Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT

Storlek: px
Starta visningen från sidan:

Download "Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT"

Transkript

1 Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT Regressionsanalys handlar om att estimera hur medelvärdet för en variabel (y) varierar med en eller flera oberoende variabler (x). Exempel: Hur varierar genomsnittlig lön med utbildning? Hur varierar genomsnittlig livslängd med inkomst och kön? Hur varierar genomsnittlig avkastning på en aktie beroende på veckodagen? I alla de här exemplen är utfallsvariabeln kvantitativ (lön, livslängd, avkastning). Men det finns heller inget som hindrar oss från att köra en regression då utfallsvariabeln är binär, dvs. då utfallsvariabeln bara antar två värden (0 och 1). Exempel: Vi samlar in data för ett tusental amerikaner och mäter om dessa stödjer Trump (=1) eller Hillary (=0). Vi samlar in data för ett hundratal låntagare och studerar om dessa lyckades betala tillbaka i tid (=1) eller inte (=0). Notera här att medelvärdet för en binär variabel är en andel. Exempel: Vi har samlat in data för 100 låntagare varav 70 betalade tillbaka i tid. Medelvärdet för den här variabeln blir då 0,7 vilket är andelen som betalade tillbaka i tid, eller sannolikheten att en person betalade tillbaka i tid. Med en binär utfallsvariabel så tittar vi alltså på andelar eller sannolikheter: Hur stor andel av låntagare betalar tillbaka i tid och hur varierar detta beroende på kön, ålder och utbildning? Eller med andra ord: Hur varierar sannolikheten att betala tillbaka i tid beroende på kön, ålder och utbildning? Vi kan tänka oss att modellera den här sannolikheten på lite olika sätt. Om vi estimerar sannolikheten att betala tillbaka i tid som en linjär funktion av x-variablerna så kallas detta för en linjär sannolikhetsmodell. Vi kan då använda OLS på traditionellt sätt. I nästa avsnitt ska vi se ett exempel på vad det här kan betyda. I avsnitt 18.2 och 18.3 ska vi se på två alternativa metoder, logit och probit, som också används för att estimera sannolikheter. I avsnitt 18.4 diskuterar vi maximum likelihood som är den estimator som används vid logit och probit.

2 18.1 DEN LINJÄRA SANNOLIKHETSMODELLEN Exempel: Nedan ser du ett utdrag av data för de personer som steg ombord på Titanic år Vi vill beskriva hur sannolikheten att överleva varierar som en funktion av biljettpriset. Utfallsvariabeln överlevde är nu binär; den antar värdet 1 för de som överlevde och annars värdet 0. Namn biljettpris överlevde Allen, Miss. Elisabeth Walton 211, Allison, Master. Hudson Trevor 151,55 1 Allison, Miss. Helen Loraine 151,55 0 Allison, Mr. Hudson Joshua Creighton 151,55 0 Allison, Mrs. Hudson J C (Bessie Waldo 151,55 0 Daniels) Anderson, Mr. Harry 26,55 1 Andrews, Miss. Kornelia Theodosia 77, Andrews, Mr. Thomas Jr 0 0 Appleton, Mrs. Edward Dale (Charlotte 51, Lamson) Zimmerman, Mr. Leo 7,875 0 Nedan har vi kört en vanlig regression (OLS) med överleva som utfall och biljettpriset som oberoende variabel. Inom parentes ges det robusta standardfelet 1 : överleva = 0,31 + 0,0023pris (0,00026) För en person som betalat 100 pund för biljetten så blir prediktionen 0,54: överleva = 0,31 + 0,0023 pris 100 = 0,54 1 Den linjära sannolikhetsmodellen är per konstruktion heteroskedastisk, därför använder vi robusta standardfel. Vi kan se att modellen är heteroskedastisk på följande sätt: Variansen för en binär variabel ges av p(1-p). I detta exempel är p andelen överlevare (eller sannolikheten för att överleva). För de som betalat ett tillräckligt högt biljettpris så är denna sannolikhet hög och för de som betalat ett lågt biljettpris är sannolikheten lägre. Låt oss jämföra en person som har en överlevnadssannolikhet på 0,9 med en som har en sannolikhet på 0,5. I det första fallet bli överlevnadsvariansen 0,9(1-0,9) = 0,09 och i det andra fallet 0,5(1-0,5) = 0,25. Överlevnadsvariansen skiljer sig alltså mellan olika biljettpriser.

3 En sådan person predikteras alltså ha en 54-procentig sannolikhet att överleva. Och för varje extra pund som man spenderar på biljetten så ökar denna sannolikhet med 0,0023 eller 0,23 procentenheter. Den här effekten är signifikant (t = 0,0023/0,00026 = 8,85; p-värdet 0,000). I det här fallet passar det data bättre att mäta biljettpriset på en logaritmerad skala: överleva = 0,07 + 0,16 ln (pris) (0,013) Då biljettpriset ökar med 1 procent så ökar sannolikheten att överleva med 0,0016 eller 0,16 procentenheter. Vi kan också inkludera flera oberoende variabler i den här regressionen. Här har vi dessutom kontrollerat för kön och ålder: överleva = 0,02 + 0,11 ln(pris) + 0,49 kvinna 0,0024 ålder Då biljettpriset ökar med 1 procent så ökar sannolikheten att överleva med 0,0011 eller 0,11 procentenheter, kontrollerat för kön och ålder. Vi ser också att sannolikheten att överleva är 49 procentenheter högre för kvinnor än för män, och att chansen att överleva minskar med åldern; för varje extra år minskar denna sannolikhet med 0,24 procentenheter. Det går alltså bra att använda OLS även om utfallsvariabeln är binär. Men i praktiken är det ändå vanligare att använda alternativa metoder. I nästa avsnitt ska vi diskutera den populäraste av dessa: logistisk regression (logit). Men för att se varför logit är populärare än OLS, så ska vi börja med att diskutera kritiken mot den linjära sannolikhetsmodellen. Kritik mot linjära sannolikhetsmodeller Linjära sannolikhetsmodeller kritiseras eftersom de kan ge orimliga prediktioner, sannolikheter som ligger under 0 eller över 1. Exempel forts. Vi estimerade sannolikheten att överleva som en funktion av biljettpriset, kön och ålder: överleva = 0,02 + 0,11 ln(pris) + 0,49kvinna 0,0024ålder

4 Hur ser prediktionerna ut för olika personer i data? Jo, för de allra flesta ligger sannolikheten att överleva någonstans mellan 0 och 1 (precis som man skulle förvänta sig). Men det finns också en passagerare med en sannolikhet på 107 procent: Miss. Anna Ward var en 35-årig kvinna som betalade 512 pund för sin biljett: överlevde = 0,02 + 0,11 ln (pris ) + 0,49 kvinna 0,0024 ålder ,07 Vi vet att den här prediktionen är felaktig, men då vi använder en linjär modell så finns det inget som ser till att prediktionerna faktiskt hamnar mellan 0 och 1. Eftersom överlevnadssannolikheten ökar linjärt med biljettpriset (mätt på en loggad skala) så kan vi alltid få en överlevnadssannolikhet som hamnar över 100 procent bara vi sätter biljettpriset tillräckligt högt. Den linjära modellen kan alltså inte vara korrekt. Den kan ge bra approximationer för begränsade värden på x, men den kan inte vara fullständigt korrekt. Vi ska nu se på en annan modell logit som är konstruerad så att de predikterade sannolikheterna alltid hamnar där de ska. 1

5 18.2 LOGISTISK REGRESSION (LOGIT) Exempel forts. Låt oss utgå från regressionen: överleva = 0,31 + 0,0023pris Här beskriver vi sannolikheten för att överleva som en linjär funktion av biljettpriset. När vi däremot estimerar en logistisk regression så beskriver vi oddset för att överleva som en multiplikativ modell av biljettpriset. I det här fallet ges den funktionen av: oddset för att överleva = 0,41 1,01 pris Låt oss fundera på vad den här regressionen säger. Precis som tidigare så kan vi använda den här regressionen för att göra prediktioner. För en passagerare som betalat 0 pund för biljetten så blir oddset för att överleva 0,41: oddset för att överleva = 0,41 1,01 pris = 0,41 1,01 0 = 0,41 1 = 0,41 För en passagerare som betalat 1 pund blir oddset 0,414: oddset för att överleva = 0,41 1,01 pris = 0,41 1,01 1 = 0,41 1,01 0,414 För en som betalat 2 pund blir oddset 0,422: oddset för att överleva = 0,41 1,01 pris = 0,41 1,01 2 = 0,41 1,01 1,01 0,422 Och för en passagerare som betalat 3 pund blir oddset 0,41 1,01 3 = 0,41 1,01 1,01 1,01. Om vi multiplicerar med 1,01 ännu en fjärde gång så får vi oddset för en som betalat 4 pund. Oddset för överleva ökar alltså med en faktor på 1,01 för varje extra pund man betalat för biljetten. Eller med andra ord: Oddset för att överleva ökar med 1 procent för varje extra pund man betalat för biljetten. Låt oss repetera: oddset för att överleva = 0,41 1,01 pris

6 0,41 är oddset för att överleva då priset sätts lika med 0. Då priset ökar med 1 pund så ökar oddset för att överleva med en faktor på 1,01, dvs. 1 procent. Vi kallar detta estimat (1,01) för en oddskvot 2. Anta att vi istället hade fått följande resultat: oddset för att överleva = 0,25 2,0 pris 0,25 är oddset att överleva för en person som betalade 0 pund för sin biljett. Och då priset ökar med 1 pund så ökar oddset för att överleva med en faktor på 2 vilket är en ökning med 100 procent. Eller anta att vi istället hade fått följande resultat: oddset för att överleva = 0,25 3,0 pris Då priset ökar med 1 pund så ökar oddset för att överleva med en faktor på 3 vilket är en ökning med 200 procent. Eller anta att vi istället hade fått följande resultat: oddset för att överleva = 0,25 0,9 pris Då priset ökar med 1 pund så minskar oddset för att överleva med 10 procent. I exemplet ovan så tänkte vi oss att oddset för att överleva var 0,25, givet att man betalat 0 pund för biljetten. Men vad betyder då ett odds på 0,25? Jo, detta betyder att det går 0,25 överlevare på varje person som dog. Eller med andra ord: Det går då 25 överlevare per 100 döda. Ett odds på 0,25 motsvaras alltså av en sannolikhet på 20 procent: I en grupp på 125 personer så är det 100 som dör och 25 som överlever: 25/125 = 0,2. Vi kan göra om ett odds till en sannolikhet genom följande formel: sannolikhet = odds odds + 1 När vi predikterat oddset för att överleva för olika personer i data så kan vi alltså skriva om dessa odds till sannolikheter. I figuren nedan har vi ritat ut sannolikheten för att överleva mot 2 1,01 är kvoten mellan två odds: Oddset att överleva då man betalat k+1 pund, genom oddset för att överleva då man betalat k pund.

7 Sannolikhet biljettpriset. (Här har vi använt oss av regressionen som bygger på riktiga data: oddset för att överleva = 0,41 1,01 pris.) Sannolikheten för att överleva Titanic biljettpris Vi ser alltså att sannolikheten att överleva är en icke-linjär funktion av biljettpriset: Sannolikheten ökar brant i början men den här positiva effekten avtar då biljettpriset blir tillräckligt högt. Och när biljettpriset nått 500 pund så är överlevnadssannolikheten praktiskt taget 1. Men den kommer aldrig att bli större än 1 (oavsett biljettpris). Och på motsvarande sätt kan vi aldrig få negativa sannolikheter. Logiten Exempel forts. Vi beskrev oddset för att överleva genom uttrycket: oddset för att överleva = 0,41 1,01 pris Om vi tar den naturliga logaritmen på båda sidor får vi följande uttryck: ln (oddset för att överleva) = ln(0,41) + pris ln(1,01) = 0, , 01 pris Den här ekvationen säger precis samma sak som tidigare: För varje extra pund du betalar för biljetten så ökar oddset för att överleva med 1 procent. Notera att det här är motsvarande tolkning som i alla regressioner med loggat utfall!

8 Sannolikhet När vi på det här sättet tar den naturliga logaritmen av ett odds så kallas detta för en logit. Exempel: För en passagerare som betalat 0 pund för biljetten så är den naturliga logaritmen av oddset 0,89. Eller så kan vi kortare säga att logiten är -0,89. Exempel forts. Här har vi istället beskrivit oddset för att överleva som en funktion av biljettpriset mätt på en loggad skala: oddset Logiten för att överleva ges då av: ln (oddset) ln (pris) = 0,08 1,97 = 2,49 + 0,68 ln (pris) När biljettpriset ökar med 1 procent så ökar oddset för att överleva med 0,68 procent. I figuren nedan har vi illustrerat det här sambandet grafiskt; men här tittar vi på hur sannolikheten för att överleva varierar med biljettpriset: Sannolikheten för att överleva Titanic Biljettpris Exempel forts. Här har vi även kontrollerat för ålder och kön: oddset ln (oddset) = 0,06 1,86 ln(pris) 0,99 ålder 10 kvinna = 2,8 + 0,6 ln(pris) 0,01ålder + 2,3kvinna Det spelar ingen roll vilken av dessa funktioner vi använder när vi tolkar resultatet. Båda beskriver exakt samma sak, bara uttryckt på olika sätt. Låt oss utgå från den färgglada logitvarianten: Då priset ökar med 1 procent så ökar oddset för att

9 överleva med 0,6 procent (kontrollerat för kön och ålder). Då åldern ökar med ett år så minskar oddset för att överleva med 1 procent (kontrollerat för biljettpris och kön). Oddset för att överleva är 900 procent högre bland kvinnor än bland män (kontrollerat för biljettpris och ålder). Notera: Koefficienten för kvinna är 2,3 vilket motsvarar en effekt på 900 procent. Det motsvarar alltså inte en effekt på 230 procent. Den här tolkningen skulle vara korrekt om koefficienten varit närmare 0. Exempel: Om koefficienten för kvinna hade varit 0,08 så hade vi sagt att oddset för att överleva är 8 procent högre bland kvinnor än bland män. Men den här regeln är approximativ och funkar bara bra för små procentuella effekter (+/- 10 procent). För att få den exakta procenten så tar vi istället 100*[exp(koefficienten)-1]. I detta exempel: 100 [exp(2,3) 1] 900 % Låt oss ännu se på hur resultatet kan se ut i ett statistiskt programpaket (STATA). När du kör en logistisk regression så kan du beställa resultatet i de två olika format som vi sett på här: (1) Beskriver oddset som en multiplikativ modell av de oberoende variablerna: oddset = 0,06 1,86 ln(pris) 10 kvinna 0,99 ålder (2) Beskriver logiten som en linjär funktion av de oberoende variablerna: ln (oddset) = 2,78 + 0,62 ln(pris) + 2,3kvinna 0,01ålder Du ser båda dessa utskrifter på nästa sida.

10 Låt oss ännu se på några andra nyckelsiffror ur dessa regressionsutskrifter. Vi ser att regressionsmodellen har signifikant förklaringsstyrka: LR chi2 = 368,24; p-värdet 0,0000. LR chi2-värdet är alltså motsvarigheten till ett F-värde då vi använder OLS. Vi ser också att biljettpriset har en signifikant effekt på oddset att överleva: z = 7,28; p-värdet 0,000. Z-värdet är alltså motsvarigheten till ett t-värde då vi använder OLS. 3 3 Se den första utskriften ovan (1): Om vi här tar den första oddskvoten (1,86) genom standardfelet (0,159) så får vi ett värde på ~11,7 och inte 7,28 som är z-värdet. Jämför detta med den andra utskriften (2): Om vi här tar den första koefficienten (0,62) genom standardfelet (0,085) så får vi z-värdet (7,28). Vad är det som pågår här? Jo, samplingfördelningen för en oddskvot följer en lognormalfördelning, medan samplingfördelningen för en loggad oddskvot följer en normalfördelning. I utskrift (2) har vi just loggade oddskvoter och då kan vi testa om resultatet är signifikant genom att dela dessa med sina standardfel.

11 Marginaleffekter Exempel forts. Vi hade regressionen: oddset ln (oddset) = 0,06 1,86 ln(pris) 10 kvinna 0,99 ålder = 2,8 + 0,6 ln(pris) 0,01ålder + 2,3kvinna Här ser vi till exempel att då åldern ökar med ett år så minskar oddset för att överleva med 1 procent, kontrollerat för biljettpris och kön. Men vad betyder det? Hur mycket minskar då sannolikheten för att överleva? Det finns inget enkelt svar på den frågan; hur mycket sannolikheten minskar beror också på din ålder i utgångsläget, vad du betalat för biljetten och ditt kön. Effekten av att åldern ökar med ett år kommer alltså att skilja sig mellan olika personer i data (beroende på deras värden på x- variablerna). Om vi räknar ut denna effekt skilt för varje person i data och sedan tar medelvärdet av alla dessa effekter, så får vi det som kallas för den genomsnittliga marginaleffekten. 4 Med hjälp av STATA kan vi räkna ut genomsnittliga marginaleffekter automatiskt: När biljettpriset ökar med 1 procent så ökar sannolikheten för att överleva i snitt med ~0,001 eller ~0,1 procentenheter, kontrollerat för kön och ålder. Sannolikheten för att överleva är i snitt ~37 procentenheter högre bland kvinnor än bland män 4 Rent tekniskt så får vi en marginaleffekt genom att ta fram ett uttryck som beskriver sannolikheten för att överleva som en funktion av x- variablerna. Vi deriverar denna sannolikhet med avseende på x- variabeln av intresse. Detta ger oss följande uttryck: b*p*(1-p) där b är koefficienten av intresse och p är den estimerade sannolikheten för ett gynnsamt utfall (där p skiljer sig mellan olika personer). Vi räknar därefter ut marginaleffekten skilt för varje person i data. Medelvärdet av dessa är den genomsnittliga marginaleffekten.

12 (kontrollerat för biljettpriset och ålder). Och när åldern ökar med ett år så minskar sannolikheten för att överleva i snitt med ~0,2 procentenheter (kontrollerat för biljettpris och kön). Att presentera resultatet Man kan presentera resultatet från en logistisk regression på olika sätt. Det vanligaste är att antingen visa de genomsnittliga marginaleffekterna, oddskvoterna eller bägge (vilket jag gjort i tabellen nedan). Här är GME en är förkortning för genomsnittlig marginaleffekt. (1) (2) VARIABLER GME Oddskvoter Ln(biljettpris) 0.100*** 1.860*** (0.0128) (0.159) Kvinna 0.374*** 10.11*** (0.0134) (1.590) Ålder ** 0.986** ( ) ( ) Konstant *** (0.0180) Observationer 1,037 1,037 Standardfel inom parenteser *** p<0.01, ** p<0.05, * p<0.1

13 18.3 PROBIT Precis som logit så är probit också en modell där vi beskriver sannolikheten för ett gynnsamt utfall som en icke-linjär funktion av x-variablerna. Men tolkningen av resultatet skiljer sig från logit. Exempel forts. Nedan har vi använt Titanic-data och estimerat hur sannolikheten att överleva varierar som en funktion av biljettpriset, mätt på en loggad skala. Vi har här estimerat en probit: Vi kan använda den här modellen för att prediktera sannolikheten för att överleva, och hur denna sannolikhet varierar med biljettpriset. För en probit ges denna sannolikhet av: Pr(överleva) = Pr(Z 1,54 + 0,417 ln(priset)) där Z är en standardiserad normalfördelad variabel. Exempel: För en person som betalat 100 pund för biljetten så blir den sannolikheten 65 procent: Pr(överleva) = Pr (Z 1,54 + 0,417 ln (priset)) = Pr(Z 0,38) 0,65 100

14 För övrigt är det svårt att tolka koefficienterna från en probit. En positiv koefficient betyder att sannolikheten för att överleva ökar med den x-variabeln; en negativ koefficient betyder att sannolikheten för att överleva minskar med den x-variabeln. I det här exemplet är koefficienten för ln(biljettpriset) 0,417. Sannolikheten att överleva ökar alltså med biljettpriset. Men är 0,417 en stor eller liten positiv effekt? Detta är inte särskilt lätt att bedöma. 5 Men precis som vid logit kan vi också här uttrycka effekten som en genomsnittlig marginaleffekt: Då biljettpriset ökar med 1 procent så ökar sannolikheten för att överleva i snitt med 0,0015 eller 0,15 procentenheter. Logit kontra probit: Vilket är bättre? I praktiken har det liten betydelse om man väljer logit eller probit. Figuren nedan illustrerar detta. Här har vi använt Titanicdata och predikterat sannolikheten för att överleva som en funktion av biljettpriset (mätt på en loggad skala), kön och ålder. På x-axeln visas de predikterade sannolikheterna från en logit; på y-axeln visas motsvarande sannolikheter från en probit. 5 Vi förflyttar oss då 0,417 steg högerut på z-skalan. Det här har ganska stor betydelse om vi innan befann oss vid z = 0, men marginell betydelse om vi innan befann oss vid z = -3 eller z = 3.

15 Korrelationen är 0,9999; modellerna gör här mer eller mindre identiska prediktioner. De genomsnittliga marginaleffekterna är också praktiskt taget lika stora oavsett modell, vilket tabellen nedan visar. Tabell: Sannolikheten för att överleva Titanic (GME) (1) (2) VARIABLER LOGIT PROBIT Ln(biljettpris) 0.100*** 0.102*** (0.0128) (0.0130) Kvinna 0.374*** 0.392*** (0.0134) (0.0158) Ålder ** ** ( ) ( ) Observationer 1,037 1,037 Standardfel inom parenteser *** p<0.01, ** p<0.05, * p<0.1 Det spelar med andra ord egentligen ingen roll vilket vi väljer (logit eller probit). Detta är i första hand en fråga om vad man själv föredrar. De flesta väljer då logit, eftersom man då kan tolka resultatet i termer av oddskvoter. En notering här på slutet: Den linjära sannolikhetsmodellen (OLS) är inte heller särskilt dum, även om den kanske har lite skamfilat rykte. I tabellen nedan ser du en jämförelse mellan LOGIT, PROBIT och OLS. Alla estimat är genomsnittliga

16 marginaleffekter. 6 Skillnaden mellan OLS och de andra modellerna är för det mesta rätt liten. Tabell: Sannolikheten för att överleva Titanic (GME) (1) (2) (3) VARIABLER LOGIT PROBIT OLS Ln(biljettpris) 0.100*** 0.102*** 0.106*** (0.0128) (0.0130) (0.0137) Kvinna 0.374*** 0.392*** 0.491*** (0.0134) (0.0158) (0.0292) Ålder ** ** ** ( ) ( ) ( ) Observationer 1,037 1,037 1,037 Standardfel inom parenteser. OLS: Robusta standardfel. *** p<0.01, ** p<0.05, * p<0.1 6 Vid OLS så är regressionskoefficienterna samtidigt de genomsnittliga marginaleffekterna.

17 18.4 MAXIMUM LIKELIHOOD När du kör en logit eller probit så får du fram estimaten genom en metod som kallas för maximum likelihood. Vi kan också se detta i regressionsutskriften; programmet gör så kallade itereringar och beräknar varje gång fram något som kallas för en log-likelihood (se utskriften nedan). I det här fallet blev loglikelihooden -827,01596 i den sista itereringen. Den här siffran säger något om hur bra vår modell presterar. Ju närmare 0 vi kommer i den sista itereringen, desto bättre är biljettpriset på att prediktera vem som överlever och vem som dör. För att förstå vad detta handlar om så ska vi lära oss vad maximum likelihood-metoden går ut på. Vi ser detta bäst genom ett exempel: Säg att du jobbar på en bank och vill estimera sannolikheten för att en kund lyckas betala tillbaka ett lån i tid. För enkelhetens skull ska vi tänka oss att data bara täcker 4 personer varav 3 betalade tillbaka i tid: 1, 1, 1, 0 När vi använder maximum likelihood-estimatorn väljer vi det estimat för får parameter (p) som maximerar sannolikheten för att få det sampel som vi faktiskt fått. Låter det krångligt? Låt mig ta ett exempel. Anta att p = 0,5: Sannolikheten för att en kund betalar tillbaka i tid är 50 procent. Hur stor är då sannolikheten för att få det sampel som vi faktiskt har fått, dvs. först tre personer som betalade tillbaka i tid och sedan en som inte gjorde det? Jo, den sannolikheten är 6,25 procent: Pr(data p = 0,5) = 0,5 0,5 0,5 (1 0,5) = 0,0625

18 Eller anta att p = 0,6: Sannolikheten för att en kund betalar tillbaka i tid är 60 procent. Hur stor är då sannolikheten för att få det sampel som vi faktiskt har fått? Jo, den sannolikheten är 8,64 procent: Pr(data p = 0,6) = 0,6 0,6 0,6 (1 0,6) = 0,0864 Och om sannolikheten för att en kund betalar tillbaka i tid är p så blir sannolikheten: Pr(data p) = p p p (1 p) = p 3 (1 p) Frågan vi ställer oss: För vilket värde på p blir denna sannolikhet som allra störst? Jo, detta händer då p = 0,75. Vi kan se detta genom att derivera uttrycket ovan, sätta derivatan lika med 0 och lösa ut p. Men här är ett litet trick: Ibland är det lättare att först logaritmera ett uttryck innan man deriverar: ln(pr(data p)) = 3 ln(p) + ln(1 p) Man bryter inte mot några regler på det här sättet: Det värde på p som maximerar sannolikheten för data, är också det värde som maximerar den sannolikheten men mätt på en loggad skala. När vi kör en logit eller probit så är principen exakt densamma, bara att p i uttrycket ovan då är en funktion av våra oberoende variabler. Anta att vi vill estimera en logit där vi beskriver sannolikheten för att överleva Titanic (p) som en funktion av biljettpriset. Den logaritmerade sannolikheten för att få det datamaterial vi faktiskt har fått blir då: ln(pr(data p)) = [ln(p i ) över i + ln (1 p i )(1 över i )] där över är en binär variabel som antar värdet 1 för de som överlevde och annars värdet 0, och där: eβ 0+β 1 pris p i = 1 + e β 0+β 1 pris Vi ska alltså bestämma värdena för β 0 och β 1 så att den loggade sannolikheten blir så hög som möjligt, eller så att log-likelihoodfunktionen får ett så stort värde som möjligt. Det här är inget enkelt problem att lösa, inte ens för en dator. De facto måste datorn pröva sig fram på motsvarande sätt som vi prövade oss fram i bankexemplet genom att först sätta p = 0,5 och därefter p = 0,6. Datorn löser alltså problemet genom att använda en iterativ

19 metod och i varje iterering så kommer log-likelihooden lite närmare 0. I det här exemplet stannade vi slutligen på - 827,01596.

Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING

Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING När vi gör en regressionsanalys så bygger denna på vissa antaganden: Vi antar att vi dragit ett slumpmässigt sampel från en population

Läs mer

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Spridningsdiagrammen nedan representerar samma korrelationskoefficient, r = 0,8. 80 80 60 60 40 40 20 20 0 0 20 40 0 0 20 40 Det finns dock två

Läs mer

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013 Föreläsning 9 Logistisk regression och Indexteori Patrik Zetterberg 7 januari 2013 1 / 33 Logistisk regression I logistisk regression har vi en binär (kategorisk) responsvariabel Y i som vanligen kodas

Läs mer

Poissonregression. E(y x1, x2,.xn) = exp( 0 + 1x1 +.+ kxk)

Poissonregression. E(y x1, x2,.xn) = exp( 0 + 1x1 +.+ kxk) Poissonregression En lämplig utgångspunkt om vi har en beroende variabel som är en count variable, en variabel som antar icke-negativa heltalsvärden med ganska liten variation E(y x1, x2,.xn) = exp( 0

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar

Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar ICKE-LINJÄRA MODELLER Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Y i = 1 + 2 X 2i + u i Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar cov(x i,u i )

Läs mer

Till ampad statistik (A5) Förläsning 13: Logistisk regression

Till ampad statistik (A5) Förläsning 13: Logistisk regression Till ampad statistik (A5) Förläsning 13: Logistisk regression Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2016-03-08 Exempel 1: NTU2015 Exempel 2: En jobbannons Exempel 3 1 1 Klofstad, C.

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F10: Intensiteter och Poissonmodeller Frågeställningar Konstant V.v.=Var Cyklister Poissonmodeller för frekvensdata Vi gör oberoende observationer av de (absoluta) frekvenserna n 1, n 2,..., n k från den

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 7

ÖVNINGSUPPGIFTER KAPITEL 7 ÖVNINGSUPPGIFTER KAPITEL 7 TIDSSERIEDIAGRAM OCH UTJÄMNING 1. En omdebatterad utveckling under 90-talet gäller den snabba ökningen i VDlöner. Tabellen nedan visar genomsnittlig kompensation för direktörer

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 8

ÖVNINGSUPPGIFTER KAPITEL 8 ÖVNINGSUPPGIFTER KAPITEL 8 SAMPEL KONTRA POPULATION 1. Nedan beskrivs fyra frågeställningar. Ange om populationen är ändlig eller oändlig i respektive fall. Om ändlig, beskriv också vem eller vad som ingår

Läs mer

Regressionsanalys med SPSS Kimmo Sorjonen (2010)

Regressionsanalys med SPSS Kimmo Sorjonen (2010) 1 Regressionsanalys med SPSS Kimmo Sorjonen (2010) 1. Multipel regression 1.1. Variabler I det aktuella exemplet ingår följande variabler: (1) life.sat, anger i vilket utsträckning man är nöjd med livet;

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Resursfördelningsmodellen

Resursfördelningsmodellen PCA/MIH Johan Löfgren Rapport 25-6-26 (6) Resursfördelningsmodellen Växjös skolor våren 25 Inledning Underlag för analyserna utgörs av ett register som innehåller elever som gått ut årskurs nio 2 24. Registret

Läs mer

Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8

Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 1 Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 Dessa instuderingsfrågor är främst tänkta att stämma överens med innehållet i föreläsningarna,

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 6

ÖVNINGSUPPGIFTER KAPITEL 6 ÖVNINGSUPPGIFTER KAPITEL 6 ATT KONTROLLERA FÖR BAKOMLIGGANDE FAKTORER 1. Regressionen nedan visar hur kvinnors arbetsmarknadsdeltagande varierar beroende på om de har småbarn eller inte. Datamaterialet

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 12

ÖVNINGSUPPGIFTER KAPITEL 12 ÖVNINGSUPPGIFTER KAPITEL 12 ANOVA I EN MULTIPEL REGRESSION 1. I en amerikansk studie samlade man in data för 601 gifta personer, och mätte hur många utomäktenskapliga affärer de haft under det senaste

Läs mer

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, VT2014 2014-05-26 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå

Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå Användning Multilevel Modeling (MLM) Var sak på sin nivå Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Kärt barn har många namn: (1) Random coefficient models; () Mixed effect models; (3)

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 2

ÖVNINGSUPPGIFTER KAPITEL 2 ÖVNINGSUPPGIFTER KAPITEL 2 DATAMATRISEN 1. Datamatrisen nedan visar ett utdrag av ett datamaterial för USA:s 50 stater. Stat Befolkningsmängd Inkomst Marijuana Procent män (miljoner) per person lagligt?

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 6

ÖVNINGSUPPGIFTER KAPITEL 6 ÖVNINGSUPPGIFTER KAPITEL 6 ATT KONTROLLERA FÖR BAKOMLIGGANDE FAKTORER 1. Regressionen nedan visar hur kvinnors arbetsmarknadsdeltagande varierar beroende på om de har småbarn eller inte. Datamaterialet

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 4

ÖVNINGSUPPGIFTER KAPITEL 4 ÖVNINGSUPPGIFTER KAPITEL 4 REGRESSIONSLINJEN: NIVÅ OCH LUTNING 1. En av regressionslinjerna nedan beskrivs av ekvationen y = 20 + 2x; en annan av ekvationen y = 80 x; en tredje av ekvationen y = 20 + 3x

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

Modeller för fler än två valmöjligheter. Förekommer både som logit- och som probitmodeller.

Modeller för fler än två valmöjligheter. Förekommer både som logit- och som probitmodeller. Multinominella modeller Modeller för fler än två valmöjligheter. Förekommer både som logit- och som probitmodeller. Möjligt att, genom olika modellformuleringar, beakta att vissa regressorer varierar mellan

Läs mer

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat

Läs mer

Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL)

Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL) Innehåll: 1. Risk & Odds 1.1 Risk Ratio 1.2 Odds Ratio 2. Logistisk Regression 2.1 Ln Odds 2.2 SPSS Output 2.3 Estimering (ML) 2.4 Multipel 3. Survival Analys 3.1 vs. Logistisk 3.2 Censurerade data 3.3

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 3 Statistiska metoder 1 Dagens föreläsning o Samband mellan två kvantitativa variabler Matematiska samband Statistiska samband o Korrelation Svaga och starka samband När beräkna korrelation?

Läs mer

Linjär regressionsanalys. Wieland Wermke

Linjär regressionsanalys. Wieland Wermke + Linjär regressionsanalys Wieland Wermke + Regressionsanalys n Analys av samband mellan variabler (x,y) n Ökad kunskap om x (oberoende variabel) leder till ökad kunskap om y (beroende variabel) n Utifrån

Läs mer

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys) Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

Statistisk analys av komplexa data

Statistisk analys av komplexa data Statistisk analys av komplexa data Kategoriska data Bertil Wegmann Avdelning statistik, IDA, Linköpings universitet November 12, 2013 Bertil Wegmann (statistik, LiU) Kategoriska data November 12, 2013

Läs mer

Dekomponering av löneskillnader

Dekomponering av löneskillnader Lönebildningsrapporten 2013 133 FÖRDJUPNING Dekomponering av löneskillnader Den här fördjupningen ger en detaljerad beskrivning av dekomponeringen av skillnader i genomsnittlig lön. Först beskrivs metoden

Läs mer

Regressionsanalys av lägenhetspriser i Spånga

Regressionsanalys av lägenhetspriser i Spånga Regressionsanalys av lägenhetspriser i Spånga Mahamed Saeid Ali Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2016:11 Matematisk statistik Juni 2016

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 2

ÖVNINGSUPPGIFTER KAPITEL 2 ÖVNINGSUPPGIFTER KAPITEL 2 DATAMATRISEN 1. Datamatrisen nedan visar ett utdrag av ett datamaterial för USA:s 50 stater. Stat Befolkningsmängd Inkomst Marijuana Procent män (miljoner) per person lagligt?

Läs mer

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts. Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

Statistisk analys av komplexa data

Statistisk analys av komplexa data Statistisk analys av komplexa data Kategoriska data Bertil Wegmann Avdelning statistik, IDA, Linköpings universitet November 28, 2012 Bertil Wegmann (statistik, LiU) Kategoriska data November 28, 2012

Läs mer

Statistisk analys av komplexa data

Statistisk analys av komplexa data Statistisk analys av komplexa data Trunkerade data och Tobitregression Bertil Wegmann Avdelning statistik, IDA, Linköpings universitet November 10, 2015 Bertil Wegmann (statistik, LiU) Trunkerade data

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Korrelation och regression Innehåll 1 Korrelation och regression Spridningsdiagram Då ett datamaterial består av två (eller era) variabler är man ofta intresserad av att veta om det nns ett

Läs mer

MULTIPEL IMPUTATION. Ett sätt att fylla i hålen i ditt datamaterial?

MULTIPEL IMPUTATION. Ett sätt att fylla i hålen i ditt datamaterial? MULTIPEL IMPUTATION Ett sätt att fylla i hålen i ditt datamaterial? Pär Ola Bendahl IKVL, Avdelningen för Onkologi Lunds Universitet Par Ola.Bendahl@med.lu.se Översikt 1. Introduktion till problemet 2.

Läs mer

Facit till Extra övningsuppgifter

Facit till Extra övningsuppgifter LINKÖPINGS UNIVERSITET Institutionen för datavetenskap Statistik, ANd 732G71 STATISTIK B, 8hp Civilekonomprogrammet, t3, Ht 09 Extra övningsuppgifter Facit till Extra övningsuppgifter 1. Modellen är en

Läs mer

Verksamhetsutvärdering av Mattecentrum

Verksamhetsutvärdering av Mattecentrum Verksamhetsutvärdering av Mattecentrum April 2016 www.numbersanalytics.se info@numbersanalytics.se Presskontakt: Oskar Eriksson, 0732 096657 oskar@numbersanalytics.se INNEHÅLLSFÖRTECKNING Inledning...

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data

MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data Pär-Ola Bendahl IKVL, Avdelningen för Onkologi Lunds Universitet Par-Ola.Bendahl@med.lu.se Översikt Introduktion till problemet Enkla

Läs mer

Föreläsning 10, del 1: Icke-linjära samband och outliers

Föreläsning 10, del 1: Icke-linjära samband och outliers Föreläsning 10, del 1: och outliers Pär Nyman par.nyman@statsvet.uu.se 19 september 2014-1 - Sammanfattning av tidigare kursvärderingar: - 2 - Sammanfattning av tidigare kursvärderingar: Kursen är för

Läs mer

Blandade problem från elektro- och datateknik

Blandade problem från elektro- och datateknik Blandade problem från elektro- och datateknik Sannolikhetsteori (Kapitel 1-10) E1. En viss typ av elektroniska komponenter anses ha exponentialfördelade livslängder. Efter 3000 timmar brukar 90 % av komponenterna

Läs mer

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet 1/31 REGRESSIONSANALYS F1 Linda Wänström Statistiska institutionen, Stockholms universitet 2/31 Kap 4: Introduktion till regressionsanalys. Introduktion Regressionsanalys är en statistisk teknik för att

Läs mer

Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi

Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1(6) PCA/MIH Johan Löfgren 2016-11-10 Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1 Inledning Sveriges kommuner och landsting (SKL) presenterar varje år statistik över elevprestationer

Läs mer

Statistisk analys av komplexa data

Statistisk analys av komplexa data Statistisk analys av komplexa data Kategoriska data Bertil Wegmann Avdelning statistik, IDA, Linköpings universitet November 18, 2016 Bertil Wegmann (statistik, LiU) Kategoriska data November 18, 2016

Läs mer

Laboration 4 R-versionen

Laboration 4 R-versionen Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 VT13, lp3 Laboration 4 R-versionen Regressionsanalys 2013-03-07 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 10

ÖVNINGSUPPGIFTER KAPITEL 10 ÖVNINGSUPPGIFTER KAPITEL 10 För vissa uppgifter behöver du en tabell över den standardiserade normalfördelningen. Se här. SAMPLING 1. Nedan ges beskrivningar av fyra sampel. Ange i respektive fall om detta

Läs mer

Upphandling av måltidsverksamhet inom äldreomsorgen

Upphandling av måltidsverksamhet inom äldreomsorgen Uppsala universitet HT 2015 Statistiska institutionen Examensarbete 15 hp Upphandling av måltidsverksamhet inom äldreomsorgen En logistisk regressionsanalys Författare: Henrik Olsson Handledare: Anna Bornefalk-Hermansson

Läs mer

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en

Läs mer

Risk Ratio, Odds Ratio, Logistisk Regression och Survival Analys med SPSS Kimmo Sorjonen, 2012

Risk Ratio, Odds Ratio, Logistisk Regression och Survival Analys med SPSS Kimmo Sorjonen, 2012 Risk Ratio, Odds Ratio, Logistisk Regression och Survival Analys med SPSS Kimmo Sorjonen, 2012 1. Risk Ratio & Odds Ratio Risk- och odds ratio beräknar sambandet mellan två dikotoma variabler. Inom forskning

Läs mer

Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10

Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10 Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10 Läsanvisningarna baseras på boken Björk J. Praktisk statistik för medicin och hälsa, Liber Förlag (2011), som är gemensam kursbok för statistikavsnitten

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

F23 forts Logistisk regression + Envägs-ANOVA

F23 forts Logistisk regression + Envägs-ANOVA F23 forts Logistisk regression + Envägs-ANOVA Repetition Detta går inteattbeskriva på någotrimligtsättmed en linjär funktion PY Xx) β 0 +β x Den skattade linjen går utanför intervallet0, ): Y ärenbinärvariabel0-,dikotom)manvillmodellera,

Läs mer

Statistiska samband: regression och korrelation

Statistiska samband: regression och korrelation Statistiska samband: regression och korrelation Vi ska nu gå igenom något som kallas regressionsanalys och som innebär att man identifierar sambandet mellan en beroende variabel (x) och en oberoende variabel

Läs mer

Datorövning 5 Exponentiella modeller och elasticitetssamband

Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Minitab för att 1. anpassa och tolka analysen av en exponentiell

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

Kapitel 19: NATURLIGA EXPERIMENT OCH INSTRUMENT

Kapitel 19: NATURLIGA EXPERIMENT OCH INSTRUMENT Kapitel 19: NATURLIGA EXPERIMENT OCH INSTRUMENT Är höga familjeinkomster ett skydd mot panikångest bland barn? Vi har studerat ett hundratal barn och funnit att panikångest är vanligare bland barn till

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 10

ÖVNINGSUPPGIFTER KAPITEL 10 ÖVNINGSUPPGIFTER KAPITEL 10 För vissa uppgifter behöver du en tabell över den standardiserade normalfördelningen. Se här. SAMPLING 1. Nedan ges beskrivningar av fyra sampel. Ange i respektive fall om detta

Läs mer

Restid och resebeteende

Restid och resebeteende Lunds universitet Ht 2010 Nationalekonomiska institutionen Handledare: Jerker Holm Restid och resebeteende - Hur en minskning av tågets restid kan få flygresenärer att övergå till tåget. Författare: Max

Läs mer

Justeringar och tillägg till Svar till numeriska uppgifter i Andersson, Jorner, Ågren: Regressions- och tidsserieanalys, 3:uppl.

Justeringar och tillägg till Svar till numeriska uppgifter i Andersson, Jorner, Ågren: Regressions- och tidsserieanalys, 3:uppl. LINKÖPINGS UNIVERSITET 73G71 Statistik B, 8 hp Institutionen för datavetenskap Civilekonomprogrammet, t 3 Avdelningen för Statistik/ANd HT 009 Justeringar och tillägg till Svar till numeriska uppgifter

Läs mer

FACIT (korrekta svar i röd fetstil)

FACIT (korrekta svar i röd fetstil) v. 2013-01-14 Statistik, 3hp PROTOKOLL FACIT (korrekta svar i röd fetstil) Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta

Läs mer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna

Läs mer

Obligatorisk uppgift, del 1

Obligatorisk uppgift, del 1 Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.

Läs mer

Föreläsning 8: Konfidensintervall

Föreläsning 8: Konfidensintervall Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Föreläsning 7 och 8: Regressionsanalys

Föreläsning 7 och 8: Regressionsanalys Föreläsning 7 och 8: Pär Nyman par.nyman@statsvet.uu.se 12 september 2014-1 - Vårt viktigaste verktyg för kvantitativa studier. Kan användas till det mesta, men svarar oftast på frågor om kausala samband.

Läs mer

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION. MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på

Läs mer

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III, statistiska metoder) 3 högskolepoäng, ingående i kursen Undersökningsmetodik

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

Hur länge ska fisken vara i dammen?

Hur länge ska fisken vara i dammen? Hur länge ska fisken vara i dammen? Frågeställning Uppgift 10 fiskodling Uppgiften går ut på att ta reda på hur länge ett stim fisk ska växa upp i en fiskodling för att få den maximala vikten tillsammans.

Läs mer

Att beräkna t i l l v ä x t takter i Excel

Att beräkna t i l l v ä x t takter i Excel Att beräkna t i l l v ä x t takter i Excel Detta kapitel är en liten matematisk vägledning om att beräkna tillväxttakten i Excel. Här visas exempel på potenser och logaritmer och hur dessa funktioner beräknas

Läs mer

Laboration 4 Regressionsanalys

Laboration 4 Regressionsanalys Matematikcentrum Matematisk Statistik Lunds Universitet MASB11 VT14, lp4 Laboration 4 Regressionsanalys 2014-05-21/23 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner som finns

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II G. Gripenberg Aalto-universitetet 13 februari 2015 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl och

Läs mer

a) Anpassa en trinomial responsmodell med övriga relevanta variabler som (icketransformerade)

a) Anpassa en trinomial responsmodell med övriga relevanta variabler som (icketransformerade) 5:1 Studien ifråga, High School and beyond, går ut på att hitta ett samband mellan vilken typ av program generellt, praktiskt eller akademiskt som studenter väljer baserat på olika faktorer kön, ras, socioekonomisk

Läs mer

Premiepensionens delningstal och dess känslighet för ändrad livslängd och ränteantagande

Premiepensionens delningstal och dess känslighet för ändrad livslängd och ränteantagande 1 (5) PM Dok.bet. 2016-06-16 Analysavdelningen Tommy Lowen 010-454 20 50 Premiepensionens delningstal och dess känslighet för ändrad livslängd och ränteantagande Premiepensionens delningstal minskar med

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:..

Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:.. TENTAMEN Tentamensdatum 8-3-7 Statistik för ekonomer, Statistik A, Statistik A (Moment ) : (7.5 hp) Namn:.. Personnr:.. Tentakod: A3 Var noga med att fylla i din kod samt uppgiftsnummer på alla lösningsblad

Läs mer

Agenda. Statistik Termin 11, Läkarprogrammet, VT14. Forskningsprocessen. Agenda (forts.) Data - skalnivåer. Den heliga treenigheten

Agenda. Statistik Termin 11, Läkarprogrammet, VT14. Forskningsprocessen. Agenda (forts.) Data - skalnivåer. Den heliga treenigheten Agenda Statistik Termin 11, Läkarprogrammet, VT14 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström April 8, 2011 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest

Läs mer

Tidsserier, forts från F16 F17. Tidsserier Säsongrensning

Tidsserier, forts från F16 F17. Tidsserier Säsongrensning Tidsserier Säsongrensning F7 Tidsserier forts från F6 Vi har en variabel som varierar över tiden Ex folkmängd omsättning antal anställda (beroende variabeln/undersökningsvariabeln) Vi studerar den varje

Läs mer

Samhällsmedicin, Region Gävleborg: Sannolikheten att vara sysselsatt som utrikes född i Gävleborgs län år 2014.

Samhällsmedicin, Region Gävleborg: Sannolikheten att vara sysselsatt som utrikes född i Gävleborgs län år 2014. Förord Detta diskussionsunderlag är framtaget av Samhällsmedicin, en förvaltning inom Centrum för kunskapsstyrning inom Region Gävleborg, med syfte att vara en del av uppföljningen till rapporten Med utländska

Läs mer

Räkneövning 4. Om uppgifterna. 1 Uppgift 1. Statistiska institutionen Uppsala universitet. 14 december 2016

Räkneövning 4. Om uppgifterna. 1 Uppgift 1. Statistiska institutionen Uppsala universitet. 14 december 2016 Räkneövning 4 Statistiska institutionen Uppsala universitet 14 december 2016 Om uppgifterna Uppgift 2 kan med fördel göras med Minitab. I de fall en gur för tidsserien efterfrågas kan du antingen göra

Läs mer

Demografisk rapport 2014:10. Prognosmetoder och modeller. Regressionsanalys. Befolkningsprognos /45

Demografisk rapport 2014:10. Prognosmetoder och modeller. Regressionsanalys. Befolkningsprognos /45 Demografisk rapport 214:1 Prognosmetoder och modeller Regressionsanalys Befolkningsprognos 214-223/45 PCA/MIH Michael Franzén Version 4. 1(32) Rapport 214-1-8 Regressionsmodellen för inrikes inflyttning

Läs mer

Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15

Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15 Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15 Tillåtna hjälpmedel: Ansvarig lärare: Räknedosa, bifogade formel- och tabellsamlingar, vilka skall returneras. Christian Tallberg Telnr:

Läs mer

Datorövning 4 Poissonregression

Datorövning 4 Poissonregression Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-16 Datorövning 4 Poissonregression När man hanterar två eller fler variabler är man ofta

Läs mer

Bilaga 1. Kvantitativ analys

Bilaga 1. Kvantitativ analys bilaga till granskningsrapport dnr: 31-2013-0200 rir 2014:11 Bilaga 1. Kvantitativ analys Att tillvarata och utveckla nyanländas kompetens rätt insats i rätt tid? (RiR 2014:11) Bilaga 1 Kvantitativ analys

Läs mer

Uppgift 1. Produktmomentkorrelationskoefficienten

Uppgift 1. Produktmomentkorrelationskoefficienten Uppgift 1 Produktmomentkorrelationskoefficienten Både Vikt och Längd är variabler på kvotskalan och således kvantitativa variabler. Det innebär att vi inte har så stor nytta av korstabeller om vi vill

Läs mer

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris

Läs mer