2.8. Sannolikhetstäthetens vinkelberoende

Storlek: px
Starta visningen från sidan:

Download "2.8. Sannolikhetstäthetens vinkelberoende"

Transkript

1 2.8. Sannolikhetstäthetens vinkelberoende [Understanding Physics: 19.7 (s. 590)-19.11] Härnäst skall vi studera vinkelberoendet av egenfunktionerna för n = 1 och n = 2. Den allmänna lösningen till den φ beroende ekvationen är Φ ml (φ) = e im l φ. Detta innebär att sannolikheten Φ m l (φ)φ ml (φ) = e im l φ e im l φ = 1 för alla egenfunktioner för en elektron, vilket betyder att inga sådana sannolikhetstäthetsfunktioner kommer att att bero av φ. De förändras därför inte då φ varierar mellan 0 och 2π, dvs de är symmetriska i avseende på rotation kring z axeln. Den moderna fysikens grunder, Tom Sundius

2 Beroendet av vinkeln θ kan åskådliggöras med hjälp av polära diagram för en funktion, som är proportionell mot Θ l,m l (θ)θ l,ml (θ) (se fig , samt fig. ovan). Funktionerna ψ 1,0,0 (1s) och ψ 2,0,0 (2s) är oberoende av θ, så att Θ 0,0 (θ)θ 0,0(θ) = 1 och de polära diagrammen är följaktligen cirklar. För egenfunktionen ψ 2,1,0 (2p) är Θ 1,0 (θ)θ 1,0(θ) proportionell mot cos 2 θ, så att maxima ligger nära z axeln, där θ 0. För egenfunktionerna ψ 2,1,±1 (2p) är Θ 1,±1 (θ)θ 1,±1(θ) proportionell mot sin 2 θ, så att diagrammen uppvisar maximer i x, y planet, där θ π/2. För egenfunktionen ψ 3,2,±1 (3d) får man ett polärt diagram som liknar en fyrväppling. För högre l värden får man alltså ytterligare maxima i prefererade riktningar. Den moderna fysikens grunder, Tom Sundius

3 I allmänhet är alla dessa distributioner symmetriska i avseende på rotation kring z axeln, så att det fullständiga tredimensionella vinkelberoendet erhålls genom att rotera de polära diagrammen kring z axeln. Distributionen för l = 0, m l = 0 blir således ett klot, för l = 1, m l = 0 får vi två ägg, och för l = 1, m l = ±1 en munkring. Atomens laddningsfördelning ρ n,l,ml (r, θ, φ) kan uttryckas med elektronens sannolikhetstäthet genom ekvationen ρ n,l,ml (r, θ, φ) = ep n,l,ml (r, θ, φ) = eψ n,l,m l (r, θ, φ)ψ n,l,ml (r, θ, φ), där e är elektronladdningen. Elektronens sannolikhetstäthet kan därför också uppfattas som en tredimensionell laddningsfördelning. Den moderna fysikens grunder, Tom Sundius

4 2.9. Tolkningen. Bohrs modell och Schrödingers modell I kapitel 19 i boken beskrivs först Bohrs enkla planetmodell för atomen och därpå en mer komplicerad kvantmekanisk modell. Bohrs modell konstruerades ursprungligen för att förklara uppkomsten av atomspektra, och lyckades därmed riktigt bra, speciellt när det gällde väteliknande atomer. För atomer med flera elektroner misslyckades den, vilket observerades redan för helium. Den största skillnaden mellan Bohrs modell och den kvantmekaniska modellen är, att i Bohrs modell antas elektronerna röra sig i cirkulära banor (Sommerfeld införde senare elliptiska banor, som hade vissa fördelar), medan elektronerna i den kvantmekaniska modellen inte alls rör sig i bestämda banor, utan istället karaktäriseras av en sannolikhetstäthet, som har olika värden på olika ställen. Elektronernas rörelse är också beroende av Heisenbergs osäkerhetsrelation, som leder till att vi inte exakt vet var en elektron befinner sig, även om vi skulle känna dess hastighet noggrannt. Enligt kausalitetslagen kan vi beräkna en kropps rörelse i framtiden om vi vet exakt var den nu befinner sig. Heisenberg ansåg, att denna lag inte gäller i kvantmekaniken, eftersom vi inte alltid känner kroppens ursprungliga position fullt noggrannt. I Bohrs modell kan man beräkna var en elektron befinner i ett visst ögonblick, och med vilken hastighet den rör sig. Den är med andra ord helt deterministisk. Man kan använda den för att beräkna atomens energinivåer och spektrallinjernas lägen, men det är ingen garanti för att den är korrekt. Den moderna fysikens grunder, Tom Sundius

5 Vi kan försöka förklara skillnaden mellan dessa två modeller med hjälp av en dialog mellan två hypotetiska personer, Simplicio och Salviati (idén lånad ur Galileis verk: Dialog rörande världens två huvudsystem, 1632): Simp. Är det något fel med att tänka sig elektroner som rör sig i cirkulära banor? Salv. En fysiker vid namn Louis de Broglie visade att elektronerna egentligen är vågor... Simp. Hej stopp! Vad menar du, är elektronerna vågor! Jag trodde de var partiklar! Salv. Här blir kvantfysiken rätt konstig. Om du gör ett experiment för att ta reda på var en partikel finns, då hittar du något som liknar en partikel. Men annars är den en våg som medför information om var elektronen sannolikt är. Diffraktionsexperimentet är ett annat sätt att upptäcka elektronernas vågpartikelnatur. Simp. Vad menar du, när du säger att elektronen sannolikt är någonstans. Är inte elektronen alltid på något bestämt ställe? Salv. Njaa... Innan du kontrollerar var den är, så är den egentligen bara en våg. Inte nog med det, Schrödinger har visat att elektronerna inte ens rör sig, vågorna är stationära. Varje gång du kollar var elektronen är kommer du att finna att den är på ett annat ställe, men det betyder inte att den har rört sig. Om man checkar positionen tillräckligt ofta, kommer man att kunna få ett banliknande mönster för vissa energinivåer, men vi skall inte inbilla oss att elektronerna verkligen rör sig i små cirklar. Den moderna fysikens grunder, Tom Sundius

6 Simp. Var är då elektronen när jag inte tittar efter? Måste den inte vara nånstans? Salv. Det är just det som är det lustiga: elektronen är inte på något bestämt ställe när du inte tittar efter. Till all tur, för mestadels har det inte så stor betydelse var den i själva verket är, vi är bara intresserade av hur mycket energi den har. Simp. Aha! Det är därför banorna är till nytta! De kanske ger fel information om var elektronen är, men de säger hur mycket energi den har. Salv. Vi kallar detta för elektronens energinivå. Eftersom föreställningen om elektronbanor är missvisande, så har man börjat beskriva atomernas energinivåer med ett nivåschema. Simp. Och detta kallar vi för Schrödingers modell förstås. Den moderna fysikens grunder, Tom Sundius

7 2.10. Spektrallinjernas intensitet; urvalsregler Vi har tidigare konstaterat, att Bohrs teori inte kan förklara spektrallinjernas intensitet. Den kvantmekaniska teorin har inte denna brist. Sannolikheten för att en övergång skall äga rum, kan beräknas om man känner vågfunktionerna för begynnelsetillståndet och sluttillståndet. Intensiteten kan därpå beräknas ur övergångssannolikheten. Atomen, där övergången sker, kan anses ha en laddningsfördelning, som oscillerar mellan distributionerna i grundtillståndet och sluttillståndet. Det oscillerande laddningsmolnet är inte sfäriskt symmetriskt, utan den positiva och negativa laddningen är åtskiljda, och separationen varierar då molnet oscillerar. Oscillationen innebär, att laddningen accelererar, och som vi vet, så alstrar en accelererande laddning elektromagnetisk strålning. Den största övergångssannolikheten, och därmed också den starkaste emissionen av elektromagnetisk strålning åstadkoms av ett oscillerande elektriskt dipolmoment (jfr s. 441). Atomens elektriska dipolmoment är p = er, där r är separationen mellan den positiva och negativa laddningen. Den moderna fysikens grunder, Tom Sundius

8 Hastigheten, varmed den elektromagnetiska strålningen därvid emitteras, är proportionell mot p 2, som visar sig vara proportionell mot kvadraten på integralen hela rymden Ψ f (r, θ, φ, t)( er)ψ i(r, θ, φ, t)dv, där funktionerna Ψ i (r, θ, φ, t) = ψ i (r, θ, φ)e ie i t/ och Ψ f (r, θ, φ, t) = ψ f (r, θ, φ)e ie f t/ beskriver begynnelsetillståndet, resp. sluttillståndet, och E i och E f är de motsvarande energierna. Eftersom Ψ f (r, θ, φ, t) = ψ f (r, θ, φ)eie f t/, så kan integralen skrivas i formen hela rymden ψ f (r, θ, φ)eie f t/ ( er)ψ i (r, θ, φ)e ie i t/ dv = e i(e f E i )t/ hela rymden ψ f (r, θ, φ)( er)ψ i(r, θ, φ)dv Faktorn e i(e f E i )t/ är en periodisk funktion, vars vinkelfrekvens är ω = 2πf = (E f E i )/. Den utsända strålningens frekvens är alltså f = (E f E i )/h. Den moderna fysikens grunder, Tom Sundius

9 Den elektriska dipolintegralen hela rymden ψ f (r, θ, φ)( er)ψ i(r, θ, φ)dv bestämmer strålningens emissionshastighet. Integralen är i hög grad beroende av egenfunktionernas symmetriegenskaper. Man kan visa, att symmetrin för en egenfunktion är beroende av kvanttalet l. Om l f och l i är bankvanttalen för slut, resp. begynnelsetillståndet, så kan man visa att integralen försvinner, om inte l = l f l i = ±1. Elektrisk dipolstrålning kommer därför att produceras endast om l = ±1, vilket kallas för en urvalsregel för denna övergång. Vi ska tillämpa den på Lyman serien, vilken som vi sett motsvarar övergångar mellan de exciterade nivåerna med n i = 2, 3, 4,... till grundtillståndet n f = 1. Grundtillståndet har l = 0, varför övergångar endast är möjliga från exciterade tillstånd med l = 1, dvs 2p, 3p, 4p,... tillstånden. Om vi tillämpar samma urvalsregel på Balmer serien, så ser vi, att varje spektrallinje egentligen består av tre övergångar. T.ex. den röda linjen (n i = 3 n f = 2) byggs upp av övergångarna 3p 2s, 3s 2p och 3d 2p. På grund av degenerationen observeras inte spjälkning av linjerna. Den moderna fysikens grunder, Tom Sundius

10 2.11. Kvantisering av impulsmomentet Som vi har sett, så innebär den kvantmekaniska behandlingen av atomen inte bara att energin kvantiseras, utan också att sannolikhetstäthetens vinkeldistribution har kvantiserade riktningar. Då l 0, så är sannolikheten för att man skall finna elektronen lika med noll i vissa riktningar med avseende på z axeln. Detta fenomen, som kallas för rymdkvantisering, påminner om noderna som uppträder i de endimensionella stående vågor, som är egenfunktioner för partiklar i bundna system. I det tredimensionella fallet uppträder de snarare som nodriktningar, än som nodpunkter. Atomens egenfunktioner är därför tredimensionella stående vågor med nodriktningar, som bestäms av elektronsystemets gränsvillkor. Kvanttalen l och m l anger sannolikhetsdistributionernas riktningar, och ger alltså upphov till rymdkvantiseringen. En fullständig kvantmekanisk analys visar, att bankvanttalet l är relaterat till storleken av det totala banimpulsmomentet L genom ekvationen L 2 = l(l + 1) 2. Den moderna fysikens grunder, Tom Sundius

11 Detta stämmer överens med Bohrs första postulat vad gäller kvantiseringen av impulsmomentet, men endast för stora värden av l, dvs då l(l + 1) l L, ger ekvationen samma resultat som Bohrs postulat. Dessutom tillåter denna ekvation också att impulsmomentet blir noll (för l = 0), vilket inte är tillåtet enligt Bohrs teori. Då l 0, begränsar kvantiseringen av impulsmomentet L vektorn till vissa riktningar med avseende på z axeln. L vektorns z komponent L z (egentligen egenvärdet, se nedan) bestämmer de tillåtna riktningarna: L z = m l, och de tillåtna vinklarna mellan L och z axeln kan därför uttryckas med riktningscosinerna cos θ = L z L = L riktningen bestäms därför av kvanttalet m l. m l l(l + 1) 2 = m l l(l + 1). Att m l faktiskt är ett egenvärde av ˆL z kan visas som följer. Klassiskt gäller L = r p = (xi + yj + zk) (p x i + p y j + p z k) = (yp z zp y )i + (zp x xp z )j + (xp y yp x )k Den moderna fysikens grunder, Tom Sundius

12 Om vi i ekvationen substituerar de kvantmekaniska rörelsemängdsoperatorerna p x = i x,... finner vi ˆL x = i (y z z y ) ˆL y = i (z x x z ) ˆL z = i (x y y x ) Dessa impulsmomentoperatorer kan lätt transformeras till sfäriska koordinater genom att uttrycka x,y och z med r, θ och φ (se föreläsning 5) och använda kedjeregeln. För φ får vi då uttrycket φ = x φ x + y φ y + z φ z = r sin θ sin φ x + r sin θ cos φ y = y x + x y, Den moderna fysikens grunder, Tom Sundius

13 varav följer att ˆL z = i φ. Vi finner härav ˆL z Φ(φ) = i φ eim l φ = m l e im l φ = m l Φ(φ), och m l satisfierar alltså egenvärdesekvationen för ˆL z. Fig i boken (samt figuren nedan) visar inverkan av detta kvantiseringsvillkor i fallet l = 2. Som vi tidigare sett, kan m l i detta fall endast anta värdena 2, 1, 0, +1, +2, varför L z endast kan anta värdena 2,, 0, +, +2. Märk väl, att storleken av vektorn L är densamma för varje värde av L z, dvs L = 2(2 + 1) = 6. Den moderna fysikens grunder, Tom Sundius

14 Energikvantiseringen kan studeras experimentellt, t.ex. genom att studera väteatomens energinivåer, men rymdkvantiseringen kan inte studeras experimentellt på motsvarande sätt. För att göra det skulle man nämligen behöva en referensriktning, såsom z riktningen. Problemet är det, att z riktningen inte är en bestämd riktning i en (sfäriskt symmetrisk) atom, den är bara ett matematiskt hjälpmedel. Om vi studerar atomer, som befinner sig t.ex. i energitillståndet E 2 (n = 2), så har vi att göra med slumpmässigt orienterade z axlar och kan därför bara mäta medelelektrondistributionen för de fyra tillstånden med n = 2, dvs ψ 2,0,0, ψ 2,1, 1, ψ 2,1,0 och ψ 2,1,1. Denna fördelning kan uttryckas 1 4 [ψ 2,0,0ψ 2,0,0 + ψ 2,1, 1ψ 2,1, 1 + ψ 2,1,0ψ 2,1,0 + ψ 2,1,1ψ 2,1,1 ]. Genom att substituera uttrycken för egenfunktionerna i detta uttryck finner vi att medelsannolikheten för θ beroendet är [ 1 2 sin2 θ + cos 2 θ sin2 θ] = 1. Medelsannolikhetsdistributionen i (n = 2) tillståndet är därför oberoende av vinkeln, den är alltså sfäriskt symmetrisk. Vi har tidigare konstaterat, att ψ 2,0,0 är sfäriskt symmetrisk, därför måste också P 2,0 (r) och P 2,1 (r) i medeltal var för sig vara sfäriskt symmetriska funktioner. Detta visar sig vara ett helt allmänt resultat. Medelvärdet av sannolikhetstätheten för en samling atomer med samma värden av n, l har sfärisk symmetri, varför rymdkvantiseringen inte kan upptäckas i fria atomer med en elektron. Rymdkvantisering kan dock upptäckas om det finns en bestämd riktning definierad i atomen, t.ex. genom ett pålagt yttre magnetfält, som vi skall se i nästa avsnitt. Den moderna fysikens grunder, Tom Sundius

15 2.12. Magnetiska fenomen i atomer: Zeeman effekten Enligt Bohrs teori rör sig elektronen i en bana kring kärnan. Eftersom den är laddad, bildar den en strömslinga med det magnetiska dipolmomentet m (jfr avsn i boken). Enligt ekvation (16.31) kan det magnetiska dipolmomentet uttryckas med banimpulsmomentet: m = e L 2m e Minustecknet beror på, att elektronen är negativt laddad, m är därför antiparallell med L. Förhållandet e som relaterar det magnetiska momentet till banimpulsmomentet kallas för det orbitala gyromagnetiska 2me förhållandet. Om vi nu placerar atomen i ett yttre magnetfält, så kommer elektronens magnetiska dipolmoment att påverkas av ett vridmoment T = m B (jfr ekvation (16.26)). Detta vridmoment strävar att vrida m i B:s riktning. Potentialenergin som är associerad med denna vridning är U = m B = m B cos θ, Den moderna fysikens grunder, Tom Sundius

16 där θ är vinkeln mellan m och B (=z axeln). Denna energi är minimal (alltså mest negativ), då m är parallell med B, dvs då θ = 0. Vi skall nu tillämpa detta på en atom i ett likformigt yttre magnetfält B, som definierar z axelns riktning. I atomen kvantiseras riktningen av L, och således också av m, medels ekvationen L z = m l. Med hjälp av sambandet mellan det magnetiska dipolmomentet och banimpulsmomentet finner vi då, att dipolens potentiella energi i det yttre fältet B kan skrivas U = m B = e 2m e L B = e 2m e L B cos θ = e 2m e B L z = e 2m e B m l Storheten e 2me, vars värde är Am 2 kallas för Bohrs magneton, och betecknas µ B. Den potentiella energin kan därför uttryckas U = m l µ B B. Energin för atomens magnetiska dipol i det yttre magnetfältet är sålunda kvantiserad, och dess värde bestäms av kvanttalet m l. I ett yttre magnetfält kommer atomens energinivåer därför att spjälkas upp på ett antal komponenter, som var och en svarar mot ett bestämt värde av m l. Degenerationen i avseende på m l försvinner alltså på grund av det yttre magnetfältets inverkan. Emedan m l antar 2l + 1 värden för ett givet värde av l, kommer varje nivå således att spjälkas upp på 2l + 1 komponenter. Den moderna fysikens grunder, Tom Sundius

17 Eftersom spektrallinjernas frekvenser svarar mot skillnaden i energi mellan sluttillståndet och begynnelsetillståndet, så kommer också spektrallinjerna att spjälkas upp i komponenter av ett yttre magnetfält. Detta fenomen, som kallas Zeeman effekten, upptäcktes av holländaren Pieter Zeeman år Alla tänkbara övergångar är dock inte tillåtna. Vi har tidigare visat, att för bankvanttalet l gäller urvalsregeln l = ±1. För det magnetiska kvanttalet m l gäller en motsvarande regel: m l = 0, ±1. Övergångar som inte uppfyller urvalsreglerna är förbjudna. Nedanstående figur visar ett exempel på en normal Zeemaneffekt: uppspjälkning av spektrallinjen vid övergången 3d 2p. De heldragna linjerna anger tillåtna övergångar, de streckade anger förbjudna övergångar, och E = µ B B. Som vi kan se, kommer linjen att uppspjälkas i tre komponenter. Den moderna fysikens grunder, Tom Sundius

18 2.13. Sterns och Gerlachs experiment; elektronspinn Betrakta en strömslinga i ett magnetfält. Om fältet är likformigt och vinkelrätt mot slingans plan, kommer krafterna på slingan F = I l B (jfr ekvation (16.23)) att ta ut varandra i motsatta punkter av slingan, så att det inte finns någon nettokraft som verkar på slingan. Om fältet inte är homogent, och växer i en riktning vinkelrätt mot slingans plan (dvs z axelns riktning, se figuren nedan), så kommer kraftkomponenterna i slingans plan fortfarande att ta ut varandra, men det uppstår en nettokraft F z i riktningen av magnetflödets gradient B/ z, dvs z axelns riktning. Otto Stern och Walter Gerlach experimenterade år 1921 med denna effekt för att skilja åt m l komponenterna i atomstrålespektra. Den moderna fysikens grunder, Tom Sundius

19 Stern och Gerlach använde silveratomer i sina försök, men vi skall (för enkelhetens skull) tillämpa deras metod på väteatomer i grundtillståndet (n = 1, l = 0, m l = 0). Försöksuppställningen visas i bilden nedan. Vi antar att en stråle av väteatomer passerar genom ett icke-likformigt magnetfält, där de påverkas av en kraft F z i z axelns riktning. Genom att derivera uttrycket för energin (U = m B) kan kraften beräknas: F z = U z = e B L z 2m e z Således är F z L z, och storleken av atomernas avlänkning är alltså beroende av L z. Stern och Gerlach åstadkom det inhomogena magnetfältet genom att utforma magnetens ena polsko som en symmetrisk kil och den andra som en skena med rektangulär utskärning. Den moderna fysikens grunder, Tom Sundius

20 Klassiskt kan L z ha vilket värde som helst mellan L och + L, vilket skulle leda till att avlänkningarna skulle vara kontinuerligt fördelade mellan dessa två gränser. Enligt kvantmekaniken är L z däremot kvantiserad: L z = m l, och vi väntar oss därför kvantiserade avlänkningsriktningar, som svarar mot 2l + 1 värden av m l. I väteatomens grundtillstånd är l = m l = 0, varför atomstrålen borde passera utan att avlänkas. Experimentellt visar det sig emellertid, att Sterns och Gerlachs experiment ger upphov till två kvantiserade avlänkningsriktningar (se bilden ovan). Som vi ser, inträffade rymdkvantisering, men antalet komponenter var dubbelt större än vad man väntade sig. Det var också märkligt, att antalet komponenter var jämnt, eftersom 2l + 1 alltid är ett udda tal. Således har elektronen förutom sitt orbitala moment också ett annat magnetiskt moment med två kvantiserade riktningar. Den moderna fysikens grunder, Tom Sundius

21 Detta dipolmoment kallas för elektronens inre magnetiska dipolmoment m S, som associeras med ett inre impulsmoment S på ett liknande sätt som det orbitala magnetiska momentet associeras med banimpulsmomentet. Observera dock, att det gyromagnetiska förhållande, som relaterar elektronens inre magnetiska dipolmoment till dess inre impulsmoment är nästan exakt dubbelt större än det orbitala gyromagnetiska förhållandet, dvs m S = e S. Här har vi bortsett från en liten korrektion, som leder till att elektronens me g-faktor är litet större än 2 (redan 1948 fann Schwinger den vara ca med relativistisk QED). De två observerade avlänkningsriktningarna i Sterns och Gerlachs experiment förklaras genom att låta kvanttalet s som associeras med elektronens inre impulsmoment anta värdet 1 2. Antalet komponenter 2s + 1 blir därigenom 2. De två komponenterna längs z axeln associeras med kvanttalet m s, som kan anta värdet 1 2 eller För elektronens inre impulsmoment S, och dess z komponent S z kan vi uppställa liknande ekvationer som för banimpulsmomentet: S 2 = s(s + 1) 2, S z = m s. Av historiska skäl kallas elektronens inre impulsmoment för elektronens spinn, och det motsvarande kvanttalet s kallas för spinnkvanttalet. Det ligger nära till hands att tolka elektronspinnet klassiskt som rotation kring en axel, men denna analogi fungerar inte. Man kan försöka beräkna elektronens magnetiska dipolmoment genom att tänka sig laddningen fördelad jämnt över elektronens sfäriska yta. Den moderna fysikens grunder, Tom Sundius

22 Då visar det sig, att elektronen i så fall borde vara minst lika stor som atomen, eller också borde dess yta rotera snabbare än ljuset. Elektronspinnet uppträder i själva verket på ett helt naturligt sätt i den relativistiska kvantteori som utvecklades av Paul Dirac på 1930 talet, men det kan också inkluderas i den klassiska kvantteorin som en ad hoc hypotes. Om man tillägger elektronspinnet, så behövs det fyra kvanttal, n, l, m l och m s för att ange fullständigt tillståndet för en atom med en elektron. Väteatomens grundtillstånd kan nu beskrivas med två olika uppsättningar kvanttal, nämligen (n = 1, l = 0, m l = 0, m s = ) och (n = 1, l = 0, m l = 0, m s = 1 2 ). I en fullständig beskrivning av Zeeman effekten borde också det inre magnetiska dipolmomentet medtas. Det sätt varpå vi tidigare beskrivit fenomenet, kan användas endast i det fall att det totala elektronspinnet är noll, vilket endast inträffar för atomer med många elektroner där elektronernas spinnkomponenter tar ut varandra. Det kan också tillämpas på pioniskt väte, en mesisk atom där väteatomens elektron ersatts av en pion, en partikel vars spinn är noll. I sådana fall då elektronspinnet är noll talar man om den normala Zeeman effekten. I det allmänna fallet, som också kallas för den anomala Zeeman effekten, är både det totala orbitala impulsmomentet och spinnet för en atom olika noll, och uppspjälkningen av energinivåerna mera komplicerad. Upptäckten av den anomala Zeeman effekten och Sterns och Gerlachs försök ledde Uhlenbeck och Goudsmit till att introducera spinnbegreppet år 1925 (Naturwiss. 13, 953 (1925)). Den moderna fysikens grunder, Tom Sundius

2.7. Egenfunktionernas tolkning - fortsättning

2.7. Egenfunktionernas tolkning - fortsättning 2.7. Egenfunktionernas tolkning - fortsättning [Understanding Physics: 19.7-19.10] Förra gången såg vi, att sannolikhetstätheten består av tre delar, en radiell del och två vinkelberoende delar. Vi skall

Läs mer

3.5. Schrödingerekvationen för atomer med en elektron

3.5. Schrödingerekvationen för atomer med en elektron 3.5. Schrödingerekvationen för atomer med en elektron [Understanding Physics: 19.5-19.8] Bohrs teori lyckas väl förklara energinivåerna för en atom med en elektron, och således också spektrallinjerna,

Läs mer

2.4. Bohrs modell för väteatomen

2.4. Bohrs modell för väteatomen 2.4. Bohrs modell för väteatomen [Understanding Physics: 19.4-19.7] Som vi sett, är den totala energin för elektronen i väteatomen E = 1 2 mv2 = e2 8πɛ 0 r. Eftersom L = mvr för cirkulära banor, så kan

Läs mer

2.4. Bohrs modell för väteatomen

2.4. Bohrs modell för väteatomen 2.4. Bohrs modell för väteatomen [Understanding Physics: 19.4-19.7] Som vi sett, är den totala energin för elektronen i väteatomen E = 1 2 mv2 = e2 8πɛ 0 r. Eftersom L = mvr för cirkulära banor, så kan

Läs mer

Andra föreläsningen kapitel 7. Patrik Lundström

Andra föreläsningen kapitel 7. Patrik Lundström Andra föreläsningen kapitel 7 Patrik Lundström Kvantisering i klassisk fysik: Uppkomst av heltalskvanttal För att en stående våg i en ring inte ska släcka ut sig själv krävs att den är tillbaka som den

Läs mer

2.14. Spinn-bankopplingen

2.14. Spinn-bankopplingen 2.14. Spinn-bankopplingen [Understanding Physics: 19.12-19.16] I avsnitt 2.12 konstaterade vi, att elektronen, som enligt Bohrs modell rör sig i en cirkelbana, kommer att ge upphov till en strömslinga,

Läs mer

VIII. Spinn- och magnetisk växelverkan

VIII. Spinn- och magnetisk växelverkan VIII. Spinn- och magnetisk växelverkan För att undvika sammanblandning kommer vi nu att förtydliga beteckningarna från tidigare kapitel. Vi skriver nu elektronmassan m e (inte m som tidigare) och det magnetiska

Läs mer

4-1 Hur lyder Schrödingerekvationen för en partikel som rör sig i det tredimensionella

4-1 Hur lyder Schrödingerekvationen för en partikel som rör sig i det tredimensionella KVANTMEKANIKFRÅGOR Griffiths, Kapitel 4-6 Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths.

Läs mer

Väteatomen. Matti Hotokka

Väteatomen. Matti Hotokka Väteatomen Matti Hotokka Väteatomen Atom nummer 1 i det periodiska systemet Därför har den En proton En elektron Isotoper är möjliga Protium har en proton i atomkärnan Deuterium har en proton och en neutron

Läs mer

F3: Schrödingers ekvationer

F3: Schrödingers ekvationer F3: Schrödingers ekvationer Backgrund Vi behöver en ny matematik för att beskriva elektroner, atomer och molekyler! Den nya fysiken skall klara av att beskriva: Experiment visar att för bundna system så

Läs mer

Utveckling mot vågbeskrivning av elektroner. En orientering

Utveckling mot vågbeskrivning av elektroner. En orientering Utveckling mot vågbeskrivning av elektroner En orientering Nikodemus Karlsson Februari 00 . Bohrs Postulat Niels Bohr (885-96) ställde utifrån iakttagelser upp fyra postulat gällande väteatomen ¹:. Elektronen

Läs mer

Instuderingsfrågor, Griffiths kapitel 4 7

Instuderingsfrågor, Griffiths kapitel 4 7 Joakim Edsjö 15 oktober 2007 Fysikum, Stockholms Universitet Tel.: 08-55 37 87 26 E-post: edsjo@physto.se Instuderingsfrågor, Griffiths kapitel 4 7 Teoretisk Kvantmekanik II HT 2007 Tanken med dessa frågor

Läs mer

2.11. Sterns och Gerlachs experiment; elektronspinn

2.11. Sterns och Gerlachs experiment; elektronspinn 2.11. Sterns och Gerlachs experiment; elektronspinn [Understanding Physics: 19.11-19.14] Betrakta en strömslinga i ett magnetfält. Om fältet är likformigt och vinkelrätt mot slingans plan, kommer krafterna

Läs mer

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik Föreläsning 7 Kvantfysik 2 Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det

Läs mer

Zeemaneffekt. Projektlaboration, Experimentell kvantfysik, FK5013

Zeemaneffekt. Projektlaboration, Experimentell kvantfysik, FK5013 Zeemaneffekt Projektlaboration, Experimentell kvantfysik, FK5013 Introduktion En del energinivåer i en atom kan ha samma energi, d.v.s. energinivåerna är degenererade. Degenereringen kan brytas genom att

Läs mer

TENTAMEN I KVANTFYSIK del 1 (5A1324 och 5A1450) samt KVANTMEKANIK (5A1320) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 2007

TENTAMEN I KVANTFYSIK del 1 (5A1324 och 5A1450) samt KVANTMEKANIK (5A1320) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 2007 TENTAMEN I KVANTFYSIK del (5A4 och 5A45) samt KVANTMEKANIK (5A) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 7 HJÄLPMEDEL: Formelsamling i Fysik (teoretisk fysik KTH), matematiska tabeller, dock

Läs mer

Rep. Kap. 27 som behandlade kraften på en laddningar från ett B-fält.

Rep. Kap. 27 som behandlade kraften på en laddningar från ett B-fält. Rep. Kap. 7 som behandlade kraften på en laddningar från ett -fält. Kraft på laddning i rörelse Kraft på ström i ledare Gauss sats för -fältet Inte så användbar som den för E-fältet, eftersom flödet här

Läs mer

KEMA00. Magnus Ullner. Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från

KEMA00. Magnus Ullner. Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från KEMA00 Magnus Ullner Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från http://www.kemi.lu.se/utbildning/grund/kema00/dold Användarnamn: Kema00 Lösenord: DeltaH0 F2 Periodiska systemet

Läs mer

2.16. Den enkla harmoniska oscillatorn

2.16. Den enkla harmoniska oscillatorn 2.16. Den enkla harmoniska oscillatorn [Understanding Physics: 13.16-13.17] Den klassiska hamiltonfunktionen för en enkel harmonisk oscillator med den reducerade massan m och fjäderkonstanten (kraftkonstanten)

Läs mer

Kapitel 4. Materievågor

Kapitel 4. Materievågor Kvantfysikens grunder, 2017 Kapitel 4. Materievågor Kapitel 4. Materievågor 1 Kvantfysikens grunder, 2017 Kapitel 4. Materievågor Överblick Överblick Kring 1925 började många viktiga kvantkoncept ha sett

Läs mer

c = λ ν Vågrörelse Kap. 1. Kvantmekanik och den mikroskopiska världen Kvantmekanik 1.1 Elektromagnetisk strålning

c = λ ν Vågrörelse Kap. 1. Kvantmekanik och den mikroskopiska världen Kvantmekanik 1.1 Elektromagnetisk strålning Kap. 1. Kvantmekanik och den mikroskopiska världen Modern teori för atomer/molekyler kan förklara atomers/molekylers egenskaper: Kvantmekanik I detta och nästa kapitel: atomers egenskaper och periodiska

Läs mer

19.4 Bohrs modell för väteatomen.

19.4 Bohrs modell för väteatomen. Den moerna fysikens gruner - Föreläsning 7 42 9.4 Bohrs moell för väteatomen. Som vi sett är en totala energin för elektronen i väteatomen E = 2 mv2 = e2 8πɛ 0 r. Eftersom L = mvr för cirkulära banor så

Läs mer

Kapitel 7. Atomstruktur och periodicitet

Kapitel 7. Atomstruktur och periodicitet Kapitel 7 Atomstruktur och periodicitet Avsnitt 7.1 Elektromagnetisk strålning Fyrverkeri i olika färger Copyright Cengage Learning. All rights reserved 2 Avsnitt 7.2 Materians karaktär Illuminerad saltgurka

Läs mer

Kapitel 7. Atomstruktur och periodicitet. Kvantmekanik Aufbau Periodiska systemet

Kapitel 7. Atomstruktur och periodicitet. Kvantmekanik Aufbau Periodiska systemet Avsnitt 7.1 Elektromagnetisk strålning Kapitel 7 Fyrverkeri i olika färger Atomstruktur och periodicitet Copyright Cengage Learning. All rights reserved 2 Illuminerad saltgurka Kapitel 7 Innehåll Kvantmekanik

Läs mer

Rydbergs formel. Bohrs teori för väteliknande system

Rydbergs formel. Bohrs teori för väteliknande system Chalmers Tekniska Högskola och Göteborgs Universitet Sektionen för Fysik och Teknisk Fysik Arne Rosén, Halina Roth Uppdaterad av Erik Reimhult, januari A4 Enelektronspektrum Namn... Utförd den... Godkänd

Läs mer

Kvantmekanik. Kapitel Natalie Segercrantz

Kvantmekanik. Kapitel Natalie Segercrantz Kvantmekanik Kapitel 38-39 Natalie Segercrantz Centrala begrepp Schrödinger ekvationen i en dimension Fotoelektriska effekten De Broglie: partikel-våg dualismen W 0 beror av materialet i katoden minimifrekvens!

Läs mer

7. Atomfysik väteatomen

7. Atomfysik väteatomen Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det nödvändigt att betrakta

Läs mer

Oscillerande dipol i ett inhomogent magnetfält

Oscillerande dipol i ett inhomogent magnetfält Ú Institutionen för fysik 2014 08 11 Kjell Rönnmark Oscillerande dipol i ett inhomogent magnetfält Syfte Magnetisk dipol och harmonisk oscillator är två mycket viktiga modeller inom fysiken. Laborationens

Läs mer

Nmr-spektrometri. Matti Hotokka Fysikalisk kemi

Nmr-spektrometri. Matti Hotokka Fysikalisk kemi Nmr-spektrometri Matti Hotokka Fysikalisk kemi Impulsmoment Storlek = impulsmomentvektorns längd, kvanttalet L Riktning, kvanttalet m Vektorn precesserar Kärnans spinnimpulsmoment Kvanttalet betecknas

Läs mer

Preliminärt lösningsförslag till Tentamen i Modern Fysik,

Preliminärt lösningsförslag till Tentamen i Modern Fysik, Preliminärt lösningsförslag till Tentamen i Modern Fysik, SH1009, 008 05 19, kl 14:00 19:00 Tentamen har 8 problem som vardera ger 5 poäng. Poäng från inlämningsuppgifter tillkommer. För godkänt krävs

Läs mer

1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter!

1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter! KVANTMEKANIKFRÅGOR, GRIFFITHS Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths. 1 Kapitel

Läs mer

Kvantmekanik - Gillis Carlsson

Kvantmekanik - Gillis Carlsson Kvantmekanik - Föreläsning 1 Gillis Carlsson gillis.carlsson@matfys.lth.se LP2 Föreläsningarna i kvantmekanik LP1 V1): Repetition av kvant-nano kursen. Sid 5-84 V2 : V3 : Formalism (I). Sid 109-124, 128-131,

Läs mer

Kvantmekanik. Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen (och i den makroskopiska!) Kvantmekanik.

Kvantmekanik. Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen (och i den makroskopiska!) Kvantmekanik. Kap. 7. Kvantmekanik: introduktion 7A.1- I begynnelsen Kvantmekanik Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen och i den makroskopiska! Kvantmekanik Klassisk fysik Specialfall!

Läs mer

Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion)

Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Kapitel 33 The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens

Läs mer

1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner?

1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner? Session: okt28 Class Points Avg: 65.38 out of 100.00 (65.38%) 1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner? A 0% Vi måste ha haft "koincidens", dvs. flera

Läs mer

Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0

Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0 LÖSNINGAR TILL Deltentamen i kvantformalism, atom och kärnfysik med tillämpningar för F3 9-1-15 Tid: kl 8.-1. (MA9A. Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. Poäng: Vid varje uppgift

Läs mer

Tentamen, Kvantfysikens principer FK2003, 7,5 hp

Tentamen, Kvantfysikens principer FK2003, 7,5 hp Tentamen, Kvantfysikens principer FK2003, 7,5 hp Tid: 17:00-22:00, tisdag 3/3 2015 Hjälpmedel: utdelad formelsamling, utdelad miniräknare Var noga med att förklara införda beteckningar och att motivera

Läs mer

Atom- och kärnfysik med tillämpningar -

Atom- och kärnfysik med tillämpningar - Atom- och kärnfysik med tillämpningar - Föreläsning 8 Gillis Carlsson gillis.carlsson@matfys.lth.se 19 Oktober, 2012 Föreläsningarna i kvantmekanik LP1 V1: Repetition av kvant-nano kursen. Sid 5-84 V2:

Läs mer

Kapitel 7. Atomstruktur och periodicitet. Kvantmekanik Aufbau Periodiska systemet

Kapitel 7. Atomstruktur och periodicitet. Kvantmekanik Aufbau Periodiska systemet Kapitel 7 Innehåll Kapitel 7 Atomstruktur och periodicitet Kvantmekanik Aufbau Periodiska systemet Copyright Cengage Learning. All rights reserved 2 Kapitel 7 Innehåll 7.1 Elektromagnetisk strålning 7.2

Läs mer

1.13. Den tidsoberoende Schrödinger ekvationen

1.13. Den tidsoberoende Schrödinger ekvationen 1.13. Den tidsoberoende Schrödinger ekvationen [Understanding Physics: 13.12-13.14] Den tidsberoende Schrödinger ekvationen för en fri partikel som rör sig i en dimension är en partiell differentialekvation

Läs mer

Atomer, ledare och halvledare. Kapitel 40-41

Atomer, ledare och halvledare. Kapitel 40-41 Atomer, ledare och halvledare Kapitel 40-41 Centrala begrepp Kvantiserade energinivåer i atomer Elektronspinn och finstruktur Elektronen i en atom både banimpulsmoment, som karakteriseras av kvanttalet

Läs mer

Atom- och kärnfysik med tillämpningar -

Atom- och kärnfysik med tillämpningar - Atom- och kärnfysik med tillämpningar - Föreläsning 6 Gillis Carlsson gillis.carlsson@matfys.lth.se 10 Oktober, 2013 Föreläsningarna i kvantmekanik LP1 V1 : Repetition av kvant-nano kursen. Sid 5-84 V2

Läs mer

Kommer sig osäkerheten av att vår beskrivning av naturen är ofullständig, eller av att den fysiska verkligheten är genuint obestämd?

Kommer sig osäkerheten av att vår beskrivning av naturen är ofullständig, eller av att den fysiska verkligheten är genuint obestämd? Inte mycket verkar säkert här...? Våg-partikeldualitet Ett system kan ha både vågoch partikelegenskaper i samma experiment. Vågfunktionen har en sannolikhetstolkning. Heisenbergs osäkerhetsrelation begränsar

Läs mer

1.7. Tolkning av våg partikeldualiteten

1.7. Tolkning av våg partikeldualiteten 1.7. Tolkning av våg partikeldualiteten [Understanding Physics: 13.7-13.11] En egenskap som är gemensam för både vågor och partiklar är förmågan att överföra energi. I vartdera fallet kan man representera

Läs mer

Fysik TFYA86. Föreläsning 11/11

Fysik TFYA86. Föreläsning 11/11 Fysik TFYA86 Föreläsning 11/11 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 40-42* (*) 40.1-4 (översikt) 41.6 (uteslutningsprincipen) 42.1, 3, 4, 6, 7 koncept enklare uppgifter Översikt

Läs mer

Kvantfysik SI1151 för F3 Tisdag kl

Kvantfysik SI1151 för F3 Tisdag kl TEORETISK FYSIK KTH Kvantfysik SI5 för F3 Tisdag 3008 kl. 8.00-3.00 Skriv på varje sida Namn och problemnummer Motivera noga Otillräckliga motiveringar leder till poängavdrag Hjälpmedel Teoretisk fysiks

Läs mer

Kapitel: 32 Elektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge EM-vågor

Kapitel: 32 Elektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge EM-vågor Kapitel: 3 lektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge M-vågor genskaper hos M-vågor nergitransport i M-vågor Det elektromagnetiska spektrat Maxwell s ekvationer Kan

Läs mer

Dugga i FUF040 Kvantfysik för F3/Kf3

Dugga i FUF040 Kvantfysik för F3/Kf3 Dugga i FUF040 Kvantfysik för F3/Kf3 fredagen den 23 oktober 2015 kl 14.00-16.00 i V Examinator: Måns Henningson, ankn 3245. Inga hjälpmedel. Ringa in bokstaven svarande mot det unika rätta svaret på svarsblanketten!

Läs mer

Kapitel 27: Magnetfält och magnetiska krafter Beskriva permanentmagneters beteende Samband magnetism-laddning i rörelse Ta fram uttryck för magnetisk

Kapitel 27: Magnetfält och magnetiska krafter Beskriva permanentmagneters beteende Samband magnetism-laddning i rörelse Ta fram uttryck för magnetisk Kapitel 27: Magnetfält och magnetiska krafter Beskriva permanentmagneters beteende Samband magnetism-laddning i rörelse Ta fram uttryck för magnetisk kraft på laddning Magnetiskt flöde, Gauss sats för

Läs mer

FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 2015, kl 17:00-22:00

FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 2015, kl 17:00-22:00 FK003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 015, kl 17:00 - :00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du klarar

Läs mer

Tentamen i Modern fysik, TFYA11/TENA

Tentamen i Modern fysik, TFYA11/TENA IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Torsdagen den 29/8 2013 kl. 14.00-18.00 i TER2 Tentamen består av 2 A4-blad (inklusive detta)

Läs mer

Tentamen i El- och vågrörelselära,

Tentamen i El- och vågrörelselära, Tentamen i El- och vågrörelselära, 23 2 8 Hjälpmedel: Physics Handbook, räknare. Ensfäriskkopparkulamedradie = 5mmharladdningenQ = 2.5 0 3 C. Beräkna det elektriska fältet som funktion av avståndet från

Läs mer

LABORATION ENELEKTRONSPEKTRA

LABORATION ENELEKTRONSPEKTRA LABORATION ENELEKTRONSPEKTRA Syfte och mål Uppgiften i denna laboration är att studera atomspektra från väte och natrium i det synliga våglängdsområdet och att med hjälp av uppmätta våglängder från spektrallinjerna

Läs mer

2.15. Teorin för flerelektronatomer

2.15. Teorin för flerelektronatomer 2.15. Teorin för flerelektronatomer [Understanding Physics: 19.15-19.16; 20.1-20.2] I det föregående avsnittet har vi sett hur strukturen för atomer med flere elektroner kan beskrivas kvalitativt med resultat

Läs mer

Föreläsning 6. Amplituder Kvanttillstånd Fermioner och bosoner Mer om spinn Frågor Tentan. Fk3002 Kvantfysikens grunder 1

Föreläsning 6. Amplituder Kvanttillstånd Fermioner och bosoner Mer om spinn Frågor Tentan. Fk3002 Kvantfysikens grunder 1 Föreläsning 6 Amplituder Kvanttillstånd Fermioner och bosoner Mer om spinn Frågor Tentan Fk3002 Kvantfysikens grunder 1 Betrakta ett experiment med opolariserade elektroner dvs 50% är spinn-upp och 50%

Läs mer

Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25.

Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25. GÖTEBORGS UNIVERSITET Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25 Delkurs 4 KVANTMEKANIK: GRUNDER, TILLÄMPNINGAR

Läs mer

Vågrörelselära & Kvantfysik, FK januari 2012

Vågrörelselära & Kvantfysik, FK januari 2012 Räkneövning 10 Vågrörelselära & Kvantfysik, FK2002 9 januari 20 Problem 42.1 Vad är det orbitala rörelsemängdsmomentet, L, för en elektron i a) 3p-tillståndet b) 4f-tillståndet? Det orbitala rörelsemängdsmomentet

Läs mer

VI. Rörelsemängdsmomentets kvantisering

VI. Rörelsemängdsmomentets kvantisering VI. Rörelsemängdsmomentets kvantisering VI.1. Klassiskt rörelsemängdsmoment Rörelsemängdsmomentet för massan µ = mm/(m + M) definieras klassiskt som L = r p = r µv = r µ dr dt (1) Vi antar att kraften

Läs mer

Laboration 2: Konstruktion av asynkronmotor

Laboration 2: Konstruktion av asynkronmotor Laboration 2: Konstruktion av asynkronmotor Laboranter: Henrik Bergman, Henrik Bergvall Berglund, William Sjöström, Georgios Davakos Plats och datum: Uppsala 2016-11-09 Kurs: Elektromagnetism 2 Handledare:

Läs mer

Kvantmekanik II - Föreläsning 10

Kvantmekanik II - Föreläsning 10 Kvantmekanik II - Föreläsning 10 Degenererad störningsteori (tidsoberoende) Joakim Edsjö edsjo@fysik.su.se Kvantmekanik II Föreläsning 10 Joakim Edsjö 1/26 Degenererad störningsteori Innehåll 1 Allmänt

Läs mer

3.14. Periodiska systemet (forts.)

3.14. Periodiska systemet (forts.) 3.14. Periodiska systemet (forts.) [Understanding Physics: 19.14-19.16; 20.1-20.2] En alkaliatom består av en ädelgaskärna med Z 1 elektroner samt en yttre s elektron. Denna yttre elektron (valenselektronen)

Läs mer

Milstolpar i tidig kvantmekanik

Milstolpar i tidig kvantmekanik Den klassiska mekanikens begränsningar Speciell relativitetsteori Höga hastigheter Klassisk mekanik Kvantmekanik Små massor Små energier Stark gravitation Allmän relativitetsteori Milstolpar i tidig kvantmekanik

Läs mer

Vågfysik. Ljus: våg- och partikelbeteende

Vågfysik. Ljus: våg- och partikelbeteende Vågfysik Modern fysik & Materievågor Kap 25 (24 1:st ed.) Ljus: våg- och partikelbeteende Partiklar Lokaliserade Bestämd position & hastighet Kollision Vågor Icke-lokaliserade Korsar varandra Interferens

Läs mer

Övningar. Nanovetenskapliga tankeverktyg.

Övningar. Nanovetenskapliga tankeverktyg. Övningar. Nanovetenskapliga tankeverktyg. January 18, 2010 Vecka 2 Komplexa fourierserier 1. Gör en skiss av funktionen f(t) = t, t [ π, π] (med period 2π) och beräkna dess fourierserie. 2. Gör en skiss

Läs mer

The nature and propagation of light

The nature and propagation of light Ljus Emma Björk The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens

Läs mer

Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik

Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity

Läs mer

Tentamen. TFYA35 Molekylfysik, TEN1 24 oktober 2016 kl Skrivsal: G34, G36, G37

Tentamen. TFYA35 Molekylfysik, TEN1 24 oktober 2016 kl Skrivsal: G34, G36, G37 Thomas Ederth IFM / Molekylär Fysik ted@ifm.liu.se Tentamen TFYA35 Molekylfysik, TEN1 24 oktober 216 kl. 8.-13. Skrivsal: G34, G36, G37 Tentamen omfattar 6 problem som vardera kan ge 4 poäng. För godkänt

Läs mer

Repetition kapitel 21

Repetition kapitel 21 Repetition kapitel 21 Coulombs lag. Grundbulten! Definition av elektriskt fält. Fält från punktladdning När fältet är bestämt erhålls kraften ur : F qe Definition av elektrisk dipol. Moment och energi

Läs mer

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055) Skriftlig tentamen i Elektromagnetisk fältteori för π (ETEF01 och F (ETE055 1 Tid och plats: 6 oktober, 016, kl. 14.00 19.00, lokal: Gasquesalen. Kursansvarig lärare: Anders Karlsson, tel. 40 89 och 07-5958.

Läs mer

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom

Läs mer

Dipoler och dipol-dipolbindningar Del 2. Niklas Dahrén

Dipoler och dipol-dipolbindningar Del 2. Niklas Dahrén Dipoler och dipol-dipolbindningar Del 2 Niklas Dahrén Uppgift 1: Är nedanstående molekyler dipoler? På bild a) är det ganska tydligt att vi får en negativ sida där -atomerna sitter och en positiv sida

Läs mer

Kvantmekanik II (FK5012), 7,5 hp

Kvantmekanik II (FK5012), 7,5 hp Joakim Edsjö Fysikum, Stockholms Universitet Tel.: 8-5537876 E-post: edsjo@physto.se Lösningar till Kvantmekanik II (FK51, 7,5 hp 3 januari 9 Lösningar finns även tillgängliga på http://www.physto.se/~edsjo/teaching/kvant/index.html.

Läs mer

Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057).

Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057). LULEÅ TEKNISKA UNIVERSITET Hans Weber, Avdelningen för Fysik, 2004 Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057). 1. Partikel i en en dimensionell

Läs mer

14. Potentialer och fält

14. Potentialer och fält 4. Potentialer och fält [Griffiths,RMC] För att beräkna strålningen från kontinuerliga laddningsfördelningar och punktladdningar måste deras el- och magnetfält vara kända. Dessa är i de flesta fall enklast

Läs mer

Lösningsförslag Inlämningsuppgift 1 elstatikens grunder

Lösningsförslag Inlämningsuppgift 1 elstatikens grunder Inst. för fysik och astronomi 017-11-08 1 Lösningsförslag Inlämningsuppgift 1 elstatikens grunder Elektromagnetism I, 5 hp, för ES och W (1FA514) höstterminen 017 (1.1) Laddningen q 1 7,0 10 6 C placeras

Läs mer

1 Den Speciella Relativitetsteorin

1 Den Speciella Relativitetsteorin 1 Den Speciella Relativitetsteorin Den speciella relativitetsteorin är en fysikalisk teori om lades fram av Albert Einstein år 1905. Denna teori beskriver framför allt hur utfallen (dvs resultaten) från

Läs mer

Litiumatomens spektrum

Litiumatomens spektrum Litiumatomens spektrum Datorlaboration i Atom- och kärnfysik FAFF10 version 2010b av Sara Bargi och Jonas Cremon, omarbetning av tidigare version Före laborationens utförande ska du ha läst igenom avsnitt

Läs mer

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum:

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum: Tentamen i : Vågor,plasmor och antenner Kurs: MTF108 Totala antalet uppgifter: 6 Datum: 2006-05-27 Examinator/Tfn: Hans Åkerstedt/491280/Åke Wisten070/5597072 Skrivtid: 9.00-15.00 Jourhavande lärare/tfn:

Läs mer

Kvantmekanik och kemisk bindning I 1KB501

Kvantmekanik och kemisk bindning I 1KB501 Kvantmekanik och kemisk bindning I 1KB501 TENTAMEN, 013-06-05, 8.00-13.00 Tillåtna hjälpmedel: Miniräknare, bifogade formelsamlingar. Börja på nytt blad för varje nytt problem, och skriv din kod på varje

Läs mer

Bra tabell i ert formelblad

Bra tabell i ert formelblad Bra tabell i ert formelblad Vi har gått igenom hur magnetfält alstrar krafter, kap. 7. Vi har gått igenom hur strömmar alstrar magnetfält, kap. 8. Återstår att lära sig hur strömmarna alstras. Tidigare

Läs mer

FYTA11: Molekylvibrationer

FYTA11: Molekylvibrationer FYTA: Molekylvibrationer Daniel Nilsson 2/ 202 Introduktion Övningens syfte var att undersöka normalmoderna hos molekyler, i synnerhet vattenmolekyler, och studera dessas variation beroende på olika parametrar.

Läs mer

Andra EP-laborationen

Andra EP-laborationen Andra EP-laborationen Christian von Schultz Magnus Goffeng 005 11 0 Sammanfattning I denna rapport undersöker vi perioden för en roterande skiva. Vi kommer fram till, både genom en kraftanalys och med

Läs mer

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm

Läs mer

9. Materiens magnetiska egenskaper. 9.0 Grunder: upprepning av elektromagnetism

9. Materiens magnetiska egenskaper. 9.0 Grunder: upprepning av elektromagnetism 530117 Materialfysik vt 2010 9. Materiens magnetiska egenskaper [Callister, Ashcroft-Mermin, Kittel, etc. Se också anteckningarna för Fasta Tillståndets fysik kapitel 14-15] 9.0 Grunder: upprepning av

Läs mer

9. Materiens magnetiska egenskaper

9. Materiens magnetiska egenskaper 530117 Materialfysik vt 2010 9. Materiens magnetiska egenskaper [Callister, Ashcroft-Mermin, Kittel, etc. Se också anteckningarna för Fasta Tillståndets fysik kapitel 14-15] 9.0 Grunder: upprepning av

Läs mer

Materialfysik2010 Kai Nordlund

Materialfysik2010 Kai Nordlund 9.0 Grunder: upprepning av elektromagnetism 530117 Materialfysik vt 2010 Magnetism har alltid dipolkaraktär Monopoler existerar ej! 9. Materiens magnetiska egenskaper Grundekvationer: (Yttre) magnetfält:

Läs mer

1.5 Våg partikeldualism

1.5 Våg partikeldualism 1.5 Våg partikeldualism 1.5.1 Elektromagnetisk strålning Ljus uppvisar vågegenskaper. Det är bland annat möjligt att åstadkomma interferensmönster med ljus det visades av Young redan 1803. Interferens

Läs mer

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Sensorer, effektorer och fysik Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Innehåll Grundläggande begrepp inom mekanik. Elektriskt fält och elektrisk potential. Gauss lag Dielektrika

Läs mer

1. Elektromagnetisk strålning

1. Elektromagnetisk strålning 1. Elektromagnetisk strålning Kursens första del behandlar olika aspekter av den elektromagnetiska strålningen. James Clerk Maxwell formulerade lagarnas som beskriver strålningen år 1864. 1.1 Uppkomst

Läs mer

Tenta svar. E(r) = E(r)ˆr. Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r:

Tenta svar. E(r) = E(r)ˆr. Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r: Tenta 56 svar Uppgift a) På grund av sfäriskt symmetri ansätter vi att: E(r) = E(r)ˆr Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r: 2π π Q innesluten

Läs mer

Kap 1. Tidig Atomfysik

Kap 1. Tidig Atomfysik Kap 1. Tidig Atomfysik Rydbergs formel för väte 1 λ = R ( 1 n 1 n ) Vågtal ges som ν = 1 λ. För n=1 Lymanserien, n= fås Balmersserien, n=3 Paschenserien. Balmerserien ligger i det synliga spektrat. Elektronernas

Läs mer

Mekanik I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av

Mekanik I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av Mekanik 2 Live-L A TEX:ad av Anton Mårtensson 2012-05-08 I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av ṗ = m r = F Detta är ett postulat och grundläggande för all Newtonsk

Läs mer

TENTAMEN I FYSIKALISK KEMI KURS: KEM040 Institutionen för kemi Göteborgs Universitet Datum: LÄS DETTA FÖRST!

TENTAMEN I FYSIKALISK KEMI KURS: KEM040 Institutionen för kemi Göteborgs Universitet Datum: LÄS DETTA FÖRST! TENTAMEN I FYSIKALISK KEMI KURS: KEM040 Institutionen för kemi Del: QSM Göteborgs Universitet Datum: 111206 Tid: 8.30 14.30 Ansvariga: Gunnar Nyman tel: 786 9035 Jens Poulsen tel: 786 9089 Magnus Gustafsson

Läs mer

Medicinsk Neutron Vetenskap. yi1 liao2 zhong1 zi3 ke1 xue2

Medicinsk Neutron Vetenskap. yi1 liao2 zhong1 zi3 ke1 xue2 Medicinsk Neutron Vetenskap 医疗中子科学 yi1 liao2 zhong1 zi3 ke1 xue2 Introduction Sames 14 MeV neutrongenerator Radiofysik i Lund på 1970 talet För 40 år sen Om

Läs mer

TILLÄMPAD ATOMFYSIK Övningstenta 1

TILLÄMPAD ATOMFYSIK Övningstenta 1 TILLÄMPAD ATOMFYSIK Övningstenta 1 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 1,5 högskolepoäng, FK49 Tisdagen den 17 juni 28 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare

Läs mer

If you think you understand quantum theory, you don t understand quantum theory. Quantum mechanics makes absolutely no sense.

If you think you understand quantum theory, you don t understand quantum theory. Quantum mechanics makes absolutely no sense. If you think you understand quantum theory, you don t understand quantum theory. Richard Feynman Quantum mechanics makes absolutely no sense. Roger Penrose It is often stated that of all theories proposed

Läs mer

16. Spridning av elektromagnetisk strålning

16. Spridning av elektromagnetisk strålning 16. Spridning av elektromagnetisk strålning [Jakson 9.6-] Med spridning avses mest allmänt proessen där strålning (antingen av partikel- eller vågnatur) växelverkar med något objekt så att dess fortskridningsriktning

Läs mer

1.13. Den rektangulära potentialbrunnen

1.13. Den rektangulära potentialbrunnen 1.13. Den rektangulära potentialbrunnen [Understanding Physics: 13.13-13.15(b)] Vi betraktar en partikel med massan m som är innesluten i en rektangulär potentialbrunn med oändligt höga sidor, dvs U =

Läs mer