patienterna utan data på rökning. Rökare Hjärtsvikt Död. Nej Nej Nej Ja Nej Nej Ja Ja. Nej Ja Resultat av logistisk regression: Variabel OR 95% CI Hjärtsvikt Rökning Kraftig bias för hjärtsvikt.

11 Hjärtsvikt Död Rökning Enkel imputation Gissa ett värde för saknat data. T.ex. Median/typvärde. Via prediktionsmodell. Last observation carried forward. Använder Använder! Fördelar: Ganska enkelt. Nackdelar: Hittar på data! Kan bli för smala (eller breda!) konfidensintervall. Kan ge bias om man gör det för enkelt.

12 Simulering: Enkel imputation Fyll i typvärde ( Nej) på rökning. Rökare Hjärtsvikt Död Nej Nej Nej Nej Ja Nej Nej Ja Ja Nej Nej Ja Resultat av logistisk regression: Variabel OR 95% CI Hjärtsvikt Rökning Mycket bättre. Viss bias för rökning.

13 Multipel imputation Gissa flera värden för saknat data. Skapa flera alternativa dataset utan missing. Oftast: Slumpa från prediktionsmodell. Hittar inte på data, utan bara fördelningar för saknat data (modellering). Variationen mellan dataseten speglar okunskapen om det sanna värdet.

14 Hjärtsvikt Död Rökning Multipel imputation Använder Skattar OR Saknat data något som skattas, inte något som ligger till grund för en skattning.

15 Multipel imputation Fördelar: Tar bort bias om MAR och korrekt imputationsmodell. Ger lagom precision (använder bara det data man faktiskt har). Nackdelar: Komplicerat, tar tid (programmering och CPU).

16 MI: Analys och poolning De imputerade dataseten analyseras var för sig. Det finns alltså aldrig ett poolat dataset. Sen poolar man resultaten. Hänsyn tas då till: Standardfel för varje imputation. Variation mellan imputationer. Hittar inte på data!

17 Sim: MI 1. Imputera Rökare Hjärtsvikt Död 2. Analysera Ursprungligt dataset Ja Nej Nej Nej Ja Nej Nej Ja Ja Nej Nej Ja Variabel OR 95% CI Hjärtsvikt Rökning Rökare Hjärtsvikt Död. Nej Nej Nej Ja Nej Nej Ja Ja. Nej Ja Rökare Hjärtsvikt Död Nej Nej Nej Nej Ja Nej Nej Ja Ja Nej Nej Ja Variabel OR 95% CI Hjärtsvikt Rökning Poola Variabel OR 95% CI Hjärtsvikt Rökning Biasen borta CI lite bredare Rökare Hjärtsvikt Död Nej Nej Nej Nej Ja Nej Nej Ja Ja Variabel OR 95% CI Hjärtsvikt Rökning

18 MI: Val av prediktorer Vilka variabler ska man stoppa in i prediktionsmodellen? Åtminstone alla variabler som ska vara med i den kommande analysen, inklusive y. Gärna ytterligare variabler med prediktivt värde.

19 MI: Hur många imputationer? 5 imputationer duger nog gott i många sammanhang. Vissa experter: Lika många imputationer som man har procent individer med någon missing. Kanske lite konservativt?

20 När behöver man imputera? Harrells tumregler, baserat på andel individer med missing: 5%: Spelar inte så stor roll hur man gör. Duger nog med CCA eller enkel imputation. 5 15%: Enkel imputation nog OK, men multipel är bättre. 15%: Använd multipel imputation.

21 Vad kan man imputera? Tre sorters variabler: z: Confounder x: Huvudexponering y: Utfall z x y Alla dessa går att imputera. Man avstår dock ofta från att imputera y.

22 Vågar jag imputera? Kan kännas läskigt: Har vi verkligen MAR? Kan vi specificera en korrekt imputationsmodell? Men alternativet att kasta bort individer bygger på ännu starkare antaganden (MCAR).

23 Missing-kategori Alternativ idé: Inför en särskild kategori för saknat data. Ex: Rökning Nej, Ja, Okänt. Rekommenderas inte! Om rökning saknas för att patienten är död, så får Rökning = Okänt en stor prediktiv kraft, på bekostnad av andra variabler.

24 Missing-kategori Rökare Hjärtsvikt Död Okänt Nej Nej Nej Ja Nej Nej Ja Ja Okänt Nej Ja Variabel OR 95% CI Hjärtsvikt Rökning Ja Rökning Okänt Viss bias för hjärtsvikt. Rökning Okänt ser farligt ut...

25 Sammanfattning Saknat data finns nästan alltid. Måste hanteras på något sätt. Multipel imputation är nog bäst. Tänkbara förenklingar (approximationer): Variabler med missing inte så viktiga: Enkel imputation. Inte så mycket missing: Complete case. Får man hitta på data? Nej, men man får imputera.

MULTIPEL IMPUTATION. Ett sätt att fylla i hålen i ditt datamaterial?

MULTIPEL IMPUTATION. Ett sätt att fylla i hålen i ditt datamaterial? MULTIPEL IMPUTATION Ett sätt att fylla i hålen i ditt datamaterial? Pär Ola Bendahl IKVL, Avdelningen för Onkologi Lunds Universitet Par Ola.Bendahl@med.lu.se Översikt 1. Introduktion till problemet 2.

Läs mer

MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data

MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data Pär-Ola Bendahl IKVL, Avdelningen för Onkologi Lunds Universitet Par-Ola.Bendahl@med.lu.se Översikt Introduktion till problemet Enkla

Läs mer

Propensity Scores. Bodil Svennblad UCR 16 september 2014

Propensity Scores. Bodil Svennblad UCR 16 september 2014 Propensity Scores Bodil Svennblad UCR 16 september 2014 Jämföra två behandlingar Randomiserad studie A B Inte alltid etiskt försvarbart Dyrt Restriktioner på studiepopulationen (generaliserbart?) Real

Läs mer

Kvantitativa metoder och datainsamling

Kvantitativa metoder och datainsamling Kvantitativa metoder och datainsamling Kurs i forskningsmetodik med fokus på patientsäkerhet 2015-09-23, Peter Garvin FoU-enheten för närsjukvården Kvantitativ och kvalitativ metodik Diskborsten, enkronan

Läs mer

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland Upprepade mätningar och tidsberoende analyser Stefan Franzén Statistiker Registercentrum Västra Götaland Innehåll Stort område Simpsons paradox En mätning per individ Flera mätningar per individ Flera

Läs mer

Multivariabel statistik

Multivariabel statistik Multivariabel statistik beware of the wolf Johan Lindbäck Uppsala Clinical Research Center Kvalitetsregisterforskningskonferens Arlanda 26 maj 2015 J Lindbäck (UCR) Multivariabla modeller 26/5 2015 2/36

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende

Läs mer

EPIDEMIOLOGI. Läran om sjukdomsförekomst i en befolkning (Ahlbom, Norell)

EPIDEMIOLOGI. Läran om sjukdomsförekomst i en befolkning (Ahlbom, Norell) EPIDEMIOLOGI Läran om sjukdomsförekomst i en befolkning (Ahlbom, Norell) Läran om utbredningen av och orsakerna till hälsorelaterade tillstånd eller förhållanden i specifika populationer och tillämpningen

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

Datakvalitet. Hva duger data til? Jonas Ranstam jonas.ranstam@med.lu.se

Datakvalitet. Hva duger data til? Jonas Ranstam jonas.ranstam@med.lu.se Hva duger data til? Jonas Ranstam jonas.ranstam@med.lu.se Registercentrum Syd, Skånes Universitetssjukhus och Inst. f. kliniska vetenskaper, Lunds Universitet, Klinikgatan 22, 22185 Lund, Sverige 15 Jan

Läs mer

Introduktion till kausala effekter

Introduktion till kausala effekter Introduktion till kausala effekter Ronnie Pingel Institutionen f or folkh also- och v ardvetenskap och Statistiska institutionen 2016-09-03 Utgångspunkten Introduktion Vanligt mål i empirisk forskning

Läs mer

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en

Läs mer

Epidemiologi T5. Kursmål epidemiologi. Kursmål epidemiologi. Kunna förklara och använda grundläggande epidemiologiska begrepp

Epidemiologi T5. Kursmål epidemiologi. Kursmål epidemiologi. Kunna förklara och använda grundläggande epidemiologiska begrepp Epidemiologi T5 Kursmål epidemiologi Kunna förklara och använda grundläggande epidemiologiska begrepp Prevalens Incidens Riskanalys Kursmål epidemiologi Kunna beräkna en diagnostisk metods informationsvärde

Läs mer

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet 1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet För att bli godkänd på inlämningsuppgiften krävs att man utför uppgiften om

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer

Läs mer

FÅ FRAM INDATA. När inga data finns!? Beslutsfattarens dilemma är att det är svårt att spå! Särskilt om framtiden!

FÅ FRAM INDATA. När inga data finns!? Beslutsfattarens dilemma är att det är svårt att spå! Särskilt om framtiden! FÅ FRAM INDATA När inga data finns!? Beslutsfattarens dilemma är att det är svårt att spå! Särskilt om framtiden! (Falstaff Fakir) Svårigheter att få fram bra information - en liten konversation Ge mig

Läs mer

Till ampad statistik (A5) Förläsning 13: Logistisk regression

Till ampad statistik (A5) Förläsning 13: Logistisk regression Till ampad statistik (A5) Förläsning 13: Logistisk regression Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2016-03-08 Exempel 1: NTU2015 Exempel 2: En jobbannons Exempel 3 1 1 Klofstad, C.

Läs mer

HSB BRF HAMNEN, ÅSIKTEN ETAPP TVÅ

HSB BRF HAMNEN, ÅSIKTEN ETAPP TVÅ 1 0 01 4 rok 116,0 5 220 5 600 000 1 1 02 4 rok 113,0 5 175 5 475 000 1 1 03 4 rok 116,0 5 220 5 710 000 1 2 04 4 rok 113,0 5 175 5 760 000 1 2 05 4 rok 116,0 5 220 5 900 000 1 3 06 4 rok 113,0 5 175 5

Läs mer

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat

Läs mer

Patrik Pavlov & Nils-Henrik Jansson

Patrik Pavlov & Nils-Henrik Jansson Kandidatuppsats i Statistik Cryptosporidiumutbrottet i Östersunds kommun 2010 Påverkan på kommunens barn Linköpings universitet, VT 2013 Statistik och dataanalysprogrammet Patrik Pavlov & Nils-Henrik Jansson

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.

Läs mer

Resultatet läggs in i ladok senast 13 juni 2014.

Resultatet läggs in i ladok senast 13 juni 2014. Matematisk statistik Tentamen: 214 6 2 kl 14 19 FMS 35 Matematisk statistik AK för M, 7.5 hp Till Del A skall endast svar lämnas. Samtliga svar skall skrivas på ett och samma papper. Övriga uppgifter fordrar

Läs mer

VANLIGA TERMER OCH BEGREPP INOM MEDICINSK VETENSKAP OCH STATISTIK

VANLIGA TERMER OCH BEGREPP INOM MEDICINSK VETENSKAP OCH STATISTIK VANLIGA TERMER OCH BEGREPP INOM MEDICINSK VETENSKAP OCH STATISTIK TERM Analytisk statistik Bias Confounder (förväxlingsfaktor)) Deskriptiv statistik Epidemiologi Fall-kontrollstudie (case-control study)

Läs mer

Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8

Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 1 Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 Dessa instuderingsfrågor är främst tänkta att stämma överens med innehållet i föreläsningarna,

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-19 Motivering Vi motiverade enkel linjär regression som ett

Läs mer

Poolade data över tiden och över tvärsnittet. Oberoende poolade tvärsnittsdatamängder från olika tidpunkter.

Poolade data över tiden och över tvärsnittet. Oberoende poolade tvärsnittsdatamängder från olika tidpunkter. PANELDATA Poolade data över tiden och över tvärsnittet Alternativ 1: Oberoende poolade tvärsnittsdatamängder från olika tidpunkter. Oberoende stickprov dragna från stora populationer vid olika tidpunkter.

Läs mer

F23 forts Logistisk regression + Envägs-ANOVA

F23 forts Logistisk regression + Envägs-ANOVA F23 forts Logistisk regression + Envägs-ANOVA Repetition Detta går inteattbeskriva på någotrimligtsättmed en linjär funktion PY Xx) β 0 +β x Den skattade linjen går utanför intervallet0, ): Y ärenbinärvariabel0-,dikotom)manvillmodellera,

Läs mer

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

Vad beror skillnaden på? Systematiska och slumpmässiga fel

Vad beror skillnaden på? Systematiska och slumpmässiga fel Vad beror skillnaden på? Systematiska och slumpmässiga fel Typer av fel och rätt Verklig skillnad Stort slumpfel! En studie genomförs Vi observerar en skillnad! Vi observerar ingen skillnad Slumpfel Systematiska

Läs mer

Agenda. Statistik Termin 11, Läkarprogrammet, VT14. Forskningsprocessen. Agenda (forts.) Data - skalnivåer. Den heliga treenigheten

Agenda. Statistik Termin 11, Läkarprogrammet, VT14. Forskningsprocessen. Agenda (forts.) Data - skalnivåer. Den heliga treenigheten Agenda Statistik Termin 11, Läkarprogrammet, VT14 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande

Läs mer

Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL)

Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL) Innehåll: 1. Risk & Odds 1.1 Risk Ratio 1.2 Odds Ratio 2. Logistisk Regression 2.1 Ln Odds 2.2 SPSS Output 2.3 Estimering (ML) 2.4 Multipel 3. Survival Analys 3.1 vs. Logistisk 3.2 Censurerade data 3.3

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Analytisk statistik. Mattias Nilsson Benfatto, PhD.

Analytisk statistik. Mattias Nilsson Benfatto, PhD. Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik

Läs mer

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen

Läs mer

Grupp/Center-statistik. Terminologi/ordlista...2 Urval...3 Analystyper...4

Grupp/Center-statistik. Terminologi/ordlista...2 Urval...3 Analystyper...4 Terminologi/ordlista...2...3 Analystyper...4 1 Terminologi/ordlista Gruppering Patientinformationsvariabel Besöksvariabel Patientstatus En/flervalsvariabel Numerisk variabel Fritextvariabel Standardbesök

Läs mer

TENTAMEN I MATEMATISK STATISTIK Statistik för lärare 7,5 hp

TENTAMEN I MATEMATISK STATISTIK Statistik för lärare 7,5 hp UMEÅ UNIVERSITET Tentamen 2016-08-24 Sid 1 TENTAMEN I MATEMATISK STATISTIK Statistik för lärare 7,5 hp Skrivtid: 16-22 Tillåtna hjälpmedel: Miniräknare. Formelblad och tabeller bifogas till tentamen. Studenterna

Läs mer

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet 1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet Uppdaterad: 130114 För att bli godkänd på inlämningsuppgiften krävs att man

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Analys av korstabeller 2 Innehåll 1 Analys av korstabeller 2 Korstabeller Vi har tidigare under kursen redan bekantat oss med korstabeller. I en korstabell redovisar man fördelningen på två

Läs mer

Kausalitet 2012-03-26. Kausalitet. Vad är kausal inferens? Seminariets agenda. P(Y a=1 =1) P(Y a=0 =1) Kausal effekt för en individ i:

Kausalitet 2012-03-26. Kausalitet. Vad är kausal inferens? Seminariets agenda. P(Y a=1 =1) P(Y a=0 =1) Kausal effekt för en individ i: Seminariets agenda Vad är kausal inferens? nna Ekman rbets- och miljömedicin Kausalitet Statistiska samband kontra kausalitet Konfounding DG ett grafiskt stöd Inverse propability weights Kausalitet ounterfactual

Läs mer

Obligatorisk uppgift, del 1

Obligatorisk uppgift, del 1 Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten

Läs mer

2. Lära sig beskriva en variabel numeriskt med "proc univariate" 4. Lära sig rita diagram med avseende på en annan variabel

2. Lära sig beskriva en variabel numeriskt med proc univariate 4. Lära sig rita diagram med avseende på en annan variabel Datorövning 1 Statistikens Grunder 2 Syfte 1. Lära sig göra betingade frekvenstabeller 2. Lära sig beskriva en variabel numeriskt med "proc univariate" 3. Lära sig rita histogram 4. Lära sig rita diagram

Läs mer

Metoder för att hantera bortfall i en klinisk studie. Methods for handling missingness in a clinical study. Ann Louise Jensen och Rana Abdullah

Metoder för att hantera bortfall i en klinisk studie. Methods for handling missingness in a clinical study. Ann Louise Jensen och Rana Abdullah Kandidatuppsats Statistiska institutionen Bachelor thesis, Department of Statistics Nr 2015:11 Metoder för att hantera bortfall i en klinisk studie Methods for handling missingness in a clinical study

Läs mer

Agenda. Statistik Termin 10, Läkarprogrammet, VT15. Agenda (forts.) Forskningsprocessen. Data - skalnivåer. Den heliga treenigheten

Agenda. Statistik Termin 10, Läkarprogrammet, VT15. Agenda (forts.) Forskningsprocessen. Data - skalnivåer. Den heliga treenigheten Agenda Statistik Termin 10, Läkarprogrammet, VT15 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 5 Johan Lindström 12 september 216 Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 1/23 Repetition Gauss approximation Delta metoden

Läs mer

Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10

Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10 Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10 Läsanvisningarna baseras på boken Björk J. Praktisk statistik för medicin och hälsa, Liber Förlag (2011), som är gemensam kursbok för statistikavsnitten

Läs mer

Hur hanterar man avvikande patienter? Estimander och analysmetoder i kliniska prövningar

Hur hanterar man avvikande patienter? Estimander och analysmetoder i kliniska prövningar Hur hanterar man avvikande patienter? Estimander och analysmetoder i kliniska prövningar Alexandra Jauhiainen Early Clinical Biometrics AstraZeneca R&D Mölndal, Sverige Statistikerträffen 2015 En klinisk

Läs mer

Statistik Termin 10, Läkarprogrammet, HT16

Statistik Termin 10, Läkarprogrammet, HT16 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Statistik Termin 10, Läkarprogrammet, HT16 Martin Cernvall martin.cernvall@pubcare.uu.se Måndag 29/8 -

Läs mer

Tentamen i matematisk statistik (92MA31, STN2) kl 08 12

Tentamen i matematisk statistik (92MA31, STN2) kl 08 12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (92MA1, STN2) 21-1-16 kl 8 12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

Föreläsning 7 och 8: Regressionsanalys

Föreläsning 7 och 8: Regressionsanalys Föreläsning 7 och 8: Pär Nyman par.nyman@statsvet.uu.se 12 september 2014-1 - Vårt viktigaste verktyg för kvantitativa studier. Kan användas till det mesta, men svarar oftast på frågor om kausala samband.

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 8

ÖVNINGSUPPGIFTER KAPITEL 8 ÖVNINGSUPPGIFTER KAPITEL 8 SAMPEL KONTRA POPULATION 1. Nedan beskrivs fyra frågeställningar. Ange om populationen är ändlig eller oändlig i respektive fall. Om ändlig, beskriv också vem eller vad som ingår

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F10: Intensiteter och Poissonmodeller Frågeställningar Konstant V.v.=Var Cyklister Poissonmodeller för frekvensdata Vi gör oberoende observationer av de (absoluta) frekvenserna n 1, n 2,..., n k från den

Läs mer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,

Läs mer

SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015

SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 14 PASSNING AV FÖRDELNING: χ 2 -METODER. Tatjana Pavlenko 12 oktober 2015 PLAN FÖR DAGENS FÖRELÄSNING Icke-parametsriska metoder. (Kap. 13.10) Det grundläggande

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

POPULATION OCH BORTFALL

POPULATION OCH BORTFALL RAPPORT POPULATION OCH BORTFALL En teknisk rapport om populationen och bortfallet i den internetbaserade Örebro-undersökningen om mobbning vid mätningarna 2012 och 2013. Björn Johansson Working Papers

Läs mer

Sambandsmått. Centralmått. Det mest frekventa värdet. Det mittersta värdet i en rangordnad fördelning. Aritmetiska medelvärdet.

Sambandsmått. Centralmått. Det mest frekventa värdet. Det mittersta värdet i en rangordnad fördelning. Aritmetiska medelvärdet. PM315 HT016 Emma äck Formelsamling Centralmått Typvärde T Median Md ritmetiska medelvärdet Det mest frekventa värdet Det mittersta värdet i en rangordnad fördelning = n Spridningsmått Variationsvidd (Range)

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

Instruktioner till Examinationen Kursen Introduktion till Multivariat Dataanalys Karolinska Institutet

Instruktioner till Examinationen Kursen Introduktion till Multivariat Dataanalys Karolinska Institutet 1 Instruktioner till Examinationen Kursen Introduktion till Multivariat Dataanalys Karolinska Institutet Uppdaterad: 120412 För att bli godkänd skall man utföra alla sex uppgifter som beskrivs nedan. OBS:

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Richard Öhrvall, http://richardohrvall.com/ 1

Richard Öhrvall, http://richardohrvall.com/ 1 Läsa in data (1/4) Välj File>Open>Data Läsa in data (2/4) Leta reda på rätt fil, Markera den, välj Open http://richardohrvall.com/ 1 Läsa in data (3/4) Nu ska data vara inläst. Variable View Variabelvärden

Läs mer

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas. Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

Svensk Dialysdatabas. Blodtryck och blodtrycksbehandling PD. Klinikdata hösten 2005 Översikt åren 2002 2005

Svensk Dialysdatabas. Blodtryck och blodtrycksbehandling PD. Klinikdata hösten 2005 Översikt åren 2002 2005 Svensk Dialysdatabas Blodtryck och blodtrycksbehandling PD Klinikdata hösten 5 Översikt åren 2 5 Innehållsförteckning Läsanvisningar och kommentarer...3 Figur 1. Systoliskt BT 5...4 Figur 2. Andel med

Läs mer

Tentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A/STA A4 (8 poäng) 5 augusti 4, klokan 8.5-3.5 Tillåtna hjälpmedel: Bifogad formelsamling

Läs mer

DATORÖVNING 6: CENTRALA GRÄNSVÄRDES-

DATORÖVNING 6: CENTRALA GRÄNSVÄRDES- DATORÖVNING 6: CENTRALA GRÄNSVÄRDES- SATSEN OCH FELMARGINALER I denna datorövning ska du använda Minitab för att empiriskt studera hur den centrala gränsvärdessatsen fungerar, samt empiriskt utvärdera

Läs mer

Tentamen i Tillämpad statistisk analys, GN, 7.5 hp. 23 maj 2013 kl. 9 14

Tentamen i Tillämpad statistisk analys, GN, 7.5 hp. 23 maj 2013 kl. 9 14 STOCKHOLMS UNIVERSITET MT4003 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik 3 maj 013 Lösningar Tentamen i Tillämpad statistisk analys, GN, 7.5 hp 3 maj 013 kl. 9 14 Uppgift 1 a Eftersom

Läs mer

Simulering. Introduktion. Exempel: Antag att någon kastar tärning

Simulering. Introduktion. Exempel: Antag att någon kastar tärning Simulering Introduktion Eempel: Antag att någon kastar tärning a) Vad är sannolikheten att på fyra kast få två seor? b) Vad är sannolikheten att på kast få mellan och 5 seor och där summan av de 5 första

Läs mer

AID-nr:.. Kurskod: 8LAA30; Provkod: VE11; Kursnamn: Patient och Prevention, avancerad nivå; Institution: HUK

AID-nr:.. Kurskod: 8LAA30; Provkod: VE11; Kursnamn: Patient och Prevention, avancerad nivå; Institution: HUK Sida 1 (5) Omtentamen i vetenskaplig artikel 23 maj 2013 Besvara följande frågor i anslutning till den utdelade artikeln: Heller S et al. Insulin degludec, an ultra-longacting basal insulin, versus insulin

Läs mer

Datorlaboration 2 Konfidensintervall & hypotesprövning

Datorlaboration 2 Konfidensintervall & hypotesprövning Statistik, 2p PROTOKOLL Namn:...... Grupp:... Datum:... Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta den statistiska

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

Tidsserier och Prognoser

Tidsserier och Prognoser Tidsserier och Prognoser Mattias Villani Sveriges Riksbank och Stockholms Universitet Stockholm, Oktober 2008 Mattias Villani () Tidsserier och Prognoser Stockholm, Oktober 2008 1 / 16 Översikt Tidsserier,

Läs mer

TMS136. Föreläsning 10

TMS136. Föreläsning 10 TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis

Läs mer

Lösningar till SPSS-övning: Analytisk statistik

Lösningar till SPSS-övning: Analytisk statistik UMEÅ UNIVERSITET Statistiska institutionen 2006--28 Lösningar till SPSS-övning: Analytisk statistik Test av skillnad i medelvärden mellan två grupper Uppgift Testa om det är någon skillnad i medelvikt

Läs mer

Analytisk statistik. Tony Pansell, optiker Universitetslektor

Analytisk statistik. Tony Pansell, optiker Universitetslektor Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp

Läs mer

Simulering av ekonomiska och finansiella variabler i det svenska pensionssystemet

Simulering av ekonomiska och finansiella variabler i det svenska pensionssystemet Simulering av ekonomiska och finansiella variabler i det svenska pensionssystemet Introduktion Mitt namn: Thomas Ekström Arbetsplats: Andra AP-fonden (55 st medarbetare) Avdelning: Kvantatitativa Strategier

Läs mer

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION. MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på

Läs mer

Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå

Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå Användning Multilevel Modeling (MLM) Var sak på sin nivå Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Kärt barn har många namn: (1) Random coefficient models; () Mixed effect models; (3)

Läs mer

Regressionsanalys med SPSS Kimmo Sorjonen (2010)

Regressionsanalys med SPSS Kimmo Sorjonen (2010) 1 Regressionsanalys med SPSS Kimmo Sorjonen (2010) 1. Multipel regression 1.1. Variabler I det aktuella exemplet ingår följande variabler: (1) life.sat, anger i vilket utsträckning man är nöjd med livet;

Läs mer

Vetenskaplig metod och statistik

Vetenskaplig metod och statistik Vetenskaplig metod och statistik Innehåll Vetenskaplighet Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på

Läs mer

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet 1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet Uppdaterad: 120113 För att bli godkänd på inlämningsuppgiften krävs att man

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:

Läs mer

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden

Läs mer

Flerfaktorförsök. Blockförsök, randomiserade block. Modell: yij i bj eij. Förutsättningar:

Flerfaktorförsök. Blockförsök, randomiserade block. Modell: yij i bj eij. Förutsättningar: Flerfaktorförsök Blockförsök, randomiserade block Modell: yij i bj eij i 1,,, a j 1,,, b y ij vara en observation för den i:te behandlingen och det j:e blocket gemensamma medelvärdet ( grand mean ) effekt

Läs mer

4. Kunna orientera sig mellan de olika fönstren

4. Kunna orientera sig mellan de olika fönstren Datorövning 1 Statistikens Grunder 1 Syfte 1 Lära sig läsa in data i SAS 2 Importera data från Excel 3 Lära sig skriva ut data med proc print 4 Kunna orientera sig mellan de olika fönstren Exempel Att

Läs mer

Medicinsk statistik III Läkarprogrammet, Termin 5 VT 2016

Medicinsk statistik III Läkarprogrammet, Termin 5 VT 2016 Medicinsk statistik III Läkarprogrammet, Termin 5 VT 2016 Jonas Björk E-post: jonas.bjork@med.lu.se Medicinsk statistik III Innehåll och läsanvisningar Statistik för binära utfall Kapitel 12 Dimensionering

Läs mer

F11. Kvantitativa prognostekniker

F11. Kvantitativa prognostekniker F11 Kvantitativa prognostekniker samt repetition av kursen Kvantitativa prognostekniker Vi har gjort flera prognoser under kursen Prognoser baseras på antagandet att historien upprepar sig Trenden följer

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp

Läs mer

F9 Konfidensintervall

F9 Konfidensintervall 1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att

Läs mer

Beskrivande statistik. Tony Pansell, Leg optiker Docent, Universitetslektor

Beskrivande statistik. Tony Pansell, Leg optiker Docent, Universitetslektor Beskrivande statistik Tony Pansell, Leg optiker Docent, Universitetslektor Beskrivande statistik Grunden för all analys är ordning och reda! Beskrivande statistik hjälper oss att överskådligt sammanfatta

Läs mer

Räkneövning 3 Variansanalys

Räkneövning 3 Variansanalys Räkneövning 3 Variansanalys Uppgift 1 Fyra sorter av majshybrider har utvecklats för att bli resistenta mot en svampinfektion. Nu vill man också studera deras produktionsegenskaper. Varje hybrid planteras

Läs mer

7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9.

7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9. Betrakta motstånden märkta 3.9 kohm med tolerans 1%. Anta att vi innan mätningarna gjordes misstänkte att motståndens förväntade värde µ är mindre än det utlovade 3.9 kohm. Med observationernas hjälp vill

Läs mer

Systematiskt urval, gruppurval, val mellan metoderna (kap , 9.10)

Systematiskt urval, gruppurval, val mellan metoderna (kap , 9.10) F5 Systematiskt urval, gruppurval, val mellan metoderna (kap 9.6-9.7, 9.10) Systematiskt urval Antag att vi vill undersöka medellönen i ett företag på N=1000 anställda och vill dra ett urval på n=100.

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,

Läs mer

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest

Läs mer