1.7. Tolkning av våg partikeldualiteten

Storlek: px
Starta visningen från sidan:

Download "1.7. Tolkning av våg partikeldualiteten"

Transkript

1 1.7. Tolkning av våg partikeldualiteten [Understanding Physics: ] En egenskap som är gemensam för både vågor och partiklar är förmågan att överföra energi. I vartdera fallet kan man representera energins överföringshastighet med intensiteten I, som är den effekt som passerar genom en enhetsyta, som står vinkelrätt mot vågens eller partikelstrålens rörelseriktning. För en transversell våg på en sträng gäller att den effekt P som vågen för med sig, är proportionell mot va 2 (s. 313), där A är vågens amplitud och v dess hastighet. Om detta tillämpas på elektromagnetiska vågor fås I c amplituden 2, och för fotoner gäller då I = cn hf, där c är fotonernas hastighet, n fotontätheten (dvs antalet fotoner i en enhetsvolym), och hf är fotonernas energi. En ökning av intensiteten i vågmodellen, dvs en förstorad amplitud, motsvaras då av en ökning av fotontätheten i partikelmodellen. Kvadraten på amplituden är alltså ett mått på sannolikheten för att det finns en foton i en enhetsvolym. Vi skall nu studera hastigheten för en materievåg både enligt partikel och vågmodellen. Genom att differentiera den relativistiska energiformeln E 2 = m 2 c 4 + p 2 c 2 får vi 2EdE = 2pc 2 dp, varav följer att de dp = pc2 pc2 E. Detta är den relativistiska partikelhastigheten, eftersom u = E (s. 219). Den moderna fysikens grunder, Tom Sundius

2 Grupphastigheten för ett vågpaket definierades på s. 352 som v g = dω följer att grupphastigheten kan uttryckas som v g = de dp sålunda tolkas som partikelns relativistiska hastighet. dk = d( ω) d( k). Av de Broglies ekvationer = pc2 E. Grupphastigheten för en materievåg kan Av de Broglies ekvationer följer också, att fashastigheten v = fλ (s. 348) också kan skrivas v = fλ = ω k = ω k = E p. Som vi ser, är alltså v gv = c 2. För en masslös partikel (såsom fotonen) är E = pc, varav följer att v = v g = c. Om vilomassan är olika noll, så kan grupphastigheten uttryckas v g = pc2 E = pc m2 c 4 + p 2 c 2c = (m2 c 2 /p 2 ) c. Vi ser alltså, att grupphastigheten, dvs den hastighet varmed energi överföres, för en massiv partikel inte kan överskrida ljushastigheten. Den moderna fysikens grunder, Tom Sundius

3 1.8. Vågpaket och osäkerhet I vågrörelseläran studerades en del enkla periodiska vågformer, såsom t.ex. A sin(kx ωt + φ) (se s. 343). En elektron som befinner sig var som helst kan uppenbarligen beskrivas med en sådan funktion, eftersom den varken har början eller slut. Men om man vet att elektronen befinner sig i ett visst område av rummet, dvs den är lokaliserad, så måste man använda ett vågpaket för att beskriva den. Ett vågpaket är en superposition av vågor som har en kontinuelig fördelning av vågtal och frekvenser. En mycket enkel modell av ett sådant vågpaket får man genom att betrakta en superposition av två sinusvågor: y 1 = A sin(kx ωt + φ) y 2 = A sin[(k + k)x (ω + ω)t + φ] (se s ), där k k och ω ω. I boken visades (efter litet trigonometri) att summan av dessa vågor kan uttryckas y = y 1 + y 2 = 2A cos ( ω 2 t k ) 2 x sin(kx ωt + φ), Den moderna fysikens grunder, Tom Sundius

4 som gäller då k och ω är små. Superpositionen leder i detta fall till svävningar, emedan vi kan tolka denna funktion så, att den beskriver en svängningsrörelse med samma vågtal och frekvens som y 1 men vars amplitud varierar periodiskt (enveloppkurvan). Vi kan därför definiera en ny tidsberoende amplitud A = 2A cos ( ω 2 t k ) 2 x som oskillerar periodiskt med vågtalet k b = k/2 och vinkelfrekvensen ω b = ω/2, och rör sig i +x riktningen. Våglängden för denna svängningsrörelse anges i fig som λ b = 2π/k b = 2π/( k/2) = 4π/ k. Då den ursprungliga vågen rör sig med fashastigheten v = fλ = ω/k, så kommer enveloppkurvan att röra sig med grupphastigheten v g = ω b /k b = ω/ k. Diagrammet nedan (fig ) visar vågens utseende för en fixerad tid t. Den moderna fysikens grunder, Tom Sundius

5 x kan uppfattas som bredden av vågpaketet (avståndet mellan två punkter x 1 och x 2 på x-axeln, där amplituden försvinner). Emedan cos φ = 0 för φ = (2n + 1)π/2, n = 0, 1, 2,..., så kan vi anta t.ex. att amplituden försvinner för två vinklar φ 1 = k 2 x 1 = (2n + 1)π/2 och φ 2 = k 2 x 2 = (2n + 3)π/2, så att φ 2 φ 1 = π. Vi får då 1 2 kx kx 1 = π k(x 2 x 1 ) = 2π k x = 2π Om vi multiplicerar vartdera membrum i ekvationen ovan med fås k x = p x x = h, som kan tolkas som Heisenbergs osäkerhetsrelation (som beskrivs i följande avsnitt) för superpositionen av två vågor. Man kan också rita ett likadant diagram som anger y som funktion av t för ett konstant värde av x. Vi finner då på samma sätt som ovan ω t = 2π, som efter multiplikation med ger ω t = E t = h, som är osäkerhetsrelationen för energi och tid. Den moderna fysikens grunder, Tom Sundius

6 Ett allmännare vågpaket får man genom att addera ett godtyckligt antal vågor, som kan ha olika amplituder (för en fixerad tidpunkt): y(x) = A i cos k i x i Amplituderna kan beräknas med Fourier analys (se s. 349 i boken). Om man bara adderar ett ändligt antal kan man inte få ett vågpaket som blir litet (dvs som försvinner) utanför en viss region i rummet. För att beskriva en elektron som befinner sig på ett visst ställe i rummet, dvs är lokaliserad, behövs därför en kontinuerlig fördelning av vågor, och summan ersätts då med en integral. Amplituderna A i måste då ersättas med en funktion av vågtalet, som kallas vågtalets fördelningsfunktion A(k), och vågpaketet kan uttryckas med ekvationen y(x) = 0 A(k) cos kxdk Med hjälp av Fourierintegralen kan man då visa, att vågpaketets vidd x och vågtalsspektrets vidd k är relaterade genom olikheten x k 1 2, som vi skall närmare studera i nästa avsnitt. Den moderna fysikens grunder, Tom Sundius

7 1.9. Heisenbergs osäkerhetsrelation Trafikpolisen: Har ni en aning om hur fort ni kör? Heisenberg: Nej, men jag vet exakt var jag är! Eftersom kvadraten på amplituden av en materievåg i en viss punkt kan tolkas som ett mått på sannolikheten för att en enhetsvolym i denna punkt innehåller en partikel, så kan vågpaketen i en materievåg tolkas som partikelsannolikhetspaket. Partikeln kan befinna sig var som helst i paketet, där amplituden är olika noll. Om man beskriver en partikel som en materievåg leder detta omedelbart till osäkerhet i partikelns läge. Osäkerheten i position bestäms av vågpaketets storlek. Ett vågpaket byggs upp genom superposition av sinusvågor med olika amplitud, eller frekvens (se s , samt fig , som visas nedan). de Broglies relation p = k visar, att om vågtalet k har en spridning k, så kommer detta att leda till motsvarande spridning i rörelsemängden, t.ex. p x = k. Genom att jämföra olika fall finner vi, att om k (och således även p x = k) växer, så minskar x (vågpaketets längd). Om vi känner k, och således även p x exakt, så kan partikeln befinna sig var som helst på x axeln, dvs den är inte lokaliserad. Om vi å andra sidan känner dess position mycket noga (dvs den är lokaliserad), så är vågtalet mycket osäkert, och likaså dess rörelsemängd. Den moderna fysikens grunder, Tom Sundius

8 Detta visar, att om vågtalet, och således också om rörelsemängden för en partikel blir osäkrare, så kommer dess position samtidigt att blir säkrare, och tvärtom. På sidan 349 härleddes formeln k x = 2π för två vågor som skiljer sig endast obetydligt i frekvens, och på sidan 352 härleddes formeln k x 1 2 för ett vågpaket. För materievågor kan formeln skrivas p x x 2. Denna ekvation kallas Heisenbergs osäkerhetsprincip efter Werner Heisenberg, som upptäckte den. W. Heisenberg: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z.f.Physik 43 (1927) Den moderna fysikens grunder, Tom Sundius

9 Den visar, att man inte samtidigt kan bestämma positionen och rörelsemängden för en partikel med samma noggrannhet (observera dock att detta inte har något att göra med experimentell osäkerhet). Heisenbergs osäkerhetsprincip följer av partiklarnas vågnatur, men eftersom Plancks konstant är så liten, kan följderna av den inte observeras för makroskopiska föremål. Betrakta t.ex. en person på 75 kg som rör sig längs x axeln med hastigheten 1.33 m/s. Av osäkerhetsrelationen följer då x px m, som är en helt försumbar osäkerhet (i jämförelse med den experimentella osäkerheten). För en elektron som rör sig med hastigheten m/s är osäkerheten i position x px m, vilket kan jämföras med storleken av en atom. Osäkerhetsprincipen kan också uttryckas med hjälp av energin och tiden. Betrakta två superponerade vågor med vågtalen k och k + k (fig , se nedan). Då vågpaketen passerar en given punkt, så kan osäkerheten i tid t uttryckas som T b /2 = 1/(2f b ). Den moderna fysikens grunder, Tom Sundius

10 Här betecknar T b svävningsperioden och f b svävningsfrekvensen (ω b = 2πf b ). Tidigare har visats (sid. 348) att ω b = ω/2, så att t = T b /2 = π/ω b = 2π/ ω. Genom att tillämpa de Broglies ekvation E = ω på denna ekvation, finner vi t = 2π / E, och således E t = 2π = h. Då man tillämpar detta resultat på ett kontinuerligt spektrum, måste en faktor 4π insättas, och ekvationen antar då formen E t 2. Liksom rörelsemängd och position, kan man inte heller bestämma energi och tid samtidigt med lika stor precision. Den moderna fysikens grunder, Tom Sundius

11 1.10. Vågfunktionen; väntevärden Vi har tidigare observerat (avsn. 1.7), att intensiteten för en elektromagnetisk våg, som är proportionell mot kvadraten på amplituden i vågmodellen, också är proportionell mot fotontätheten i partikelmodellen. Därför är det berättigat att uppfatta amplituden för en materievåg, som kallas för vågfunktionen Ψ(x, t), som en storhet, vars kvadrat (eg. kvadraten på absolutvärdet) är ett mått på sannolikheten att finna en partikel i en enhetsvolym. Vågfunktionen är något som inte kan mätas direkt, däremot kan man mäta dess kvadrat, som kallas för sannolikhetstätheten. Om vi begränsar oss till rörelse i en dimension, så är sannolikheten för att man skall finna en partikel mellan x och x + dx vid tidpunkten t P (x, t)dx = Ψ(x, t) 2 dx, där P (x, t) uttrycker sannolikhetstätheten i det endimensionella fallet. Den moderna fysikens grunder, Tom Sundius

12 Om vi bara har att göra med en partikel, så måste sannolikheten att finna den någonstans i rummet vara lika med 1, dvs villkoret bör gälla. Ψ(x, t) 2 dx = 1 Vanligen används komplexa funktioner för att beskriva vågfunktionerna, som t.ex. Ψ(x, t) = Ae i(kx ωt) (observera, att också amplituden A kan vara ett komplext tal). Därför kan sannolikhetstätheten uttryckas allmännare som P (x, t) = Ψ(x, t) 2 = Ψ (x, t)ψ(x, t), där Ψ (x, t) är den komplexa konjugaten av Ψ(x, t). En följd av denna sannolikhetsbeskrivning är att man endast kan bestämma medelvärden (eller väntevärden) av observerbara storheter. Väntevärden beräknas på följande sätt. Sannolikhetstätheten P (x, t) beskriver sannolikheten att finna en partikel inom intervallet (x, x + dx) vid tiden t. Medelvärdet av en (mätbar) storhet kan man bestämma genom att integrera produkten av storheten och sannolikhetstätheten över hela rymden. Väntevärdet för en partikels position kan därför beräknas på följande sätt: x = xp (x, t)dx, Den moderna fysikens grunder, Tom Sundius

13 där P (x, t)dx = 1 (normalisering). Med hjälp av definitionen för sannolikhetstätheten kan vi skriva väntevärdet i formen eller hellre x = x = x Ψ(x, t) 2 dx, Ψ (x, t)xψ(x, t)dx om vågfunktionen är komplex. Väntevärdet av en godtycklig storhet Q(x, t) definieras på motsvarande sätt: Q := Ψ (x, t)q(x, t)ψ(x, t)dx. Den moderna fysikens grunder, Tom Sundius

14 1.11. Schrödingers ekvation de Broglies hypotes visar att en partikel, vars rörelsemängd är p = k och energi E = ω kan beskrivas av en framåtskridande våg, som också kan representeras av en periodisk funktion av kx ωt. En fri partikel kan representeras av ett vågpaket, som är en superposition av framåtskridande vågor. Då systemets vågfunktion är en känd funktion av positionen och tiden, så kan man räkna ut vad som kommer att hända med partikeln i framtiden (givetvis med beaktande av osäkerhetsprincipen). Ett sätt att göra detta är att ställa upp Schrödingers ekvation för systemet. Dess lösning är vågfunktionen Ψ(x, y, z, t), som i allmänhet är en funktion av alla tre rumskoordinaterna (och tiden), även om vi här för enkelhetens skull endast behandlar endimensionella rörelser. Vi börjar med att skriva upp Hamiltons funktion för partikeln eller systemet (se s. 92): (E betecknar systemets totala energi). H(p, x) = p2 2m + U(x) = E Den moderna fysikens grunder, Tom Sundius

15 Sedan multiplicerar vi vartdera membrum av denna ekvation med vågfunktionen Ψ(x, t): p 2 Ψ(x, t) + U(x)Ψ(x, t) = EΨ(x, t) 2m och ersätter storheterna p och E med sina ekvivalenta operatorer: p op = i x E op = i t (i det endimensionella fallet; beteckningarna ˆp och Ê används även). Då en operator, såsom t.ex. i x, tillämpas på vågfunktionen Ψ(x, t) innebär detta, att funktionen först deriveras i avseende på x, och att resultatet därpå multipliceras med (konstanten) i. Då partikeln är en foton, är det lättare att förstå operatorekvationen, om vi jämför sambandet mellan den relativistiska energin och rörelsemängden för en foton, som kan skrivas p 2 = 1 c 2E2 med vågekvationen: 2 y x = 1 2 y 2 c 2 t, 2 Den moderna fysikens grunder, Tom Sundius

16 där y(x, t) är funktionen som beskriver vågrörelsen (jfr s. 344). Jämförelsen visar, att vi får vågekvationen om vi sätter in de ekvivalenta operatorerna p op och E op i ekvationen p 2 = 1 c 2E2, och tillämpar den på en godtycklig funktion y. Om p och E ersätts med motsvarande ekvivalenta operatorer i den allmänna ekvationen fås som kan skrivas i formen i 1 Ψ(x, t) = t 2m ( i x )( i )Ψ(x, t) + U(x)Ψ(x, t) x 2 2m 2 Ψ(x, t) Ψ(x, t) + U(x)Ψ(x, t) = i x 2 t Detta är den tidsberoende Schrödinger ekvationen. Då potentialenergifunktionen U(x) är känd, så kan Schrödinger ekvationen (i princip) lösas, och vågfunktionen Ψ(x, t) bestämmas. Vi skall se hur detta går till i några enklare specialfall. Den moderna fysikens grunder, Tom Sundius

17 1.12. Den fria partikeln En fri partikel utsätts inte för några yttre krafter. Därför är F = U x = 0, och U(x) är således konstant. Eftersom potentialenergins nollpunkt är godtycklig, kan vi sätta U = 0. Schrödinger-ekvationen för en fri partikel är därför 2 2 Ψ(x, t) Ψ(x, t) = i. 2m x 2 t Denna ekvation försöker vi först lösa med ansatsen Ψ(x, t) = A sin(kx ωt) (en framåtskridande våg, jfr s. 312). Genom att substituera den i Schrödinger ekvationen fås 2 2m [ k2 A sin(kx ωt)] = i ωa cos(kx ωt), eller alltså tan(kx ωt) = 2imω k 2. Den moderna fysikens grunder, Tom Sundius

18 Denna lösning kan emellertid inte vara ekvationens allmänna lösning, utan den gäller bara för ett speciellt värde av (kx ωt). En allmän lösning till denna differentialekvation av andra ordningen finner vi genom substitutionen Ψ(x, t) = A sin(kx ωt) + B cos(kx ωt). (jfr avsn i boken, s. 311). Om A = ia och B = A så kan ansatsen uttryckas enklare (med Eulers formel): Ψ(x, t) = A cos(kx ωt) + ia sin(kx ωt) Ae i(kx ωt). Då funktionen substitueras i Schrödinger ekvationen fås 2 2m [ k2 Ae i(kx ωt) ] = ωae i(kx ωt), varav följer 2 k 2 2m = ω. Om denna ekvation gäller, är Ψ(x, t) = Aei(kx ωt) en allmän lösning till den fria partikelns Schrödinger ekvation. Att så är fallet är en direkt följd av de Broglies hypotes. Genom att att substituera de Broglies ekvationer i uttrycket för den kinetiska energin: E = p2 2m ser vi nämligen omedelbart, att ekvationen gäller. Observera, att i detta fall k, och således även E = ( k) 2 /2m, kan anta vilket värde som helst. Vågfunktionen Ψ(x, t) = Ae i(kx ωt) representerar en våg, som fortskrider med konstant amplitud A som inte beror av x (plan våg). Partikeln kan därför befinna sig var som helst på x axeln, den är inte alls lokaliserad. För att beskriva en lokaliserad partikel behöver vi ett vågpaket, vars amplitud skiljer sig från noll endast inom ett litet område av x. Den moderna fysikens grunder, Tom Sundius

19 Ett vågpaket kan konstrueras genom att man adderar framåtskridande vågor med olika värden av amplitud och vågtal (t.ex. med hjälp av Fourier analys). Ett sådant vågpaket kommer också att vara en lösning till Schrödinger ekvationen för den fria partikeln. Enklast är det dock att använda den icke lokaliserade lösningen (den plana vågen). Observerbara storheter är alltid reella fastän Ψ(x, t) har en imaginär komponent, ty de innehåller vågfunktionens kvadratiska modul: Ψ 2 = Ψ (x, t)ψ(x, t) = A e i(kx ωt) Ae i(kx ωt) = A A = A 2 0. Om vi önskar beräkna väntevärdet av rörelsemängden, så måste vi använda den ekvivalenta operatorn i x : p = Ψ (x, t)p op Ψ(x, t)dx = Ψ (x, t) ( i ) Ψ(x, t)dx. x Om denna operator tillämpas på den fria partikelns vågfunktion, finner vi till en början att i Ψ(x, t) = i x x [Aei(kx ωt) ] = k[ae i(kx ωt) ] = kψ(x, t), som visar, att operatorn i x för den fria partikeln har samma effekt som multiplikation med p. Den moderna fysikens grunder, Tom Sundius

20 Väntevärdet av p op blir alltså p = = = k Ψ (x, t) ( i ) Ψ(x, t)dx x A e i(kx ωt) kae i(kx ωt) dx A Adx = k, eftersom sannolikheten att finna partikeln var som helst på x axeln bör vara 1. Det är dock inte möjligt att normalisera Ψ(x, t) genom att beräkna A ur ekvationen A Adx = 1, om partikeln inte är lokaliserad, och sålunda har konstant amplitud överallt på x axeln. I detta fall är + A Adx = A 2 dx, denna integral är oändlig. Vågfunktionen kan inte normaliseras över hela x axeln, men det går om man väljer stora, men ändliga integrationsgränser. Detta problem uppträder inte för en lokaliserad partikel (vågpaket), där vågfunktionens amplitud skiljer sig från noll endast inom ett begränsat intervall. T. ex. 1 = +L L A 2 dx = 2L A 2, dvs A = (2L) 1 2 (lådnormalisering). Normaliseringen kan också göras med Diracs δ-funktion, se t.ex. Merzbacher, kap. 6, 3. Den moderna fysikens grunder, Tom Sundius

21 Som vi ser, stämmer väntevärdet för rörelsemängden av en fri partikel överens med de Broglies hypotes, men vi har inte visat, att p endast kan ha detta värde. Om vi däremot beräknar p 2, dvs medelvärdet av p 2, och kan visa, att p 2 = p 2, så kan p inte fluktuera (fluktuationen bestäms nämligen av variansen (p p ) 2 = p 2 p 2 ), och p kan då bara ha värdet k. Vi beräknar därför p 2 = = = Ψ (x, t)p 2 opψ(x, t)dx ( A e i(kx ωt) i x A e i(kx ωt) ( i x = 2 k 2 A Adx = 2 k 2. Vi finner alltså, att p 2 = p 2, vilket skulle bevisas. ) [( i x ) [ kae i(kx ωt)] dx ) ] Ae i(kx ωt) dx Den moderna fysikens grunder, Tom Sundius

22 På samma sätt kan vi också visa, att om energioperatorn i / t tillämpas på vågfunktionen Ψ(x, t) = Ae i(kx ωt), så innebär det multiplikation med ω = E: i Ψ(x, t) = ωψ(x, t) = EΨ(x, t). t Således stämmer väntevärdet av energin för en fri partikel E = ω överens med de Broglies ekvation. Likaså kan man också visa, att E 2 = E 2, och detta är således det enda värde som E kan anta. Den moderna fysikens grunder, Tom Sundius

1.7. Tolkning av våg partikeldualiteten

1.7. Tolkning av våg partikeldualiteten 1.7. Tolkning av våg partikeldualiteten [Understanding Physics: 13.7-13.12] En egenskap som är gemensam för både vågor och partiklar är förmågan att överföra energi. I vartdera fallet kan man representera

Läs mer

1.13. Den tidsoberoende Schrödinger ekvationen

1.13. Den tidsoberoende Schrödinger ekvationen 1.13. Den tidsoberoende Schrödinger ekvationen [Understanding Physics: 13.12-13.14] Den tidsberoende Schrödinger ekvationen för en fri partikel som rör sig i en dimension är en partiell differentialekvation

Läs mer

1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter!

1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter! KVANTMEKANIKFRÅGOR, GRIFFITHS Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths. 1 Kapitel

Läs mer

Kapitel 4. Materievågor

Kapitel 4. Materievågor Kvantfysikens grunder, 2017 Kapitel 4. Materievågor Kapitel 4. Materievågor 1 Kvantfysikens grunder, 2017 Kapitel 4. Materievågor Överblick Överblick Kring 1925 började många viktiga kvantkoncept ha sett

Läs mer

2.6. de Broglies hypotes; elektrondiffraktion

2.6. de Broglies hypotes; elektrondiffraktion 2.6. de Broglies hypotes; elektrondiffraktion [Understanding Physics: 13.6-13.12] Vi har konstaterat, att elektromagnetisk strålning kan bete sig både som vågor och partiklar (fotoner). Hur är det med

Läs mer

F3: Schrödingers ekvationer

F3: Schrödingers ekvationer F3: Schrödingers ekvationer Backgrund Vi behöver en ny matematik för att beskriva elektroner, atomer och molekyler! Den nya fysiken skall klara av att beskriva: Experiment visar att för bundna system så

Läs mer

1.13. Den rektangulära potentialbrunnen

1.13. Den rektangulära potentialbrunnen 1.13. Den rektangulära potentialbrunnen [Understanding Physics: 13.13-13.15(b)] Vi betraktar en partikel med massan m som är innesluten i en rektangulär potentialbrunn med oändligt höga sidor, dvs U =

Läs mer

Andra föreläsningen kapitel 7. Patrik Lundström

Andra föreläsningen kapitel 7. Patrik Lundström Andra föreläsningen kapitel 7 Patrik Lundström Kvantisering i klassisk fysik: Uppkomst av heltalskvanttal För att en stående våg i en ring inte ska släcka ut sig själv krävs att den är tillbaka som den

Läs mer

Kvantmekanik. Kapitel Natalie Segercrantz

Kvantmekanik. Kapitel Natalie Segercrantz Kvantmekanik Kapitel 38-39 Natalie Segercrantz Centrala begrepp Schrödinger ekvationen i en dimension Fotoelektriska effekten De Broglie: partikel-våg dualismen W 0 beror av materialet i katoden minimifrekvens!

Läs mer

1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner?

1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner? Session: okt28 Class Points Avg: 65.38 out of 100.00 (65.38%) 1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner? A 0% Vi måste ha haft "koincidens", dvs. flera

Läs mer

Kvantmekanik. Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen (och i den makroskopiska!) Kvantmekanik.

Kvantmekanik. Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen (och i den makroskopiska!) Kvantmekanik. Kap. 7. Kvantmekanik: introduktion 7A.1- I begynnelsen Kvantmekanik Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen och i den makroskopiska! Kvantmekanik Klassisk fysik Specialfall!

Läs mer

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik Föreläsning 7 Kvantfysik 2 Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det

Läs mer

Kvantmekanik - Gillis Carlsson

Kvantmekanik - Gillis Carlsson Kvantmekanik - Föreläsning 1 Gillis Carlsson gillis.carlsson@matfys.lth.se LP2 Föreläsningarna i kvantmekanik LP1 V1): Repetition av kvant-nano kursen. Sid 5-84 V2 : V3 : Formalism (I). Sid 109-124, 128-131,

Läs mer

1.7. Superposition av två vågor med något olika frekvens

1.7. Superposition av två vågor med något olika frekvens 1.7. Superposition av två vågor med något olika frekvens [Understanding physics: 12.19-12.20] Betrakta två gående vågor som har samma amplitud A och begynnelsefas φ, men något olika frekvens, och således

Läs mer

Parbildning. Om fotonens energi är mer än dubbelt så stor som elektronens vileoenergi (m e. c 2 ):

Parbildning. Om fotonens energi är mer än dubbelt så stor som elektronens vileoenergi (m e. c 2 ): Parbildning Vi ar studerat två sätt med vilket elektromagnetisk strålning kan växelverka med materia. För ögre energier ar vi även en tredje: Parbildning E mc Innebär att omvandling mellan energi oc massa

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 15 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 : Kapitel 15.1 15.8 Ljud och

Läs mer

Föreläsning 3 Heisenbergs osäkerhetsprincip

Föreläsning 3 Heisenbergs osäkerhetsprincip Föreläsning 3 Heisenbergs osäkeretsprincip Materialet motsvarar Kap.1,.,.5 and.6 i Feynman Lectures Vol III + Uncertainty in te Classroom - Teacing Quantum Pysics K.E.Joansson and D.Milstead, Pysics Education

Läs mer

Fysik TFYA86. Föreläsning 10/11

Fysik TFYA86. Föreläsning 10/11 Fysik TFYA86 Föreläsning 10/11 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 38-41* (*) 38.1, 38.4, 39.1-3, 6 40.1-4 (översikt) koncept enklare uppgifter Översikt och breddningskurs!

Läs mer

7. Atomfysik väteatomen

7. Atomfysik väteatomen Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det nödvändigt att betrakta

Läs mer

Vågrörelselära & Kvantfysik, FK januari 2012

Vågrörelselära & Kvantfysik, FK januari 2012 Räkneövning 9 Vågrörelselära & Kvantfysik, FK00 9 januari 0 Problem 4.3 En elektron i vila accelereras av en potentialskillnad U = 0 V. Vad blir dess de Broglie-våglängd? Elektronen tillförs den kinetiska

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 32 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25.

Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25. GÖTEBORGS UNIVERSITET Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25 Delkurs 4 KVANTMEKANIK: GRUNDER, TILLÄMPNINGAR

Läs mer

2.4. Bohrs modell för väteatomen

2.4. Bohrs modell för väteatomen 2.4. Bohrs modell för väteatomen [Understanding Physics: 19.4-19.7] Som vi sett, är den totala energin för elektronen i väteatomen E = 1 2 mv2 = e2 8πɛ 0 r. Eftersom L = mvr för cirkulära banor, så kan

Läs mer

Milstolpar i tidig kvantmekanik

Milstolpar i tidig kvantmekanik Den klassiska mekanikens begränsningar Speciell relativitetsteori Höga hastigheter Klassisk mekanik Kvantmekanik Små massor Små energier Stark gravitation Allmän relativitetsteori Milstolpar i tidig kvantmekanik

Läs mer

FAFA Föreläsning 7, läsvecka 3 13 november 2017

FAFA Föreläsning 7, läsvecka 3 13 november 2017 FAFA55 2017 Föreläsning 7, läsvecka 3 13 november 2017 Schrödingers ekvation kan tolkas som en ekvation som har sin utgångspunkt i A) konservering av rörelsemängd B) energikonservering C) Newtons andra

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 1 augusti 008 kl 9-15 Hjälpmedel: handbok och räknare. Varje uppgift ger maximalt 4 poäng. Var

Läs mer

Kommer sig osäkerheten av att vår beskrivning av naturen är ofullständig, eller av att den fysiska verkligheten är genuint obestämd?

Kommer sig osäkerheten av att vår beskrivning av naturen är ofullständig, eller av att den fysiska verkligheten är genuint obestämd? Inte mycket verkar säkert här...? Våg-partikeldualitet Ett system kan ha både vågoch partikelegenskaper i samma experiment. Vågfunktionen har en sannolikhetstolkning. Heisenbergs osäkerhetsrelation begränsar

Läs mer

1.5 Våg partikeldualism

1.5 Våg partikeldualism 1.5 Våg partikeldualism 1.5.1 Elektromagnetisk strålning Ljus uppvisar vågegenskaper. Det är bland annat möjligt att åstadkomma interferensmönster med ljus det visades av Young redan 1803. Interferens

Läs mer

Fysikaliska krumsprång i spexet eller Kemister och matematik!

Fysikaliska krumsprång i spexet eller Kemister och matematik! Fysikaliska krumsprång i spexet eller Kemister och matematik! Mats Linder 10 maj 2009 Ingen sammanfattning. Sammanfattning För den hugade har vi knåpat ihop en liten snabbguide till den fysik och kvantmekanik

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:

Läs mer

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206).

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206). Tentamensskrivning i Differentialekvationer I, SF633(5B6) Torsdagen den 3 oktober 8, kl 8-3 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang

Läs mer

Föreläsning 12. Tidsharmoniska fält, komplexa fält (Kap ) Plana vågor (Kap ) i Griffiths

Föreläsning 12. Tidsharmoniska fält, komplexa fält (Kap ) Plana vågor (Kap ) i Griffiths 1 Föreläsning 12 9.1-9.3.2 i Griffiths Tidsharmoniska fält, komplexa fält (Kap. 9.1.2) Tidsharmoniska fält (dvs. fält som varierar sinus- eller cosinusformigt i tiden) har stora tillämpningsområden i de

Läs mer

Lektion 1. Kurvor i planet och i rummet

Lektion 1. Kurvor i planet och i rummet Lektion 1 Kurvor i planet och i rummet Innehål Plankurvor Rymdkurvor Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation

Läs mer

2.4. Bohrs modell för väteatomen

2.4. Bohrs modell för väteatomen 2.4. Bohrs modell för väteatomen [Understanding Physics: 19.4-19.7] Som vi sett, är den totala energin för elektronen i väteatomen E = 1 2 mv2 = e2 8πɛ 0 r. Eftersom L = mvr för cirkulära banor, så kan

Läs mer

Tentamen, Kvantfysikens principer FK2003, 7,5 hp

Tentamen, Kvantfysikens principer FK2003, 7,5 hp Tentamen, Kvantfysikens principer FK2003, 7,5 hp Tid: 17:00-22:00, tisdag 3/3 2015 Hjälpmedel: utdelad formelsamling, utdelad miniräknare Var noga med att förklara införda beteckningar och att motivera

Läs mer

Re(A 0. λ K=2π/λ FONONER

Re(A 0. λ K=2π/λ FONONER FONONER Atomerna sitter inte fastfrusna på det regelbundna sätt som kristallmodellerna visar. De rubbas ur sina jämviktslägen av tillförd värme, ljus, ljud, mekaniska stötar mm. Atomerna i kristallen vibrerar

Läs mer

Numerisk lösning till den tidsberoende Schrödingerekvationen.

Numerisk lösning till den tidsberoende Schrödingerekvationen. Numerisk lösning till den tidsberoende Schrödingerekvationen. Det är enbart i de enklaste fallen t ex när potentialen är sträckvis konstant som vi kan lösa Schrödingerekvationen analytiskt. I andra fall

Läs mer

TENTAMEN I KVANTFYSIK del 1 (5A1324 och 5A1450) samt KVANTMEKANIK (5A1320) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 2007

TENTAMEN I KVANTFYSIK del 1 (5A1324 och 5A1450) samt KVANTMEKANIK (5A1320) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 2007 TENTAMEN I KVANTFYSIK del (5A4 och 5A45) samt KVANTMEKANIK (5A) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 7 HJÄLPMEDEL: Formelsamling i Fysik (teoretisk fysik KTH), matematiska tabeller, dock

Läs mer

Kvantmekanik II Föreläsning 2 Joakim Edsjö 1/37

Kvantmekanik II Föreläsning 2 Joakim Edsjö 1/37 Kvantmekanik II - Föreläsning 2 Joakim Edsjö edsjo@fysik.su.se HT 2013 Kvantmekanik II Föreläsning 2 Joakim Edsjö 1/37 Innehåll 1 Formalism 2 Tillståndsvektorer 3 Operatorer 4 Mer om Dirac-notationen 5

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

Kapitel: 32 Elektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge EM-vågor

Kapitel: 32 Elektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge EM-vågor Kapitel: 3 lektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge M-vågor genskaper hos M-vågor nergitransport i M-vågor Det elektromagnetiska spektrat Maxwell s ekvationer Kan

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket

Läs mer

Lösningar till tentamen i Transformmetoder okt 2007

Lösningar till tentamen i Transformmetoder okt 2007 Lösningar till tentamen i Transformmetoder okt 7. Låt Y (s beteckna Laplacetransformen till funktionen y. Laplacetransformering av den givna ekvationen ger: varav följer att. (a För s > a är Y (s + s Y

Läs mer

Fysik TFYA68. Föreläsning 11/14

Fysik TFYA68. Föreläsning 11/14 Fysik TFYA68 Föreläsning 11/14 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 38-39* (*) 38.1, 38.4, 39.1-3, 6 koncept enklare uppgifter Översikt och breddningskurs! 2 Introduktion Kvantmekanik

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

Vågor och Optik. Mekaniska vågor (Kap. 15) Mekaniska vågor (Kap. 15)

Vågor och Optik. Mekaniska vågor (Kap. 15) Mekaniska vågor (Kap. 15) Mekaniska vågor (Kap. 15) Vågor och Optik Mekaniska vågor (Kap. 15) D Alemberts allmäna lösning i 1D En mekanisk våg är en störning i ett medium som fortplantar sig. 1 $ 1 '$ 1 ' =& )& + ) = 0 x v t %

Läs mer

NFYA02: Svar och lösningar till tentamen 140115 Del A Till dessa uppgifter behöver endast svar anges.

NFYA02: Svar och lösningar till tentamen 140115 Del A Till dessa uppgifter behöver endast svar anges. 1 NFYA: Svar och lösningar till tentamen 14115 Del A Till dessa uppgifter behöver endast svar anges. Uppgift 1 a) Vi utnyttjar att: l Cx dx = C 3 l3 = M, och ser att C = 3M/l 3. Dimensionen blir alltså

Läs mer

Vågfysik. Ljus: våg- och partikelbeteende

Vågfysik. Ljus: våg- och partikelbeteende Vågfysik Modern fysik & Materievågor Kap 25 (24 1:st ed.) Ljus: våg- och partikelbeteende Partiklar Lokaliserade Bestämd position & hastighet Kollision Vågor Icke-lokaliserade Korsar varandra Interferens

Läs mer

Dugga i FUF040 Kvantfysik för F3/Kf3

Dugga i FUF040 Kvantfysik för F3/Kf3 Dugga i FUF040 Kvantfysik för F3/Kf3 fredagen den 23 oktober 2015 kl 14.00-16.00 i V Examinator: Måns Henningson, ankn 3245. Inga hjälpmedel. Ringa in bokstaven svarande mot det unika rätta svaret på svarsblanketten!

Läs mer

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

3.5. Schrödingerekvationen för atomer med en elektron

3.5. Schrödingerekvationen för atomer med en elektron 3.5. Schrödingerekvationen för atomer med en elektron [Understanding Physics: 19.5-19.8] Bohrs teori lyckas väl förklara energinivåerna för en atom med en elektron, och således också spektrallinjerna,

Läs mer

Några utvalda lösningar till. Kvantvärldens fenomen. -teori och begrepp. Del 1: Partiklar och vågor. Magnus Ögren

Några utvalda lösningar till. Kvantvärldens fenomen. -teori och begrepp. Del 1: Partiklar och vågor. Magnus Ögren Några utvalda lösningar till vantvärldens fenomen -teori och begrepp Del : Partiklar och vågor Magnus Ögren Här följer ett urval av lösningar till några problem från del av boken vantvärldens fenomen -

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

Harmonisk oscillator Ulf Torkelsson

Harmonisk oscillator Ulf Torkelsson 1 Haronisk rörelse Föreläsning 13/9 Haronisk oscillator Ulf Torkelsson Betrakta en potentiell energi, V (x), so har ett iniu vid x, och studera rörelsen i närheten av detta iniu. O vi släpper en partikel

Läs mer

ett uttryck för en våg som beskrivs av Jonesvektorn: 2

ett uttryck för en våg som beskrivs av Jonesvektorn: 2 Tentamen i Vågrörelselära(FK49) Datum: Tisdag, 6 Juni, 29, Tid: 9: - 5: Tillåten Hjälp: Physics handbook eller dylikt Förklara resonemang och uträkningar klart och tydligt. Tentamensskrivningen består

Läs mer

Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi

Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi Föreläsning 13/5 Relativistisk kinematik Ulf Torkelsson 1 Relativistisk rörelsemängd, kraft och energi Antag att en observatör O följer med en kropp i rörelse. Enligt observatören O så har O hastigheten

Läs mer

Utveckling mot vågbeskrivning av elektroner. En orientering

Utveckling mot vågbeskrivning av elektroner. En orientering Utveckling mot vågbeskrivning av elektroner En orientering Nikodemus Karlsson Februari 00 . Bohrs Postulat Niels Bohr (885-96) ställde utifrån iakttagelser upp fyra postulat gällande väteatomen ¹:. Elektronen

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

5B1134 Matematik och modeller

5B1134 Matematik och modeller KTH Matematik 1 5B1134 Matematik och modeller 2006-09-11 2 Andra veckan Trigonometri Veckans begrepp enhetscirkeln, trigonometriska ettan trigonometrisk funktion, sinuskurva period, fasförskjutning, vinkelhastighet

Läs mer

2.16. Den enkla harmoniska oscillatorn

2.16. Den enkla harmoniska oscillatorn 2.16. Den enkla harmoniska oscillatorn [Understanding Physics: 13.16-13.17] Den klassiska hamiltonfunktionen för en enkel harmonisk oscillator med den reducerade massan m och fjäderkonstanten (kraftkonstanten)

Läs mer

Explorativ övning 7 KOMPLEXA TAL

Explorativ övning 7 KOMPLEXA TAL Explorativ övning 7 KOMPLEXA TAL Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet då man försökte lösa kvadratiska

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER

Läs mer

FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 2015, kl 17:00-22:00

FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 2015, kl 17:00-22:00 FK003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 015, kl 17:00 - :00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du klarar

Läs mer

1. Elektromagnetisk strålning

1. Elektromagnetisk strålning 1. Elektromagnetisk strålning Kursens första del behandlar olika aspekter av den elektromagnetiska strålningen. James Clerk Maxwell formulerade lagarnas som beskriver strålningen år 1864. 1.1 Uppkomst

Läs mer

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int, Institutionen för matematik KTH Tentamensskrivning, 003-08-5, kl. 14.00 19.00. 5B10/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3) krävs 18 poäng, medan

Läs mer

Fysik TFYA86. Föreläsning 11/11

Fysik TFYA86. Föreläsning 11/11 Fysik TFYA86 Föreläsning 11/11 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 40-42* (*) 40.1-4 (översikt) 41.6 (uteslutningsprincipen) 42.1, 3, 4, 6, 7 koncept enklare uppgifter Översikt

Läs mer

TFYA58, Fysik, 8 hp, 3 delar

TFYA58, Fysik, 8 hp, 3 delar 1. Vågrörelselära (mekaniska vågor, optik, diffraktion ) 7x2 tim föreläsning 6x2tim lektion 2. Experimentell problemlösning TFYA58, Fysik, 8 hp, 3 delar Ht 1 Ht 2 2x1 tim föreläsning 2 st Richardslabbar

Läs mer

d dx xy ( ) = y 2 x, som uppfyller villkoret y(1) = 1. x, 0 x<1, y(0) = 0. Bestäm även y( 2)., y(0) = 0 har entydig lösning.

d dx xy ( ) = y 2 x, som uppfyller villkoret y(1) = 1. x, 0 x<1, y(0) = 0. Bestäm även y( 2)., y(0) = 0 har entydig lösning. Bestäm den lösning till differentialekvationen Ange även lösningens eistensintervall SF6 Differentialekvationer I MODULUPPGIFTER Första ordningens differentialekvationer med modeller d d y ( ) = y 2, som

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 211-1-18 DEL A 1. Låt x och y vara två tal vars summa är 6. Ange det minimala värdet som uttrycket 2x 2 + y 2 kan anta. Lösningsförslag. Eftersom vi

Läs mer

Preliminärt lösningsförslag till Tentamen i Modern Fysik,

Preliminärt lösningsförslag till Tentamen i Modern Fysik, Preliminärt lösningsförslag till Tentamen i Modern Fysik, SH1009, 008 05 19, kl 14:00 19:00 Tentamen har 8 problem som vardera ger 5 poäng. Poäng från inlämningsuppgifter tillkommer. För godkänt krävs

Läs mer

Svar och anvisningar

Svar och anvisningar 160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

Relativitetsteorins grunder, våren 2016 Räkneövning 3 Lösningar

Relativitetsteorins grunder, våren 2016 Räkneövning 3 Lösningar Relativitetsteorins grunder, våren 2016 Räkneövning 3 Lösningar 1. Den ryska fysikern P.A. Čerenkov upptäckte att om en partikel rör sig snabbare än ljuset i ett medium, ger den ifrån sig ljus. Denna effekt

Läs mer

3. Ljus. 3.1 Det elektromagnetiska spektret

3. Ljus. 3.1 Det elektromagnetiska spektret 3. Ljus 3.1 Det elektromagnetiska spektret Synligt ljus är elektromagnetisk vågrörelse. Det följer samma regler som vi tidigare gått igenom för mekanisk vågrörelse; reflexion, brytning, totalreflexion

Läs mer

16. Spridning av elektromagnetisk strålning

16. Spridning av elektromagnetisk strålning 16. Spridning av elektromagnetisk strålning [Jakson 9.6-] Med spridning avses mest allmänt proessen där strålning (antingen av partikel- eller vågnatur) växelverkar med något objekt så att dess fortskridningsriktning

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.

Läs mer

Tentamen i Modern fysik, TFYA11, TENA

Tentamen i Modern fysik, TFYA11, TENA IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11, TENA Måndagen den 19/12 2011 kl. 14.00-18.00 i KÅRA, T1, T2 och U1 Tentamen består av 2 A4-blad (inklusive

Läs mer

1. Låt kommutatorn verka på en vågfunktion och inför att ˆp x = i h d. d2 (xψ(x)) ) = h 2 (x d2 Ψ(x) = i2 hˆp x Ψ(x) [ev] E n = 13, 6 Z2 n 2

1. Låt kommutatorn verka på en vågfunktion och inför att ˆp x = i h d. d2 (xψ(x)) ) = h 2 (x d2 Ψ(x) = i2 hˆp x Ψ(x) [ev] E n = 13, 6 Z2 n 2 SVAR OCH LÖSNINGSANVISNINGAR TLLL TENTAMEN I KVANTFYSIK del för F5A450 och B5A och 5A4och KVANTMEKANIK 5A0 Måndagen den december 004 kl. 8.00 -.00 HJÄLPMEDEL: Formelsamling till kurserna i Fysikens matematiska

Läs mer

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop

Läs mer

Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion)

Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Kapitel 33 The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens

Läs mer

Hur elektromagnetiska vågor uppstår. Elektromagnetiska vågor (Kap. 32) Det elektromagnetiska spektrumet

Hur elektromagnetiska vågor uppstår. Elektromagnetiska vågor (Kap. 32) Det elektromagnetiska spektrumet Elektromagnetiska vågor (Kap. 32) Hur elektromagnetiska vågor uppstår Laddning i vila:symmetriskt radiellt fält, Konstant hastighet: osymmetriskt radiellt fält samt ett magnetfält. Konstant acceleration:

Läs mer

Vågfysik. Superpositionsprincipen

Vågfysik. Superpositionsprincipen Vågfysik Superposition Knight, Kap 21 Superpositionsprincipen Superposition = kombination av två eller fler vågor. Vågor partiklar Elongation = D 1 +D 2 D net = Σ D i Superpositionsprincipen 1 2 vågor

Läs mer

s 1 och s 2 är icke kvantmekaniska partiklar? e. (1p) Vad blir sannolikheterna i uppgifterna b, c och d om vinkeln = /2?

s 1 och s 2 är icke kvantmekaniska partiklar? e. (1p) Vad blir sannolikheterna i uppgifterna b, c och d om vinkeln = /2? FK003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 7e mars 018, kl 17:00 - :00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du klarar

Läs mer

9.3. Egenvärdesproblem

9.3. Egenvärdesproblem 9.3. Egenvärdesproblem Problem som innehåller en parameter men endast kan lösas för speciella värden av denna parameter kallas egenvärdesproblem. Vi skall här nöja oss med ett exempel på ett dylikt problem.

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive

Läs mer

Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl

Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl KTH Matematik Bengt Ek och Olle Stormark. Lösning till tentamen i SF633 Differentialekvationer I för BD, M och P, 008 0 6, kl. 4.00 9.00. Hjälpmedel: BETA. Uppgifterna 5 motsvarar kursens fem moduler.

Läs mer

Övningshäfte 2: Komplexa tal

Övningshäfte 2: Komplexa tal LMA100 VT007 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet

Läs mer

Kvantfysik SI1151 för F3 Tisdag kl

Kvantfysik SI1151 för F3 Tisdag kl TEORETISK FYSIK KTH Kvantfysik SI5 för F3 Tisdag 3008 kl. 8.00-3.00 Skriv på varje sida Namn och problemnummer Motivera noga Otillräckliga motiveringar leder till poängavdrag Hjälpmedel Teoretisk fysiks

Läs mer

Kapitel 7. Atomstruktur och periodicitet. Kvantmekanik Aufbau Periodiska systemet

Kapitel 7. Atomstruktur och periodicitet. Kvantmekanik Aufbau Periodiska systemet Avsnitt 7.1 Elektromagnetisk strålning Kapitel 7 Fyrverkeri i olika färger Atomstruktur och periodicitet Copyright Cengage Learning. All rights reserved 2 Illuminerad saltgurka Kapitel 7 Innehåll Kvantmekanik

Läs mer

Andragradspolynom Några vektorrum P 2

Andragradspolynom Några vektorrum P 2 Låt beteckna mängden av polynom av grad högst 2. Det betyder att p tillhör om p(x) = ax 2 + bx + c där a, b och c är reella tal. Några exempel: x 2 + 3x 7, 2x 2 3, 5x + π, 0 Man kan addera två polynom

Läs mer

interferens och diffraktion

interferens och diffraktion Kapitel 1. Vågrörelselära: interferens och diffraktion [Understanding physics: 12.7-12.9, 12.11-12.12, 12.15] Som en inledning till den moderna fysiken skall vi studera hur två vågrörelser påverkar varandra.

Läs mer

Transformer och differentialekvationer (MVE100)

Transformer och differentialekvationer (MVE100) Chalmers tekniska högskola och Göteborgs universitet Matematik 19 januari 211 Transformer och differentialekvationer (MVE1) Styckvis definierade funktioner forts. Laplacetransformen Som nämnts i inledningen

Läs mer

Svar och anvisningar

Svar och anvisningar 170317 BFL10 1 Tenta 170317 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Den enda kraft som verkar på stenen är tyngdkraften, och den är riktad nedåt. Alltså är accelerationen riktad nedåt. b) Vid kaströrelse

Läs mer

Del I. Modul 1. Betrakta differentialekvationen

Del I. Modul 1. Betrakta differentialekvationen Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 24 oktober 2016 kl 8:00-13:00 För godkänt (betyg E) krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För

Läs mer

If you think you understand quantum theory, you don t understand quantum theory. Quantum mechanics makes absolutely no sense.

If you think you understand quantum theory, you don t understand quantum theory. Quantum mechanics makes absolutely no sense. If you think you understand quantum theory, you don t understand quantum theory. Richard Feynman Quantum mechanics makes absolutely no sense. Roger Penrose It is often stated that of all theories proposed

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, ht 25, Krister Henriksson 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera

Läs mer

Kvantmekanik II (FK5012), 7,5 hp

Kvantmekanik II (FK5012), 7,5 hp Joakim Edsjö Fysikum, Stockholms Universitet Tel.: 8-5537876 E-post: edsjo@physto.se Lösningar till Kvantmekanik II (FK51, 7,5 hp 3 januari 9 Lösningar finns även tillgängliga på http://www.physto.se/~edsjo/teaching/kvant/index.html.

Läs mer

3.3. Den kvantmekaniska fria elektronmodellen

3.3. Den kvantmekaniska fria elektronmodellen 3.3. Den kvantmekaniska fria elektronmodellen [Understanding Physics: 20.3-20.7] I kvantmekaniken behandlas ledningselektronerna som ett enda fermionsystem, på ett liknande sätt som elektronerna i flerelektronatomer.

Läs mer

Tentamen Fysikaliska principer

Tentamen Fysikaliska principer Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm NFYA02/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 2016 8:00 12:00 Tentamen består

Läs mer