Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander)
|
|
- Sandra Karlsson
- för 8 år sedan
- Visningar:
Transkript
1 Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander) Böiers 5.3 Relationer. Vi har definierat en funktion f: A B som en regel som kopplar ihop ett element a A, med ett element b B. Vi skrev f(a) = b. Elementet b var entydigt bestämt. Detta betyder att det inte finns två olika element b, c B sådana att f(a) = b och samtidigt f(a) = c Cartesisk produkt Vi skall nu införa en generellare typ av matematiska objekt än funktionerna genom att släppa kravet på entydighet. Den nya typen av matematiska objekt kallar vi relationer. Mängden av funktionerna kommer att vara en delmängd av mängden av relationer (ungefär som mängden av kvadrater är en delmängd av mängden av rektanglar). Vi upprepar först (och utvidgar) definitionen av Cartesisk produkt (som behövs vid definitionen av relationerna ) Med Cartesiska produkten av två mängder A och B, skrives A B, menas mängden av ordade par där första komponenten hämtas från A och den andra komponenten från mängden B d.v.s. A B={(a,b) ; a A, b B}. Observera att A B B A eftersom vi har ordnade par. A = {1, 2, 3}, B = {a, b}. A B = {(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)} 1(5)
2 R R = R 2, R = {reella tal}, Då, R R = R 2 = {(x,y) ; x, y R} Relationer: Diverse definitioner En relation r: A B är en delmängd av A B d.v.s. r A B. Speciellt, då A = B talar man om en binär relation på A = {(x, y) ; x, y reella tal, x y} är en relation från R till R (och en binär relation på R) A = B = P ({1,2,3}) = {, {1}, {2}, {3},{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} (= Potensmängden av {1, 2, 3}) = {(X, Y) A A; X Y} är en binär relation på A = P ({1,2,3}) Om för två mängder A och B gäller A = 3, B = 2 så finns det = 2 = 64 olika relationer från A till B. Detta eftersom A B = A B = 3 2 = 6 och P (A B) = 2 A B = 2 6 = 64. Liksom för funktionerna inför man för relationerna namn på speciella typer av relationer som man funnit särskilt intressanta och användbara. Låt r vara en binär relation på A d.v.s. r A A. Då, i) r kallas reflexiv om a A; (a,a) r. (Alternativt skrives (infix notation), a r a.) 2(5)
3 ii) r kallas symmetrisk om a, b A; (a, b) r (b, a) r. (Alternativt skrives (infix notation), a, b A; a r b b r a.) iii) iv) r kallas antisymmetrisk om a, b A; (a, b) r (b, a) r a = b r kallas transitiv om a, b, c A; (a, b) r (b, c) r (a, c) r. (Alternativt skrives (infix notation), a, b, c A; a r b b r c a r c ) på R = {reella tal} reflexiv ty x R; x x antisymmetrisk ty x, y R; x y y x x = y transitiv ty x, y, z R; x y y z x z A = {alla riktade sträckor (pilar) i R 3 }. Relationen ρ på A genom x, y A; x ρ y om och endast om x och y är lika långa och har samma riktning. Då tämligen enkelt att inse att ρ är reflexiv, symmetrisk och transitiv. En relation ρ på A kallas en partiell ordning om ρ är reflexiv, antisymmetrisk och transitiv. A = P ({1,2,3}) = {, {1}, {2}, {3},{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}, ρ =. Då, ρ är en partiell ordning på A 3(5)
4 på R = {reella tal}. är en partiell ordning (enligt tidigare exempel). < på R = {reella tal}. < är inte en partiell ordning (ty ej reflexiv). Ej Partiella ordningsrelationer (d.v.s. Ej Hassediagram, Topologisk sortering) Ekvivalensrelationer En relation ρ på A kallas en ekvivalensrelation om ρ är reflexiv, symmetrisk och transitiv. A = {alla riktade sträckor (pilar) i R 3 }. Relationen ρ på A genom x, y A; x ρ y om och endast om x och y är lika långa och har samma riktning. Då, ρ ekvivalensrelation (enligt tidigare exempel) Relationen ρ på Z = {hela (reella) tal} genom x, y Z; x ρ y precis då x och y ger samma principala rest vid division med 5. Då, ρ ekvivalensrelation Ekvivalensklasser Låt ρ vara en ekvivalensrelation på mängden A. Då, för x A definierar vi ekvivalensklassen [x] till x som [x] = {y A; x ρ y} (Beteckningen C x för [x] är också vanlig) Relationen ρ på Z = {hela (reella) tal} genom x, y Z; x ρ y precis då x och y ger samma principala rest vid division med 5 (se exempel strax ovan). Då, [0] = {0, ±5, ±10, ±15, ±20, } = {5k; k Z} [1] = {1, ±5+1, ±10+1, ±15+1, } = {5k + 1 ; k Z} [2] = {2, ±5+2, ±10+2, ±15+2, } = {5k + 2 ; k Z} [3] = {3, ±5+3, ±10+3, ±15+3, } = {5k + 3 ; k Z} [4] = {4, ±5+4, ±10+4, ±15+4, } = {5k + 4 ; k Z} Vi konstaterar, Precis 5 ekvivalensklasser (ty 0, 1, 2, 3, 4 är alla möjliga principala resterna vid division med 5). Vi ser att [0], [1], [2], [3], [4] är parvis disjunkta (d.v.s. t.ex. [2] [4] = ) och att [0]»[1]» [2]»[3]»[4] = Z (ty varje heltal ger ju någon principal rest vid division med 5) 4(5)
5 A 1, A 2, A 3, är en följd av delmängder till mängden A och i) A 1» A 2» A 3» = U A k = A (eventuellt är alla utom ändligt k=1 många av delmängderna tomma d.v.s. vi har i praktiken då endast ändligt många mängder). ii) A 1, A 2, A 3, är parvis disjunkta (d.v.s. t.ex. A 1 A 3 = ) Då säges { A 1, A 2, A 3, } utgöra en partition av mängden A (, se även figuren strax nedan). Sats (sid. 124, Boken) Följdsats (sid. 124, Boken) Låt ρ vara en ekvivalensrelation på mängden A. Då, i) x A, x [x] ii) x, y A; x ρ y [x] = [y] ii) x, y A; [x] [y] [x] [y] = För varje ekvivalensrelation på mängden A utgör dess ekvivalensklasser en partition av A. A = mängden av riktade sträckor (pilar) i planet. ρ är relationen på A där för x, y A, x ρ y precis då x och y är lika riktade och lika långa. Då, ρ är en ekvivalensrelation på A (som nämnts i tidigare exempel i R 3 ). Ekvivalensklasserna till ρ utgör det som normalt kallas vektorer. För dessa kan operationer som addition, subtraktion, skalär multiplikation, vektoriell multiplikation, väldefinieras. Slut! 5(5)
Relationer. 1. Relationer. UPPSALA UNIVERSITET Matematiska institutionen Erik Melin. Specialkursen HT07 23 oktober 2007
UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 23 oktober 2007 Relationer Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen är
Läs merExplorativ övning 9 RELATIONER OCH FUNKTIONER
Explorativ övning 9 RELATIONER OCH FUNKTIONER Övningens syfte är att bekanta sig med begreppet relation på en mängd M. Begreppet relation i matematiska sammanhang anknyter till betydelsen av samma ord
Läs merKap. 8 Relationer och funktioner
Begrepp och egenskaper: Kap. 8 elationer och funktioner relation, relationsgraf och matris, sammansatt relation reflexivitet, symmetri, anti-symmetri, transitivitet ekvivalensrelation, partialordning,
Läs merMA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om funktioner och relationer Mikael Hindgren 1 oktober 2018 Funktionsbegreppet Exempel 1 f (x) = x 2 + 1, g(x) = x 3 och y = sin x är funktioner. Exempel 2 Kan
Läs merRelationer och funktioner
Relationer och funktioner Joakim Nivre Uppsala universitet Institutionen för lingvistik och filologi Översikt Relationer: Binära relationer på mängder Mängd-, graf- och matrisnotation Egenskaper hos relationer
Läs merÖvningshäfte 3: Funktioner och relationer
GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2014 INLEDANDE ALGEBRA Övningshäfte 3: Funktioner och relationer Övning H Syftet är att utforska ett av matematikens viktigaste begrepp: funktionen. Du har
Läs merMatematik för språkteknologer
1 / 27 Matematik för språkteknologer 2.3 (Relationer och funktioner) Mats Dahllöf Institutionen för lingvistik och filologi Februari 2014 2 / 27 Dagens nya punkter Relationer Definitioner Egenskaper hos
Läs merFöreläsningsanteckningar och övningar till logik mängdlära
Inledande matematisk analys tma970, 010, logik, mängdlära Föreläsningsanteckningar och övningar till logik mängdlära Dessa öreläsningsanteckningar kompletterar mycket kortattat kap 0 och appendix B i Persson/Böiers,
Läs merLinjär Algebra, Föreläsning 2
Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.
Läs merLösningar till Algebra och kombinatorik
Lösningar till Algebra och kombinatorik 091214 1. Av a 0 = 1 och rekursionsformeln får vi successivt att a 1 = 1 + a 0 1 a 0 = 1 + 1 1 1 = 2, a 2 = 1 + a 1 1 a 0 + 1 a 1 = 1 + 2 1 + 1 = 4, 2 a 3 = 1 +
Läs merDefinitionsmängd, urbild, domän
5B1493, lekt 5, HT06 Funktioner Definition av begreppet Definition: Låt X och Y vara två mängder. En funktion f av typ X Y är detsamma som en delmängd av X Y, sådan att 1. Om (x, y) och (x, z) f, så är
Läs merLinjär Algebra, Föreläsning 2
Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Geometriska vektorer, rummen R n och M n 1 En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.
Läs mer729G04 - Diskret matematik. Lektion 3. Valda lösningsförslag
729G04 - Diskret matematik. Lektion 3. Valda lösningsförslag 1 Uppgifter 1.1 Relationer 1. Vi ges mängden A = {p, q, r, s, t}. Är följande mängder relationer på A? Om inte, ge ett exempel som visar vad
Läs merMängder, funktioner och naturliga tal
Lådprincipen Följande sats framstår som en fullständig självklarhet: Sats (Lådprincipen (pigeon hole principle)). Låt n > m vara naturliga tal. Fördelar man n föremål i m lådor, så kommer åtminstone en
Läs merLäsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik
Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Mats Boij 18 november 2001 13 Grupper Det trettonde kapitlet behandlar grupper. Att formulera abstrakta begrepp som grupper
Läs merDiofantiska ekvationer
Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 19. Diofantiska ekvationer Vi börjar med en observation som rör den största gemensamma delaren till
Läs merMängder. 1 Mängder. Grunder i matematik och logik (2015) 1.1 Grundläggande begrepp. 1.2 Beskrivningar av mängder. Marco Kuhlmann
Marco Kuhlmann 1 Diskret matematik handlar om diskreta strukturer. I denna lektion kommer vi att behandla den mest elementära diskreta strukturen, som alla andra diskreta strukturer bygger på: mängden.
Läs merÖvningshäfte 6: 2. Alla formler är inte oberoende av varandra. Försök att härleda ett par av de formler du fann ur några av de övriga.
GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2005 MATEMATISK BASKURS Övningshäfte 6: Syftet med övningen är att utforska strukturen hos talsystemen under addition respektive multiplikation samt sambandet
Läs merUppgifter i TDDC75: Diskreta strukturer Kapitel 8 Ordning och oändlighet
Uppgifter i TDDC75: Diskreta strukturer Kapitel 8 Ordning och oändlighet Mikael Asplund 19 oktober 2016 Uppgifter 1. Avgör om följande relationer utgör partialordningar. Motivera varför eller varför inte.
Läs merLMA033/LMA515. Fredrik Lindgren. 4 september 2013
LMA033/LMA515 Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 4 september 2013 F. Lindgren (Chalmers&GU) Matematik 4 september 2013 1 / 25 Outline 1 Föreläsning
Läs merOm relationer och algebraiska
Om relationer och algebraiska strukturer Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning Även i analysen behöver man en del algebraiska begrepp. I den här artikeln definierar vi
Läs merKTHs Matematiska Cirkel. Reella tal. Joakim Arnlind Tomas Ekholm Andreas Enblom
KTHs Matematiska Cirkel Reella tal Joakim Arnlind Tomas Ekholm Andreas Enblom Institutionen för matematik, 2005 Finansierat av Marianne och Marcus Wallenbergs Stiftelse Innehåll 1 Mängdlära 7 1.1 Mängder...............................
Läs merAlgebra och Diskret Matematik A (svenska)
MITTUNIVERSITETET TFM Tentamen 2005 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 2 november 2005 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
Läs mer(N) och mängden av heltal (Z); objekten i en mängd behöver dock inte vara tal. De objekt som ingår i en mängd kallas för mängdens element.
Grunder i matematik och logik (2017) Mängdlära Marco Kuhlmann 1 Grundläggande begrepp Mängder och element 2.01 En mängd är en samling objekt. Två standardexempel är mängden av naturliga tal (N) och mängden
Läs merFilosofisk logik Kapitel 15. Robin Stenwall Lunds universitet
Filosofisk logik Kapitel 15 Robin Stenwall Lunds universitet Dagens upplägg Första ordningens mängdlära Naiv mängdlära Abstraktionsaxiomet (eg. comprehension) Extensionalitetsaxiomet Små mängder Ordnade
Läs merFöreläsningsanteckningar och övningar till logik mängdlära Boolesk algebra
Föreläsningsantekningar oh övningar till logik mängdlära Boolesk algebra I kursen matematiska metoder, del A (TMA04 behandlar vi i lv logik, mängdlära oh Boolesk algebra I satslogik oh mängdalgebra, två
Läs merSeptember 13, Vektorer En riktad sträcka P Q, där P Q, är en pil med foten i P och med spetsen i Q. Denna har. (i) en riktning, och
Fö : September 3, 205 Vektorer En riktad sträcka P Q, där P Q, är en pil med foten i P och med spetsen i Q. Denna har i en riktning, och ii en nollskild längd betecknad P Q. Man använder riktade sträckor
Läs merVectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem.
Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Begrepp som diskuteras i det kapitlet. Vektorer, addition och multiplikation med skalärer. Geometrisk tolkning. Linjär kombination av
Läs merDiskret matematik: Övningstentamen 4
Diskret matematik: Övningstentamen 22. Beskriv alla relationer, som är såväl ekvivalensrelationer som partiella ordningar. Är någon välbekant relation sådan? 23. Ange alla heltalslösningar till ekvationen
Läs merLåt n vara ett heltal som är 2 eller större. Om a och b är två heltal så säger vi att. a b (mod n)
Uppsala Universitet Matematiska institutionen Isac Hedén Algebra I, 5 hp Sammanfattning av föreläsning 9. Kongruenser Låt n vara ett heltal som är 2 eller större. Om a och b är två heltal så säger vi att
Läs merLäsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik
Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Mats Boij 28 oktober 2001 1 Heltalen Det första kapitlet handlar om heltalen och deras aritmetik, dvs deras egenskaper som
Läs merAlgebra och kombinatorik 28/4 och 5/ Föreläsning 9 och 10
Grupper En grupp är ett par (G,*) där G är en mängd och * är en binär operation på G som uppfyller följande villkor: G1 (sluten) x,yϵg så x*yϵg G2 (associativ) x,y,z ϵg (x*y)*z=x*(y*z) G3 (identitet) Det
Läs merDiskret matematik: Övningstentamen 1
Diskret matematik: Övningstentamen 1 1. Bevisa att de reella talen är en icke-uppräknelig mängd.. För två mängder av positiva heltal A och B skriver vi A C B, om det är så att A innehåller ett heltal som
Läs merLösningar till Algebra och kombinatorik
Lösningar till Algebra och kombinatorik 090520 1. Av a 0 = 0, a 1 = 1 och rekursionsformeln får vi successivt att a 2 = 1 4 a 1 a 0 + 3 2 = 1 4 1 0 + 32 = 4, a 3 = 1 4 a 2 a 1 + 3 2 = 1 4 4 1 + 32 = 9,
Läs merMängder och kardinalitet
UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 28 september 2007 Mängder och kardinalitet Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen
Läs merMITTUNIVERSITETET TFM. Modelltenta Algebra och Diskret Matematik. Skrivtid: 5 timmar. Datum: 1 oktober 2007
MITTUNIVERSITETET TFM Modelltenta 2007 MA014G Algebra och Diskret Matematik Skrivtid: 5 timmar Datum: 1 oktober 2007 Den obligatoriska delen av denna (modell)tenta omfattar 8 frågor, där varje fråga kan
Läs merLösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 10 januari 2011 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF131 och SF130, den 10 januari 2011 kl 14.00-19.00. Examinator: Olof Heden, tel. 0730547891.
Läs merTräning i bevisföring
KTHs Matematiska Cirkel Träning i bevisföring Andreas Enblom Institutionen för matematik, 2005 Finansierat av Marianne och Marcus Wallenbergs Stiftelse 1 Mängdlära Här kommer fyra tips på hur man visar
Läs mer18 juni 2007, 240 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 24p. för Väl Godkänd (av maximalt 36p.
HH / Georgi Tchilikov DISKRET MATEMATIK,5p. 8 juni 007, 40 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 5p. för Godkänd, 4p. för Väl Godkänd (av maximalt 36p.). Förenkla (så mycket som
Läs merI kursen i endimensionell analys är mängden av reella tal (eng. real number), R, fundamental.
Lunds tekniska högskola Datavetenskap Lennart ndersson Föreläsningsanteckningar EDF10 4 Mängder 4.1 Motivering Mängden är den mest grundläggande diskreta strukturen. Nästan alla matematiska begrepp går
Läs merTentamen i TDDC75 Diskreta strukturer
Tentamen i TDDC75 Diskreta strukturer 2017-01-05, Lösningsförslag (med reservation för eventuella fel) 1. Betrakta följande satslogiska uttryck: (p q) (q p) (a) Visa genom naturlig deduktion att uttrycket
Läs merLösning till tentamensskrivning på kursen Diskret Matematik, moment B, för D2 och F, SF1631 och SF1630, den 1 juni 2011 kl
Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik moment B för D2 och F SF63 och SF63 den juni 2 kl 8.- 3.. Examinator: Olof Heden tel. 7354789. Hjälpmedel: Inga
Läs merUppsala universitet Institutionen för lingvistik och filologi. Grundbegrepp: Mängder och element Delmängder
Mängder Joakim Nivre Uppsala universitet Institutionen för lingvistik och filologi Översikt Grundbegrepp: Mängder och element Delmängder Operationer på mängder: Union och snitt Differens och komplement
Läs merBlock 1 - Mängder och tal
Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Delmängder och äkta delmängder Union och snittmängd Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av
Läs merLösningsförslag till övningsuppgifter, del II
Lösningsförslag till övningsuppgifter del II Obs! Preliminär version! Ö.1. För varje delare d till n låt A d var mängden av element a sådana att gcd(a n = d. Partitionen ges av {A d : d delar n}. n = 6:
Läs merSF1624 Algebra och geometri
Föreläsning 10 Institutionen för matematik KTH 21 november 2016 Dagens och veckans ämnen Idag: Allmänna vektorrum, baser, koordinater, kap 4.1-4.4: Vektorrum och delrum, igen Bas, igen Koordinater med
Läs merAlgebra och kryptografi Facit till udda uppgifter
VK Algebra och kryptografi Facit till udda uppgifter Tomas Ekholm Niklas Eriksen Magnus Rosenlund Matematiska institutionen, 2002 48 Grupper. Lösning 1.1. Vi väljer att studera varje element i G H för
Läs merMS-A0409 Grundkurs i diskret matematik I
MS-A0409 Grundkurs i diskret matematik I G. Gripenberg Aalto-universitetet oktober 014 G. Gripenberg (Aalto-universitetet) MS-A0409 Grundkurs i diskret matematik I oktober 014 1 / 44 Mängder (naiv, inte
Läs merALGEBRAISKA STRUKTURER. Juliusz Brzezinski
ALGEBRAISKA STRUKTURER Juliusz Brzezinski MATEMATISKA VETENSKAPER CHALMERS TEKNISKA HÖGSKOLA OCH GÖTEBORGS UNIVERSITET GÖTEBORG 2005 FÖRORD Detta kompendium täcker innehållet i kursen Algebraiska strukturer,
Läs merMS-A0409 Grundkurs i diskret matematik I
MS-A0409 Grundkurs i diskret matematik I G. Gripenberg Aalto-universitetet oktober 04 G. Gripenberg (Aalto-universitetet) MS-A0409 Grundkurs i diskret matematik I oktober 04 / 45 Mängder och logik Relationer
Läs merAbstrakt algebra för gymnasister
Abstrakt algebra för gymnasister Veronica Crispin Quinonez Sammanfattning. Denna text är föreläsningsanteckningar från föredraget Abstrakt algebra som hölls under Kleindagarna på Institutet Mittag-Leffler
Läs merLinjär algebra på några minuter
Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen
Läs merDefinition Låt n vara ett positivt heltal. Heltalen a och b sägs vara kongruenta modulo n om n är en faktor i a-b eller med andra ord om. n (a-b).
Block 4 Algebra och Diskret Matematik A BLOCK INNEHÅLL Referenser Inledning 1. Kongruens modulo n 2. Z n -- heltalen modulo n 3. Ekvationer modulo n 4. Relationer 5. Funktioner Golv och tak funktionerna
Läs merVektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://w3.msi.vxu.se/users/pa/vektorgeometri/gymnasiet.html Institutionen för datavetenskap, fysik och matematik Linnéuniversitetet Vektorer i planet
Läs merDagens ämnen. Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer
Dagens ämnen Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer Linjära ekvationer Med en linjär ekvation i n variabler,
Läs merKontsys F7 Skalärprodukt och normer
Repetition Skalärprodukt Norm Kontsys F7 Skalärprodukt och normer Pelle 11 februari 2019 Linjära rum Repetition Skalärprodukt Norm Linjära rum Linjärt underrum Ett linjärt rum över R är en mängd H där
Läs merUppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln
Matlab-föreläsning (4), 10 september, 015 Innehåll m-filer (script) - fortsättning från föreläsning 1 In- och utmatning Sekvenser, vektorer och matriser Upprepning med for-slingor (inledning) Matlab-script
Läs merBlock 1 - Mängder och tal
Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av talen i R Intervall Absolutbelopp Olikheter 1 Prepkursen
Läs merTILLÄMPADE DISKRETA STRUKTURER. Juliusz Brzezinski och Jan Stevens
TILLÄMPADE DISKRETA STRUKTURER Juliusz Brzezinski och Jan Stevens MATEMATIK CHALMERS TEKNISKA HÖGSKOLA GÖTEBORGS UNIVERSITET GÖTEBORG 2001 FÖRORD Termen Diskret matematik täcker ett mycket brett spektrum
Läs merFöreläsning 5: Kardinalitet. Funktioners tillväxt
Föreläsning 5: Kardinalitet. Funktioners tillväxt A = B om det finns en bijektion från A till B. Om A har samma kardinalitet som en delmängd av naturliga talen, N, så är A uppräknelig. Om A = N så är A
Läs merTMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra
TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska
Läs merMatematik för sjöingenjörsprogrammet
Matematik för sjöingenjörsprogrammet Matematiska Vetenskaper 9 augusti 01 Innehåll 5 komplexa tal 150 5.1 Inledning................................ 150 5. Geometrisk definition av de komplexa talen..............
Läs merInduktionsprincipen Starka induktionsprincipen Välordningsprincipen Divisionsalgoritmen
Föreläsning 3 Induktionsprincipen Starka induktionsprincipen Välordningsprincipen Divisionsalgoritmen Mängder Induktion behöver inte börja från 1, Grundsteget kan vara P (n 0 ) för vilket heltal n 0 som
Läs merExplorativ övning 7 KOMPLEXA TAL
Explorativ övning 7 KOMPLEXA TAL Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet då man försökte lösa kvadratiska
Läs merRelationer och funktioner
MAAA26 Diskret Matematik för Yrkeshögskoleutbildning-IT Block 11 BLOCK INNEHÅLL Referenser Inledning 1. Relationer 2. Funktioner 3. Övningsuppgifter Assignment 11 & 12 Referenser Relationer och funktioner
Läs merGrundidén är att våra intuitiva rationella tal (bråk) alltid kan fås som lösningar till ekvationer av typen α ξ = β, där α och β är tal Z och α 0.
5B2710, lekt 4, HT07 Konstruktion av de rationella talen Q (AEE 2.3) Grundidén är att våra intuitiva rationella tal (bråk) alltid kan fås som lösningar till ekvationer av typen α ξ = β, där α och β är
Läs merAlgebra och Diskret Matematik A (svenska)
MITTUNIVERSITETET TFM Tentamen 2007 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 7 juni 2007 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
Läs merFöreläsningsanteckningar Linjär Algebra II Lärarlyftet
Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =
Läs merLinjär Algebra M/TD Läsvecka 1
Linjär Algebra M/TD Läsvecka 1 Omfattning: Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll: Olika aspekter av linjära ekvationssystem: skärning mellan geometriska objekt, linjärkombination
Läs merA B A B A B S S S S S F F S F S F S F F F F
Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 17. Logik När man utför matematiska resonemang så har man alltid vissa logiska spelregler att förhålla
Läs mer1 Föreläsning I, Mängdlära och elementär sannolikhetsteori,
1 Föreläsning I, Mängdlära och elementär sannolikhetsteori, LMA201, LMA521 1.1 Mängd (Kapitel 1) En (oordnad) mängd A är en uppsättning av element. En sådan mängd kan innehålla ändligt eller oändlligt
Läs merExempel. Komplexkonjugerade rotpar
TATM79: Föreläsning 4 Polynomekvationer och funktioner Johan Thim 2 augusti 2016 1 Polynomekvationer Vi börjar med att upprepa definitionen av ett polynom. Polynom Definition. Ett polynom p(z) är ett uttryck
Läs merLösningar till utvalda uppgifter i kapitel 5
Lösningar till utvalda uppgifter i kapitel 5 5.3. Vi använder Euklides algoritm och får 4485 = 1 3042 + 1443 3042 = 2 1443 + 156 1443 = 9 156 + 39 156 = 4 39. Alltså är sgd(3042, 4485) = 39. Om vi startar
Läs mertal. Mängden av alla trippel av reella tal betecknas med R 3 och x 1 x 2 En sekvens av n reella tal betecknas med (x 1, x 2,, x n ) eller
Augusti, 5 Föreläsning Tillämpad linjär algebra Innehållet: linjen R, planet R, rummet R, oh vektor rummet R n Matriser punkter oh vektorer i planet, rummet, oh R n Linjen, planet, rummet, oh vektor rummet
Läs merKapitel 1. betecknas detta antal med n(a). element i B; bet. A B. Den tomma mängden är enligt överenskommelsen en delmängd. lika; bet. A = B.
Kapitel 1 Mängdlära Begreppet mängd är fundamentalt i vårt tänkande; en mängd är helt allmänt en samling av objekt, vars antal kan vara ändligt eller oändligt. I matematiken kallas dessa objekt mängdens
Läs merNågra satser ur talteorin
Några satser ur talteorin LCB 997/2000 Fermats, Eulers och Wilsons satser Vi skall studera några klassiska satser i talteori, vilka är av betydelse bland annat i kodningsteknik och kryptoteknik. De kan
Läs merGeometriska vektorer
Föreläsning 1, Linjär algebra IT VT2008 1 Geometriska vektorer De begrepp som linjär algebra kretsar kring är vektorer och matriser Dessa svarar mot datorernas fält (`arra') av dimension ett respektive
Läs merLösningar till udda övningsuppgifter
Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.
Läs merKontinuitet och gränsvärden
Kapitel Kontinuitet och gränsvärden.1 Introduktion till kontinuerliga funktioner Kapitlet börjar med allmänna definitioner. Därefter utvidgar vi successivt familjen av kontinuerliga funktioner, genom specifika
Läs mer2MA105 Algebraiska strukturer I. Per-Anders Svensson
2MA105 Algebraiska strukturer I Per-Anders Svensson Föreläsning 4 Innehåll Bijektiva avbildningar en repetition Permutationsgrupper Permutationer skrivna som produkter av cykler Jämna och udda permutationer
Läs merMängdlära. Kapitel Mängder
Kapitel 2 Mängdlära 2.1 Mängder Vi har redan stött på begreppet mängd. Med en mängd menar vi en väldefinierad samling av objekt eller element. Ordet väldefinierad syftar på att man för varje tänkbart objekt
Läs merMITTUNIVERSITETET TFM. Tentamen Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar. Datum: 9 januari 2007
MITTUNIVERSITETET TFM Tentamen 2007 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 9 januari 2007 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
Läs merDenna uppdelning är ovanlig i Sverige De hela talen (Både positiva och negativa) Irrationella tal (tal som ej går att skriva som bråk)
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-24 SÄL 1-10p Avsnitt 1.1 Grundläggande begrepp Detta avsnitt behandlar de symboler som används
Läs merDEL I. Matematiska Institutionen KTH
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 25 mars 2008. DEL I 1. (3p Bestäm antalet binära ord av längd
Läs merLinjära ekvationssystem
Föreläsning 3 Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på
Läs merMATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt
MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5
Läs mer1 Minkostnadsflödesproblem i nätverk
Krister Svanberg, april 2012 1 Minkostnadsflödesproblem i nätverk Ett nätverk består av en given mängd noder numrerade från 1 till m (där m är antalet noder) samt en given mängd riktade bågar mellan vissa
Läs merKarta över Jorden - viktigt exempel. Sfär i (x, y, z) koordinater Funktionen som beskriver detta ser ut till att vara
Föreläsning 1 Jag hettar Thomas Kragh och detta är kursen: Flervariabelanalys 1MA016/1MA183. E-post: thomas.kragh@math.uu.se Kursplan finns i studentportalens hemsida för denna kurs. Där är två spår: Spår
Läs merM0043M Integralkalkyl och Linjär Algebra, H14,
M0043M Integralkalkyl och Linjär Algebra, H14, Linjär Algebra, Föreläsning 1 Staffan Lundberg / Ove Edlund Luleå Tekniska Universitet Staffan Lundberg / Ove Edlund M0043M H14 1/ 31 Lärare Ove Edlund Föreläsningar
Läs merTentamen i TDDC75 Diskreta strukturer , lösningsförslag
Tentamen i TDDC75 Diskreta strukturer 2018-10-23, lösningsförslag 1 1. (a) Sanningstabell för uttrycken p q r p q p r r q r p q 0 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0 1
Läs merKompletteringsmaterial. K2 Något om modeller, kompakthetssatsen
KTH Matematik Bengt Ek Maj 2008 Kompletteringsmaterial till kursen SF1642, Logik för D1 och IT3: K2 Något om modeller, kompakthetssatsen Vi skall presentera ett enkelt (om man känner till sundhets- och
Läs merStora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp)
Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp) Linjär algebra består av tre grenar eller koncept: geometriska begreppet av vektorrum, analysbegreppet
Läs mer1 Linjära ekvationssystem. 2 Vektorer
För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant
Läs mer6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A =
62 6 MATRISER 6 Matriser 6 Definition av matriser En matris är ett rektangulärt schema av tal: A a a 2 a 3 a n a 2 a 22 a 23 a 2n a m a m2 a m3 a mn Matrisen A säges vara av typ m n, där m är antalet rader
Läs merVektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Skalärprodukt Innehåll Skalärprodukt - Inledning
Läs merTAMS79: Föreläsning 10 Markovkedjor
TAMS79: Föreläsning 0 Markovkedjor Johan Thim december 08 0. Markovkedjor Vi ska nu betrakta en speciell tidsdiskret diskret stokastisk process, nämligen Markovkedjan. Vi börjar med en definition Definition.
Läs merAlgebra och Diskret Matematik A (svenska)
MITTUNIVERSITETET TFM Tentamen 2006 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 10 januari 2006 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
Läs merMer om analytisk geometri
1 Onsdag v 5 Mer om analytisk geometri Determinanter: Då man har en -matris kan man till den associera ett tal determinanten av som också skrivs Determinanter kommer att repeteras och studeras närmare
Läs mer729G04 - Diskret matematik. Hemuppgift.
729G04 - Diskret matematik. Hemuppgift. 2016-08-31 Instruktioner Dessa uppgifter utgör en del av examinationen i kursen 729G04 Programmering och diskret matematik. Uppgifterna ska utföras individuellt
Läs mer