2.4. Bohrs modell för väteatomen

Storlek: px
Starta visningen från sidan:

Download "2.4. Bohrs modell för väteatomen"

Transkript

1 2.4. Bohrs modell för väteatomen [Understanding Physics: ] Som vi sett, är den totala energin för elektronen i väteatomen E = 1 2 mv2 = e2 8πɛ 0 r. Eftersom L = mvr för cirkulära banor, så kan Bohrs första postulat skrivas v = n mr. Om vi substituerar detta uttryck i ekvationen ovan, fås ( ) n m = e2 mr 8πɛ 0 r, vilket kan förenklas till där r = 4π 2 ɛ 0 me 2 n2 = a 0 n 2, a 0 = 4π 2 ɛ 0 me 2, som har värdet m, kallas Bohrs radie. Bohrs teori ger alltså en uppskattning för atomens storlek, som stämmer med observationerna. Radier, som inte överensstämmer med de kvantiserade värdena r = a 0 n 2, är inte tillåtna. Den moderna fysikens grunder, Tom Sundius

2 Om uttrycket för radien substitueras i uttrycket för elektronens energi, fås E = e2 8πɛ 0 r = e2 8πɛ 0 a 0 n = e2 me πɛ 0 4π 2 ɛ 0 n = me π 2 2 ɛ 2 0 n 2, som kan uttryckas E n = E 0 n 2, där E 0 = me4 32π 2 2 ɛ 2 0 = ev. Den moderna fysikens grunder, Tom Sundius

3 Sålunda leder Bohrs postulat också till kvantisering av energin. Det lägsta energitillståndet E 1 = E 0 svarar mot n = 1, och kallas för väteatomens grundtillstånd. Det följande tillståndet, vars energi är E 2 = E 0 /4, svarar mot n = 2 och kallas det första exciterade tillståndet (se fig. 19.9, se nedan). Väteatomens jonisationsenergi, dvs den energi som behövs för att frigöra en elektron från grundtillståndet (n = 1), är lika med E 1. Enligt Bohrs postulat är detta det enda möjliga värdet av väteatomens jonisationsenergi, och det förklarar varför jonisationspotentialen är densamma för alla väteatomer, dvs 13.6 V (uttryckt i volt). Enligt Bohrs andra postulat kan elektronen befinna sig i ett tillåtet energitillstånd utan att stråla ut energi. Den moderna fysikens grunder, Tom Sundius

4 Det tredje postulatet tilllämpas på övergångar mellan tillåtna tillstånd. Om energin för begynnelsetillståndet är E i, och energin för sluttillståndet är E f, så är frekvensen för den utsända strålningen f = E i E f h. Om vi substituerar uttrycken för energin E i = E 0 /n 2 i och E f = E 0 /n 2 f i denna ekvation, fås f = 1 h [ E0 n 2 i E 0 n 2 f ] = E 0 h ( 1 n 2 f 1 n 2 i ), varav följer där 1 λ = f c = E 0 hc R = E 0 hc = ( 1 n 2 f 1 n 2 i ) = R ( 1 n 2 f 1 n 2 i ) me4 64π 3 3 ɛ 2 0 c = m 1., Om vi jämför denna ekvation med Rydbergs formel, ser vi att de båda formlerna är identiska, om n f = 2 och n i = n, även om det finns en liten (men signifikant) skillnad mellan R H och R. Skillnaden beror på, att vi antagit att elektronen beskriver en cirkelrörelse kring kärnans medelpunkt vid härledningen av R. Den moderna fysikens grunder, Tom Sundius

5 I själva verket sker rörelsen kring systemets massmedelpunkt, som sammanfaller med kärnans medelpunkt endast om elektronens massa antas vara försvinnande liten i förhållande till protonens massa. I själva verket är kärnan 1836 gånger tyngre än elektronen, och elektronmassan borde därför ersättas med den reducerade massan µ = m em p = m e(m p /m e ) = m e m e + m p 1 + m p /m e 1837 Bohrs första postulat blir då L = µvr = n, och vi säger i detta fall. att systemets totala rörelsemängdsmoment är kvantiserat. Om vi substituerar den reducerade massan µ i uttrycket för energin E 0, så blir den teoretiska konstanten R utbytt mot konstanten R H = R. Det teoretiska värdet av R H stämmer mycket väl överens med det experimentella värdet. Observera, att den reducerade massan är olika för deuterium och tritium, eftersom kärnmassan då skiljer sig från protonens massa. För deuterium t.ex. är kärnmassan 3672m e, varför Rydbergs konstant för deuterium (R D ) är något större än för väte. Alla linjer i Balmer serien för deuterium är därför något förskjutna mot kortare våglängder jämfört med motsvarande linjer i vätets Balmer serie (isotopskift). Den moderna fysikens grunder, Tom Sundius

6 Vätets spektrum kan nu förklaras med hjälp av Bohrs nivådiagram för väte (fig samt figuren ovan). Som vi ser kan spektret delas upp på olika serier: a) Lyman serien består av övergångarna mellan de exciterade nivåerna n i = 2, 3,... till grundtillståndet n f = 1. Seriegränsen är 91.1 nm. b) Balmer serien innehåller övergångarna mellan de exciterade tillstånden n i = 3, 4,... till första exciterade tillståndet n f = 2. Seriegränsen är nm. Den moderna fysikens grunder, Tom Sundius

7 c) Paschen serien består i sin tur av övergångar mellan de exciterade nivåerna n i = 4, 5... och tillståndet n f = 3. Seriegränsen är 820 nm. d) Övergångar från högre tillstånd till tillståndet n f = 4 och n f = 5 ger upphov till Bracket, resp. Pfund serien. Våglängden för alla linjer i dessa serier kan beräknas ur den allmänna Rydberg formeln. Seriegränsen får man genom att sätta n i = i formeln. Om elektronen i en väteatom får en energi E c, som är större än jonisationsenergin för väte (E ), så kommer elektronen att fullständigt frigöras från atomen, och överskottsenergin E K = E c E överlåtes i form av kinetisk energi till elektronen. Energin för en sådan elektron är inte kvantiserad, varför elektronens energinivåer bildar ett kontinuum. Elektronens banhastighet i den lägsta Bohr banan kan uppskattas ur Bohrs modell. Eftersom den totala 2E 0 m energin i grundtillståndet kan skrivas E 1 = E 0 = 1 2 mv2, så är v = = m/s. Denna hastighet är nästan 1 % av ljushastigheten. Om man vill beräkna hastigheten noggrannare, borde man därför göra en relativistisk beräkning. Som en följd av Heisenbergs osäkerhetsrelation, blir osäkerheten i position för en elektron som rör sig med hastigheten m/s att vara av storleksordningen m. Detta avstånd är av samma storleksordning som den första Bohr banan. Därför kan man inte betrakta elektronerna som punktformiga partiklar, som är lokaliserade i atomen. Den moderna fysikens grunder, Tom Sundius

8 Bohrs atommodell kan lätt utvidgas till att gälla också andra atomer med en elektron, t.ex. joner som He +, Li 2+, Be 3+, där endast en elektron kretsar kring en kärna med laddningen +Ze. Sådana joner, som kallas väteliknande joner, kan behandlas i Bohrs teori så, att man ersätter laddningen +e i uttrycket för Coulomb energin med +Ze, där Z = 2 för He, Z = 3 för Li, etc. Dessutom måste den reducerade massan modifieras. En följd av detta är att E 0 = Z 2 µe 4 /(32π 2 2 ɛ 2 0 ) och att Rydbergs formel sålunda kan skrivas 1 λ = RZ2 ( 1 n 2 f 1 n 2 i där R = µe 4 /(64π 3 3 ɛ 2 0 c). Observera, att värdet av µ = m em/(m e + M) närmar sig m e, då kärnans massa M växer. Då Z växer, och jonen således blir tyngre, kommer värdet av R därför att närma sig R. ), Den moderna fysikens grunder, Tom Sundius

9 2.5. Schrödingerekvationen för atomer med en elektron Bohrs teori lyckas väl förklara energinivåerna för en atom med en elektron, och således också spektrallinjerna, men är otillfredsställande i andra avseenden: 1. Den fungerar endast för atomer med en elektron, men inte t.ex. för helium, och andra atomer med flere elektroner. 2. Teorin kan inte användas t.ex. för att beräkna spektrallinjernas intensiteter. 3. Postulaten är något godtyckliga, och kan strida mot den klassiska fysiken (t.ex. det andra postulatet). Postulaten är formulerade så att de stämmer överens med de experimentella resultaten ( bevarar fenomenen ), men utan närmare motivering. För att fördjupa vår förståelse av atomerna, skall vi nu behandla den väteliknande atomen kvantmekaniskt. Vi skall först skriva upp Schrödingerekvationen för systemet, och börjar med uttrycket för potentialenergin: U(r) = 1 4πɛ 0 Ze 2 r, Den moderna fysikens grunder, Tom Sundius

10 som i kartesiska koordinater kan skrivas U(x, y, z) = 1 4πɛ 0 Ze 2 x2 + y 2 + z 2. Som vi ser, är potentialenergin sfäriskt symmetrisk. I tre dimensioner kan Schrödinger ekvationen uttryckas explicit ( ) 2 2 ψ 2m x + 2 ψ 2 y + 2 ψ + U(x, y, z)ψ = Eψ, 2 z 2 eller kortare med Laplace operatorn 2 2 2m 2 ψ + Uψ = Eψ. Vågfunktionen beror i detta fall i allmänhet av alla tre koordinaterna x, y och z. Atomens Schrödingerekvation skiljer sig från de tidigare behandlade endimensionella ekvationerna såtillvida, att vi nu har ett system med två partiklar, som emellertid kan reduceras till ett enkroppsproblem med hjälp av den reducerade massan. Dessutom är Schrödinger ekvationen nu ett tredimensionellt problem, vilket gör lösningen mera komplicerad. Den moderna fysikens grunder, Tom Sundius

11 Den tredimensionella Schrödingerekvationen kan lösas genom separation av variablerna, vilket i detta fall underlättas, om vi först övergår till sfäriska koordinater r (radien), θ (polära vinkeln), och φ (azimutvinkeln)(se diagrammet): x = r sin θ cos φ y = r sin θ sin φ z = r cos θ. Den moderna fysikens grunder, Tom Sundius

12 Genom att insätta uttrycket för Laplace operatorn i sfäriska koordinater (se s. 737) i Schrödinger ekvationen fås 2 2µ [ 1 r 2 r ( ) r 2 ψ r + 1 r 2 sin θ θ där ψ nu uppfattas som en funktion av r, θ och φ. ( sin θ ψ ) θ ] 1 2 ψ + r 2 sin 2 + U(r)ψ = Eψ, θ φ 2 Det visar sig nu att dessa tre variabler kan separeras, ifall egenfunktionen ψ(r, θ, φ) uttrycks som en produkt av tre endimensionella funktioner R(r), Θ(θ) och Φ(φ): ψ = RΘΦ. Vi går inte här igenom detaljerna (som finns i boken), utan ger endast slutresultatet: (1)... (2)... 1 d sin θ dθ ( ) 1 d r 2 dr (3)... r 2 dr dr ( sin θ dθ dθ ) d 2 Φ dφ 2 = m2 l Φ + m2 l Θ sin 2 θ = l(l + 1)Θ + 2µ 2 (E U)R = l(l + 1) R r 2 Den moderna fysikens grunder, Tom Sundius

13 Vi har alltså slutligen erhållit tre differentialekvationer i avseende på variablerna r, θ och φ, som kan lösas var för sig. För att en lösning skall vara fysikaliskt meningsfull, så måste den vara entydig och överallt ändlig. Lösningen till ekvation (1) är Φ = e im l φ. Av entydighetsvillkoret följer då, att funktionen måste anta samma värde för φ = 0 och φ = 2π, dvs e im l 0 = e im l 2π, eller alltså 1 = cos m l 2π + i sin m l 2π. Detta villkor är uppfyllt endast om m l = 0, ±1, ±2,.... Lösningarna till ekvation (2), Θ(θ), visar sig vara ändliga endast om l är ett heltal, som antar värdena m l, m l + 1, m l + 2,..., dvs om l m l. Lösningarna kallas associerade Legendre polynom, och de beror av l och m l : Θ l,ml (θ) = P m l l (cos θ). Ekvation (3) brukar kallas för den radiella Schrödinger ekvationen. Dess lösningar R n,l (r), som vi senare skall studera mera, beror av l och n, där n är ett heltal, som antar värdena 1, 2, 3,... då n > l. De motsvarande energierna för en väteliknande atom visar sig kunna skrivas i formen E n = Z2 µe π 2 2 ɛ 2 0 n = E 0 2 Z2 n 2 Som vi ser, överensstämmer uttrycket för Z = 1 med Bohrs resultat. Den moderna fysikens grunder, Tom Sundius

14 De tre heltalen n, l och m l som vi fått fram genom att studera väteatomens Schrödinger ekvation, är kvanttal, som uppfyller följande villkor: 1. n = 1, 2,... kallas huvudkvanttalet, emedan det bestämmer systemets totala energi. 2. l som kallas bankvanttalet (eller sidokvanttalet), antar endast sådana heltaliga värden för vilka l < n, dvs l = 0, 1, 2,..., n 1. För ett givet värde av n kan l därför anta n värden. 3. m l, som kallas det magnetiska kvanttalet, kan bara anta heltaliga värden som uppfyller villkoret m l l, dvs m l = l,..., 1, 0, +1,..., +l. För ett givet värde av l kan m l alltså anta 2l + 1 värden. Lösningarna till den tidsoberoende Schrödinger ekvationen för väteatomen kan alltså skrivas ψ n,l,ml (r, θ, φ) = R n,l (r)θ l,ml (θ)φ ml (φ) (vågfunktionen för en elektron kallas atomorbital (AO) i kemin). Vi skall ännu se hur man kan karaktärisera atomens olika tillstånd. Som vi ser, beror energierna endast av totala kvanttalet n, fastän många olika värden av l och m l är möjliga, och således också många egenfunktioner, för varje givet värde av n. Olika värden av l och m l svarar alltså mot samma värde av n, vilket kallas för degeneration (vi skall senare se att degenerationen kan upphävas). Den moderna fysikens grunder, Tom Sundius

15 I det lägsta energitillståndet (n = 1), kan både l och m l endast anta värdet 0. Det finns alltså endast en uppsättning kvanttal (n, l, m l ) = (1, 0, 0), och således endast en egenfunktion, som betecknas ψ 1,0,0 (detta är inte ett degenererat tillstånd). I följande energitillstånd (n = 2), kan l antingen anta värdet 0 eller 1. Då l = 0, så är m l endast 0, men då l = 1, så kan m l anta värdena 1, 0 eller +1. Det finns alltså sammanlagt fyra olika uppsättningar kvanttal för n = 2, och fyra egenfunktioner: ψ 2,0,0, ψ 2,1, 1, ψ 2,1,0, ψ 2,1,1. Detta energitillstånd är alltså fyrfaldigt degenererat. Kvanttalen (n, l) för atomtillstånden brukar ofta anges med spektroskopiska beteckningar: l = 0, 1, 2, 3, 4, 5, 6, 7,... s, p, d, f, g, h, i, k,..., etc Dessa beteckningar har ursprungligen fått sitt namn efter utseendet på spektrallinjerna i vissa serier: skarpa, principala, diffusa och fundamentala. Tillstånd med kvanttalen (n, l) = (1, 0), (2, 0), (2, 1), (3, 0), (3, 1) och (3, 2) betecknas därför 1s, 2s, 2p, 3s, 3p och 3d. Den moderna fysikens grunder, Tom Sundius

16 2.6. De lägsta tillståndens radiella egenfunktioner Om inte bara potentialenergin, utan också vågfunktionerna har sfärisk symmetri, är det speciellt enkelt att lösa Schrödinger ekvationen. Lösningarna beror då inte alls av vinklarna θ och φ ( ψ ψ θ = 0 och φ = 0), och Laplace operatorn antar en mycket enkel form: 2 ψ = d2 ψ dr + 2 dψ 2 r dr. Schrödinger ekvationen kan alltså skrivas 2 2m ( d 2 ψ dr r ) dψ dr + U(r)ψ = Eψ, eller alltså d 2 ψ dr + 2 dψ 2 r dr + 2m (E U(r))ψ = 0, 2 som överensstämmer med den radiella Schrödinger ekvationen för väteatomen då l = 0. Den moderna fysikens grunder, Tom Sundius

17 I allmänhet beror lösningarna givetvis på den exakta formen av U(r). Ett exempel är t.ex. en potentialfunktion, som är omvänt proportionell mot avståndet r: U = C r (för en väteliknande atom är C = Ze 2 /(4πɛ 0 )). Genom att substituera detta uttryck i den radiella ekvationen får vi d 2 ψ dr r dψ dr + 2mE 2 ψ + 2mC 2 1 r ψ = 0. En enkel lösningsansats är ψ = Ae γr, γ > 0 (positiva exponenter ger icke-normerbara lösningar). Eftersom dψ dr = γae γr och d2 ψ dr 2 Ae γr γ eller alltså ( γ 2 + 2mE = γ2 Ae γr, så ger substitution, och efterföljande division med 2mC ( γ) + r ) r + 2mE = 0 2 ( 2γ + 2mC 2 ) 1 r = 0. Liksom tidigare kan vi konstatera, att om denna ekvation skall gälla för alla värden av r, så måste koefficienterna (parentesuttrycken) försvinna, och vi får alltså γ = mc 2 och E = 2 2m γ2 = 2 2m ( mc 2 ) 2 = mc Den moderna fysikens grunder, Tom Sundius

18 Således är ψ 1 (r) = Ae mc 2 r en giltig lösning till ekvationen, och den visar sig också representera grundtillståndet. För en väteliknande atom är C = Ze 2 /(4πɛ 0 ), som kan skrivas C = [ 2 /(µa 0 )]Z om vi utnyttjar definitionen på a 0, och ersätter m med den reducerade massan µ. Således är γ = µc/ 2 = Z/a 0, och E 1 = µc2 2 2 = µ 2 2 ( Ze 2 4πɛ 0 ) 2 = µ 2 2 Z 2 e 4 (4πɛ 0 ) 2, som med utnyttjande av definitionen på E 0 kan skrivas E 1 = Z 2 E 0, vilket visar att detta är grundtillståndet för en väteliknande atom. Den motsvarande vågfunktionen kan också skrivas ψ 1 = Ae Zr/a 0. Detta är den radiella Schrödinger ekvationens lösning för n = 1, l = 0, varför vi alltså har R n,l (r) = R 1,0 (r) = Ae Zr/a 0. De högre tillstånden behandlas inte här. Den moderna fysikens grunder, Tom Sundius

19 2.7. Den radiella sannolikhetsfördelningen Vi har nu visat hur man (i princip) kan bestämma egenfunktionerna ψ n,l,ml (r, θ, φ) och hur de motsvarande tillstånden karaktäriseras. Vi skall nu studera dem mera i detalj. Den allmänna formen av Φ ml (φ) och R n,l (r) känner vi redan. Egenfunktionerna Θ l,ml (θ), som är av formen Θ l,ml (θ) = sin m l θf l, ml (cos θ). kallas associerade Legendre funktioner. Tabell 19.1 visar de normerade egenfunktionerna för n = 1, 2 och 3, dvs sannolikheten för att finna elektronen någonstans i rummet är 1: ψ n,l,m ψ n,l,ml dv = 1, l hela rummet där dv är ett volymelement. Observera, att egenfunktionerna ψ 1,0,0 och ψ 2,0,0 är oberoende av vinklarna θ och φ, de är därför sfäriskt symmetriska. Den moderna fysikens grunder, Tom Sundius

20 Beroendet av θ uppträder först i egenfunktionen ψ 2,1,0. I detta fall, där m l = 0, har polynomet F l,ml (cos θ) den enkla formen cos θ. För egenfunktionerna ψ 2,1,±1 gäller m l = ±1, så att sin m l θ = sin θ och polynomet F l,ml (cos θ) är lika med 1. Beroendet av φ uppträder först då m l är olika noll, alltså i egenfunktionerna ψ 2,1,±1. Vi har tidigare konstaterat, att en egenfunktion inte kan observeras direkt. Endast kvadraten på dess norm är en storhet som i princip kan mätas. Den beskriver sannolikheten för att man skall finna en partikel i en viss enhetsvolym. Vi studerar därför vågfunktionerna utgående från deras sannolikhetstätheter. I det endimensionella fallet är sannolikhetstätheten P (x)dx = ψ (x)ψ(x)dx, som anger sannolikheten att partikeln skall befinna sig inom intervallet [x, x + dx]. I det tredimensionella fallet är sannolikheten att elektronen skall befinna sig inom en volym dv som innehåller punkten (r, θ, φ) lika med P n,l,ml (r, θ, φ)dv = [R n,l R n,l][θ l,m l Θ l,ml ][Φ m l Φ ml ]dv Om vi integrerar sannolikhetstätheten över en volym som är innesluten mellan två sfäriska skal med radierna r och r + dr, får vi sannolikheten för att elektronen befinner sig på ett avstånd mellan r och r + dr från atomens medelpunkt: P n,l (r)dr = R n,l (r)r n,l(r) 4πr 2 dr, där volymelementet dv är 4πr 2 dr. Den moderna fysikens grunder, Tom Sundius

21 Fig visar funktionerna P n,l (r) för n = 1, 2 och 3 (figuren nedan visar P 1,0, P 2,0 och P 2,1 ). Vi ser att P 1,0 (r) har endast ett maximum: ( Z ) 3 ( e 2Zr/a 0 Z 4πr 2 = 4 ) 3 r 2 e 2Zr/a 0. P 1,0 (r) = 1 π a 0 a 0 Då r a 0 /2Z, så är e 2Zr/a 0 1, och P 1,0 (r) ökar först proportionellt mot r 2. Men då r växer, kommer 2Zr att närma sig a 0, den exponentiella termen e 2Zr/a 0 minskar, och P 1,0 (r) närmar sig noll för stora värden av r. Således har P 1,0 (r) ett maximum för r = a 0. Den moderna fysikens grunder, Tom Sundius

22 Alla väteatomens egenfunktioner innehåller en term e Zr/na 0, vilket innebär, att sannolikheten att finna elektronen på ett avstånd Zr na 0 är mycket liten. Pga den exponentiella termen är alltså sannolikheten att finna elektronen långt utanför en Bohr bana ytterst liten. För egenfunktionen ψ 2,0,0 (eller alltså 2s tillståndet) är den radiella funktionens polynomfaktor 2 Zr/a 0, varför den motsvarande sannolikhetstätheten P 2,0 (r) är proportionell mot r 2 (2 Zr/a 0 ) 2. Denna funktion kommer därför att ha två maxima (se figuren), så att elektronen har en viss sannolikhet att befinna sig nära kärnan, men också en stor sannolikhet att befinna sig på ett större avstånd från kärnan. I Sommerfelds relativistiska atommodell kunde detta förklaras med hjälp av en elliptiska elektronbanor (se figuren). Den moderna fysikens grunder, Tom Sundius

23 Fig visar också de radiella sannolikhetstätheterna för n = 3. Som vi kan se, har funktionerna P n,l (r) för de lägre l värdena extra maximer nära kärnan. Antalet maximer är som synes n l. Om elektronen befinner sig i något av dessa tillstånd är det sannolikare att elektronen befinner sig nära kärnan än om den befinner sig i något av tillstånden med större bankvanttal. Dessutom kan man visa, att väntevärdet av r: r n,l = 0 R n,l (r)rr n,l(r)4πr 2 dr avtar med ökande l för ett givet värde av n. Bohrmodellens banradie, n 2 a 0, stämmer bara någorlunda för tillstånd som har det största bankvanttalet n 1. De motsvarande sannolikhetsfördelningarna har då endast ett maximum, som uppnås för r = n 2 a 0. Den moderna fysikens grunder, Tom Sundius

2.4. Bohrs modell för väteatomen

2.4. Bohrs modell för väteatomen 2.4. Bohrs modell för väteatomen [Understanding Physics: 19.4-19.7] Som vi sett, är den totala energin för elektronen i väteatomen E = 1 2 mv2 = e2 8πɛ 0 r. Eftersom L = mvr för cirkulära banor, så kan

Läs mer

3.5. Schrödingerekvationen för atomer med en elektron

3.5. Schrödingerekvationen för atomer med en elektron 3.5. Schrödingerekvationen för atomer med en elektron [Understanding Physics: 19.5-19.8] Bohrs teori lyckas väl förklara energinivåerna för en atom med en elektron, och således också spektrallinjerna,

Läs mer

19.4 Bohrs modell för väteatomen.

19.4 Bohrs modell för väteatomen. Den moerna fysikens gruner - Föreläsning 7 42 9.4 Bohrs moell för väteatomen. Som vi sett är en totala energin för elektronen i väteatomen E = 2 mv2 = e2 8πɛ 0 r. Eftersom L = mvr för cirkulära banor så

Läs mer

2.16. Den enkla harmoniska oscillatorn

2.16. Den enkla harmoniska oscillatorn 2.16. Den enkla harmoniska oscillatorn [Understanding Physics: 13.16-13.17] Den klassiska hamiltonfunktionen för en enkel harmonisk oscillator med den reducerade massan m och fjäderkonstanten (kraftkonstanten)

Läs mer

2.7. Egenfunktionernas tolkning - fortsättning

2.7. Egenfunktionernas tolkning - fortsättning 2.7. Egenfunktionernas tolkning - fortsättning [Understanding Physics: 19.7-19.10] Förra gången såg vi, att sannolikhetstätheten består av tre delar, en radiell del och två vinkelberoende delar. Vi skall

Läs mer

Väteatomen. Matti Hotokka

Väteatomen. Matti Hotokka Väteatomen Matti Hotokka Väteatomen Atom nummer 1 i det periodiska systemet Därför har den En proton En elektron Isotoper är möjliga Protium har en proton i atomkärnan Deuterium har en proton och en neutron

Läs mer

Rydbergs formel. Bohrs teori för väteliknande system

Rydbergs formel. Bohrs teori för väteliknande system Chalmers Tekniska Högskola och Göteborgs Universitet Sektionen för Fysik och Teknisk Fysik Arne Rosén, Halina Roth Uppdaterad av Erik Reimhult, januari A4 Enelektronspektrum Namn... Utförd den... Godkänd

Läs mer

2.8. Sannolikhetstäthetens vinkelberoende

2.8. Sannolikhetstäthetens vinkelberoende 2.8. Sannolikhetstäthetens vinkelberoende [Understanding Physics: 19.7 (s. 590)-19.11] Härnäst skall vi studera vinkelberoendet av egenfunktionerna för n = 1 och n = 2. Den allmänna lösningen till den

Läs mer

Utveckling mot vågbeskrivning av elektroner. En orientering

Utveckling mot vågbeskrivning av elektroner. En orientering Utveckling mot vågbeskrivning av elektroner En orientering Nikodemus Karlsson Februari 00 . Bohrs Postulat Niels Bohr (885-96) ställde utifrån iakttagelser upp fyra postulat gällande väteatomen ¹:. Elektronen

Läs mer

Andra föreläsningen kapitel 7. Patrik Lundström

Andra föreläsningen kapitel 7. Patrik Lundström Andra föreläsningen kapitel 7 Patrik Lundström Kvantisering i klassisk fysik: Uppkomst av heltalskvanttal För att en stående våg i en ring inte ska släcka ut sig själv krävs att den är tillbaka som den

Läs mer

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik Föreläsning 7 Kvantfysik 2 Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det

Läs mer

VI. Rörelsemängdsmomentets kvantisering

VI. Rörelsemängdsmomentets kvantisering VI. Rörelsemängdsmomentets kvantisering VI.1. Klassiskt rörelsemängdsmoment Rörelsemängdsmomentet för massan µ = mm/(m + M) definieras klassiskt som L = r p = r µv = r µ dr dt (1) Vi antar att kraften

Läs mer

F3: Schrödingers ekvationer

F3: Schrödingers ekvationer F3: Schrödingers ekvationer Backgrund Vi behöver en ny matematik för att beskriva elektroner, atomer och molekyler! Den nya fysiken skall klara av att beskriva: Experiment visar att för bundna system så

Läs mer

1.15. Andra potentialbrunnar och barriärer

1.15. Andra potentialbrunnar och barriärer 1.15. Andra potentialbrunnar och barriärer [Understanding Physics: 13.15-13.17; 19.1-19.3] Vi skall nu ge en översikt över ytterligare några potentialbrunnar och barriärer, nämligen potentialfallet (fig.

Läs mer

KEMA00. Magnus Ullner. Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från

KEMA00. Magnus Ullner. Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från KEMA00 Magnus Ullner Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från http://www.kemi.lu.se/utbildning/grund/kema00/dold Användarnamn: Kema00 Lösenord: DeltaH0 F2 Periodiska systemet

Läs mer

Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057).

Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057). LULEÅ TEKNISKA UNIVERSITET Hans Weber, Avdelningen för Fysik, 2004 Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057). 1. Partikel i en en dimensionell

Läs mer

Lösningar Heureka 2 Kapitel 14 Atomen

Lösningar Heureka 2 Kapitel 14 Atomen Lösningar Heureka Kapitel 14 Atomen Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel 14 14.1) a) Kulorna från A kan ramla på B, C, D, eller G (4 möjligheter). Från B kan de ramla

Läs mer

1.13. Den tidsoberoende Schrödinger ekvationen

1.13. Den tidsoberoende Schrödinger ekvationen 1.13. Den tidsoberoende Schrödinger ekvationen [Understanding Physics: 13.12-13.14] Den tidsberoende Schrödinger ekvationen för en fri partikel som rör sig i en dimension är en partiell differentialekvation

Läs mer

4-1 Hur lyder Schrödingerekvationen för en partikel som rör sig i det tredimensionella

4-1 Hur lyder Schrödingerekvationen för en partikel som rör sig i det tredimensionella KVANTMEKANIKFRÅGOR Griffiths, Kapitel 4-6 Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths.

Läs mer

7. Atomfysik väteatomen

7. Atomfysik väteatomen Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det nödvändigt att betrakta

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Materiens Struktur Räkneövning 3 Lösningar 1. Studera och begrunda den teoretiska förklaringen till supralednigen så, att du kan föra en diskussion om denna på övningen. Skriv även ner huvudpunkterna som

Läs mer

Föreläsning 2. Att uppbygga en bild av atomen. Rutherfords experiment. Linjespektra och Bohrs modell. Vågpartikel-dualism. Korrespondensprincipen

Föreläsning 2. Att uppbygga en bild av atomen. Rutherfords experiment. Linjespektra och Bohrs modell. Vågpartikel-dualism. Korrespondensprincipen Föreläsning Att uppbygga en bild av atomen Rutherfords experiment Linjespektra och Bohrs modell Vågpartikel-dualism Korrespondensprincipen Fyu0- Kvantfysik Atomens struktur Atomen hade ingen elektrisk

Läs mer

Tentamen. TFYA35 Molekylfysik, TEN1 24 oktober 2016 kl Skrivsal: G34, G36, G37

Tentamen. TFYA35 Molekylfysik, TEN1 24 oktober 2016 kl Skrivsal: G34, G36, G37 Thomas Ederth IFM / Molekylär Fysik ted@ifm.liu.se Tentamen TFYA35 Molekylfysik, TEN1 24 oktober 216 kl. 8.-13. Skrivsal: G34, G36, G37 Tentamen omfattar 6 problem som vardera kan ge 4 poäng. För godkänt

Läs mer

TENTAMEN I KVANTFYSIK del 1 (5A1324 och 5A1450) samt KVANTMEKANIK (5A1320) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 2007

TENTAMEN I KVANTFYSIK del 1 (5A1324 och 5A1450) samt KVANTMEKANIK (5A1320) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 2007 TENTAMEN I KVANTFYSIK del (5A4 och 5A45) samt KVANTMEKANIK (5A) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 7 HJÄLPMEDEL: Formelsamling i Fysik (teoretisk fysik KTH), matematiska tabeller, dock

Läs mer

Instuderingsfrågor, Griffiths kapitel 4 7

Instuderingsfrågor, Griffiths kapitel 4 7 Joakim Edsjö 15 oktober 2007 Fysikum, Stockholms Universitet Tel.: 08-55 37 87 26 E-post: edsjo@physto.se Instuderingsfrågor, Griffiths kapitel 4 7 Teoretisk Kvantmekanik II HT 2007 Tanken med dessa frågor

Läs mer

2.14. Spinn-bankopplingen

2.14. Spinn-bankopplingen 2.14. Spinn-bankopplingen [Understanding Physics: 19.12-19.16] I avsnitt 2.12 konstaterade vi, att elektronen, som enligt Bohrs modell rör sig i en cirkelbana, kommer att ge upphov till en strömslinga,

Läs mer

Atom- och kärnfysik med tillämpningar -

Atom- och kärnfysik med tillämpningar - Atom- och kärnfysik med tillämpningar - Föreläsning 8 Gillis Carlsson gillis.carlsson@matfys.lth.se 19 Oktober, 2012 Föreläsningarna i kvantmekanik LP1 V1: Repetition av kvant-nano kursen. Sid 5-84 V2:

Läs mer

Litiumatomens spektrum

Litiumatomens spektrum Litiumatomens spektrum Datorlaboration i Atom- och kärnfysik FAFF10 version 2010b av Sara Bargi och Jonas Cremon, omarbetning av tidigare version Före laborationens utförande ska du ha läst igenom avsnitt

Läs mer

Atom- och kärnfysik med tillämpningar -

Atom- och kärnfysik med tillämpningar - Atom- och kärnfysik med tillämpningar - Föreläsning 6 Gillis Carlsson gillis.carlsson@matfys.lth.se 10 Oktober, 2013 Föreläsningarna i kvantmekanik LP1 V1 : Repetition av kvant-nano kursen. Sid 5-84 V2

Läs mer

Vågrörelselära & Kvantfysik, FK januari 2012

Vågrörelselära & Kvantfysik, FK januari 2012 Räkneövning 9 Vågrörelselära & Kvantfysik, FK00 9 januari 0 Problem 4.3 En elektron i vila accelereras av en potentialskillnad U = 0 V. Vad blir dess de Broglie-våglängd? Elektronen tillförs den kinetiska

Läs mer

Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0

Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0 LÖSNINGAR TILL Deltentamen i kvantformalism, atom och kärnfysik med tillämpningar för F3 9-1-15 Tid: kl 8.-1. (MA9A. Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. Poäng: Vid varje uppgift

Läs mer

c = λ ν Vågrörelse Kap. 1. Kvantmekanik och den mikroskopiska världen Kvantmekanik 1.1 Elektromagnetisk strålning

c = λ ν Vågrörelse Kap. 1. Kvantmekanik och den mikroskopiska världen Kvantmekanik 1.1 Elektromagnetisk strålning Kap. 1. Kvantmekanik och den mikroskopiska världen Modern teori för atomer/molekyler kan förklara atomers/molekylers egenskaper: Kvantmekanik I detta och nästa kapitel: atomers egenskaper och periodiska

Läs mer

Kapitel 7. Atomstruktur och periodicitet. Kvantmekanik Aufbau Periodiska systemet

Kapitel 7. Atomstruktur och periodicitet. Kvantmekanik Aufbau Periodiska systemet Avsnitt 7.1 Elektromagnetisk strålning Kapitel 7 Fyrverkeri i olika färger Atomstruktur och periodicitet Copyright Cengage Learning. All rights reserved 2 Illuminerad saltgurka Kapitel 7 Innehåll Kvantmekanik

Läs mer

Kapitel 7. Atomstruktur och periodicitet

Kapitel 7. Atomstruktur och periodicitet Kapitel 7 Atomstruktur och periodicitet Avsnitt 7.1 Elektromagnetisk strålning Fyrverkeri i olika färger Copyright Cengage Learning. All rights reserved 2 Avsnitt 7.2 Materians karaktär Illuminerad saltgurka

Läs mer

Kvantfysik SI1151 för F3 Tisdag kl

Kvantfysik SI1151 för F3 Tisdag kl TEORETISK FYSIK KTH Kvantfysik SI5 för F3 Tisdag 3008 kl. 8.00-3.00 Skriv på varje sida Namn och problemnummer Motivera noga Otillräckliga motiveringar leder till poängavdrag Hjälpmedel Teoretisk fysiks

Läs mer

Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och

Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och Institutionen för Fysik Göteborgs Universitet LÖSNINGAR TILL TENTAMEN I FYSIK A: MODERN FYSIK MED ASTROFYSIK Tid: Lördag 3 augusti 008, kl 8 30 13 30 Plats: V Examinator: Ulf Torkelsson, tel. 031-77 3136

Läs mer

Kvantmekanik - Gillis Carlsson

Kvantmekanik - Gillis Carlsson Kvantmekanik - Föreläsning 1 Gillis Carlsson gillis.carlsson@matfys.lth.se LP2 Föreläsningarna i kvantmekanik LP1 V1): Repetition av kvant-nano kursen. Sid 5-84 V2 : V3 : Formalism (I). Sid 109-124, 128-131,

Läs mer

Tentamen i Modern fysik, TFYA11/TENA

Tentamen i Modern fysik, TFYA11/TENA IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Torsdagen den 29/8 2013 kl. 14.00-18.00 i TER2 Tentamen består av 2 A4-blad (inklusive detta)

Läs mer

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer). Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och

Läs mer

Kvantmekanik. Kapitel Natalie Segercrantz

Kvantmekanik. Kapitel Natalie Segercrantz Kvantmekanik Kapitel 38-39 Natalie Segercrantz Centrala begrepp Schrödinger ekvationen i en dimension Fotoelektriska effekten De Broglie: partikel-våg dualismen W 0 beror av materialet i katoden minimifrekvens!

Läs mer

Kvantmekanik. Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen (och i den makroskopiska!) Kvantmekanik.

Kvantmekanik. Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen (och i den makroskopiska!) Kvantmekanik. Kap. 7. Kvantmekanik: introduktion 7A.1- I begynnelsen Kvantmekanik Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen och i den makroskopiska! Kvantmekanik Klassisk fysik Specialfall!

Läs mer

Kvantmekanik II (FK5012), 7,5 hp

Kvantmekanik II (FK5012), 7,5 hp Joakim Edsjö Fysikum, Stockholms Universitet Tel.: 8-5537876 E-post: edsjo@physto.se Lösningar till Kvantmekanik II (FK51, 7,5 hp 3 januari 9 Lösningar finns även tillgängliga på http://www.physto.se/~edsjo/teaching/kvant/index.html.

Läs mer

1.13. Den rektangulära potentialbrunnen

1.13. Den rektangulära potentialbrunnen 1.13. Den rektangulära potentialbrunnen [Understanding Physics: 13.13-13.15(b)] Vi betraktar en partikel med massan m som är innesluten i en rektangulär potentialbrunn med oändligt höga sidor, dvs U =

Läs mer

Vågfysik. Ljus: våg- och partikelbeteende

Vågfysik. Ljus: våg- och partikelbeteende Vågfysik Modern fysik & Materievågor Kap 25 (24 1:st ed.) Ljus: våg- och partikelbeteende Partiklar Lokaliserade Bestämd position & hastighet Kollision Vågor Icke-lokaliserade Korsar varandra Interferens

Läs mer

Dugga i FUF040 Kvantfysik för F3/Kf3

Dugga i FUF040 Kvantfysik för F3/Kf3 Dugga i FUF040 Kvantfysik för F3/Kf3 fredagen den 23 oktober 2015 kl 14.00-16.00 i V Examinator: Måns Henningson, ankn 3245. Inga hjälpmedel. Ringa in bokstaven svarande mot det unika rätta svaret på svarsblanketten!

Läs mer

Formelsamling, Kvantmekanik

Formelsamling, Kvantmekanik Formesaming Kvantmekanik Matematik Linjär operator: Â är injär om Â[aψ (x+bψ (x] = aâψ (x+bâψ (x för aa kompexa ta a b och aa kompexvärda tiståndsfunktioner ψ (x ψ (x Kommutator: [Â ˆB] = Â ˆB ˆBÂ där

Läs mer

Tentamen i Modern fysik, TFYA11/TENA

Tentamen i Modern fysik, TFYA11/TENA IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Torsdagen den 28/8 2014 kl. 14.00-18.00 i T1 och S25 Tentamen består av 2 A4-blad (inklusive

Läs mer

1.7. Tolkning av våg partikeldualiteten

1.7. Tolkning av våg partikeldualiteten 1.7. Tolkning av våg partikeldualiteten [Understanding Physics: 13.7-13.11] En egenskap som är gemensam för både vågor och partiklar är förmågan att överföra energi. I vartdera fallet kan man representera

Läs mer

Tentamen: Atom och Kärnfysik (1FY801)

Tentamen: Atom och Kärnfysik (1FY801) Tentamen: Atom och Kärnfysik (1FY801) Torsdag 1 november 2012, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum

Läs mer

LABORATION ENELEKTRONSPEKTRA

LABORATION ENELEKTRONSPEKTRA LABORATION ENELEKTRONSPEKTRA Syfte och mål Uppgiften i denna laboration är att studera atomspektra från väte och natrium i det synliga våglängdsområdet och att med hjälp av uppmätta våglängder från spektrallinjerna

Läs mer

Kapitel 7. Atomstruktur och periodicitet. Kvantmekanik Aufbau Periodiska systemet

Kapitel 7. Atomstruktur och periodicitet. Kvantmekanik Aufbau Periodiska systemet Kapitel 7 Innehåll Kapitel 7 Atomstruktur och periodicitet Kvantmekanik Aufbau Periodiska systemet Copyright Cengage Learning. All rights reserved 2 Kapitel 7 Innehåll 7.1 Elektromagnetisk strålning 7.2

Läs mer

Preliminärt lösningsförslag till Tentamen i Modern Fysik,

Preliminärt lösningsförslag till Tentamen i Modern Fysik, Preliminärt lösningsförslag till Tentamen i Modern Fysik, SH1009, 008 05 19, kl 14:00 19:00 Tentamen har 8 problem som vardera ger 5 poäng. Poäng från inlämningsuppgifter tillkommer. För godkänt krävs

Läs mer

Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25.

Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25. GÖTEBORGS UNIVERSITET Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25 Delkurs 4 KVANTMEKANIK: GRUNDER, TILLÄMPNINGAR

Läs mer

Fysik TFYA86. Föreläsning 10/11

Fysik TFYA86. Föreläsning 10/11 Fysik TFYA86 Föreläsning 10/11 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 38-41* (*) 38.1, 38.4, 39.1-3, 6 40.1-4 (översikt) koncept enklare uppgifter Översikt och breddningskurs!

Läs mer

VIII. Spinn- och magnetisk växelverkan

VIII. Spinn- och magnetisk växelverkan VIII. Spinn- och magnetisk växelverkan För att undvika sammanblandning kommer vi nu att förtydliga beteckningarna från tidigare kapitel. Vi skriver nu elektronmassan m e (inte m som tidigare) och det magnetiska

Läs mer

Kvantmekanik och kemisk bindning I 1KB501

Kvantmekanik och kemisk bindning I 1KB501 Kvantmekanik och kemisk bindning I 1KB501 TENTAMEN, 013-06-05, 8.00-13.00 Tillåtna hjälpmedel: Miniräknare, bifogade formelsamlingar. Börja på nytt blad för varje nytt problem, och skriv din kod på varje

Läs mer

Tentamen i Modern fysik, TFYA11/TENA

Tentamen i Modern fysik, TFYA11/TENA IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Onsdagen den 27/3 2013 kl. 08.00-12.00 i T1 och T2 Tentamen består av 2 A4-blad (inklusive detta)

Läs mer

Mekanik I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av

Mekanik I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av Mekanik 2 Live-L A TEX:ad av Anton Mårtensson 2012-05-08 I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av ṗ = m r = F Detta är ett postulat och grundläggande för all Newtonsk

Läs mer

Svar och anvisningar

Svar och anvisningar 170317 BFL10 1 Tenta 170317 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Den enda kraft som verkar på stenen är tyngdkraften, och den är riktad nedåt. Alltså är accelerationen riktad nedåt. b) Vid kaströrelse

Läs mer

1.5 Våg partikeldualism

1.5 Våg partikeldualism 1.5 Våg partikeldualism 1.5.1 Elektromagnetisk strålning Ljus uppvisar vågegenskaper. Det är bland annat möjligt att åstadkomma interferensmönster med ljus det visades av Young redan 1803. Interferens

Läs mer

Svar och anvisningar

Svar och anvisningar 160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:

Läs mer

TILLÄMPAD ATOMFYSIK Övningstenta 3

TILLÄMPAD ATOMFYSIK Övningstenta 3 TILLÄMPAD ATOMFYSIK Övningstenta 3 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.

Läs mer

Milstolpar i tidig kvantmekanik

Milstolpar i tidig kvantmekanik Den klassiska mekanikens begränsningar Speciell relativitetsteori Höga hastigheter Klassisk mekanik Kvantmekanik Små massor Små energier Stark gravitation Allmän relativitetsteori Milstolpar i tidig kvantmekanik

Läs mer

Fysik TFYA68. Föreläsning 11/14

Fysik TFYA68. Föreläsning 11/14 Fysik TFYA68 Föreläsning 11/14 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 38-39* (*) 38.1, 38.4, 39.1-3, 6 koncept enklare uppgifter Översikt och breddningskurs! 2 Introduktion Kvantmekanik

Läs mer

Tentamen i Modern fysik, TFYA11/TENA

Tentamen i Modern fysik, TFYA11/TENA IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Fredagen den 21/12 2012 kl. 14.00-18.00 i TER2 och TER3 Tentamen består av 2 A4-blad (inklusive

Läs mer

Vågrörelselära & Kvantfysik, FK januari 2012

Vågrörelselära & Kvantfysik, FK januari 2012 Räkneövning 10 Vågrörelselära & Kvantfysik, FK2002 9 januari 20 Problem 42.1 Vad är det orbitala rörelsemängdsmomentet, L, för en elektron i a) 3p-tillståndet b) 4f-tillståndet? Det orbitala rörelsemängdsmomentet

Läs mer

Relativitetsteorins grunder, våren 2016 Räkneövning 6 Lösningar

Relativitetsteorins grunder, våren 2016 Räkneövning 6 Lösningar elativitetsteorins grunder, våren 2016 äkneövning 6 Lösningar 1. Gör en Newtonsk beräkning av den kritiska densiteten i vårt universum. Tänk dig en stor sfär som innehåller många galaxer med den sammanlagda

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt. 1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.

Läs mer

Fysikaliska krumsprång i spexet eller Kemister och matematik!

Fysikaliska krumsprång i spexet eller Kemister och matematik! Fysikaliska krumsprång i spexet eller Kemister och matematik! Mats Linder 10 maj 2009 Ingen sammanfattning. Sammanfattning För den hugade har vi knåpat ihop en liten snabbguide till den fysik och kvantmekanik

Läs mer

Fysik TFYA86. Föreläsning 11/11

Fysik TFYA86. Föreläsning 11/11 Fysik TFYA86 Föreläsning 11/11 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 40-42* (*) 40.1-4 (översikt) 41.6 (uteslutningsprincipen) 42.1, 3, 4, 6, 7 koncept enklare uppgifter Översikt

Läs mer

Föreläsning 6. Amplituder Kvanttillstånd Fermioner och bosoner Mer om spinn Frågor Tentan. Fk3002 Kvantfysikens grunder 1

Föreläsning 6. Amplituder Kvanttillstånd Fermioner och bosoner Mer om spinn Frågor Tentan. Fk3002 Kvantfysikens grunder 1 Föreläsning 6 Amplituder Kvanttillstånd Fermioner och bosoner Mer om spinn Frågor Tentan Fk3002 Kvantfysikens grunder 1 Betrakta ett experiment med opolariserade elektroner dvs 50% är spinn-upp och 50%

Läs mer

Mer om E = mc 2. Version 0.4

Mer om E = mc 2. Version 0.4 1 (6) Mer om E = mc Version 0.4 Varifrån kommer formeln? För en partikel med massan m som rör sig med farten v har vi lärt oss att rörelseenergin är E k = mv. Denna formel är dock inte korrekt, även om

Läs mer

Arbete A1 Atomens spektrum

Arbete A1 Atomens spektrum Arbete A1 Atomens spektrum 1. INLEDNING I arbetet presenteras de elektroniska energitillstånden och spektret för den enklaste atomen, väteatomen. Väteatomens emissionsspektrum mäts med en gitterspektrometer

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet

Läs mer

Kvantbrunnar -Kvantiserade energier och tillstånd

Kvantbrunnar -Kvantiserade energier och tillstånd Kvantbrunnar -Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på

Läs mer

Bohrs atommodell. Uppdaterad: [1] Vätespektrum

Bohrs atommodell. Uppdaterad: [1] Vätespektrum Bohrs atommodell Uppdaterad: 171201 Har jag använt någon bild som jag inte får använda? Låt mig veta så tar jag bort den. christian.karlsson@ckfysik.se [1] Vätespektrum [15] Superposition / [2] Bohrs atommodell

Läs mer

3.3. Den kvantmekaniska fria elektronmodellen

3.3. Den kvantmekaniska fria elektronmodellen 3.3. Den kvantmekaniska fria elektronmodellen [Understanding Physics: 20.3-20.7] I kvantmekaniken behandlas ledningselektronerna som ett enda fermionsystem, på ett liknande sätt som elektronerna i flerelektronatomer.

Läs mer

NFYA02: Svar och lösningar till tentamen 140115 Del A Till dessa uppgifter behöver endast svar anges.

NFYA02: Svar och lösningar till tentamen 140115 Del A Till dessa uppgifter behöver endast svar anges. 1 NFYA: Svar och lösningar till tentamen 14115 Del A Till dessa uppgifter behöver endast svar anges. Uppgift 1 a) Vi utnyttjar att: l Cx dx = C 3 l3 = M, och ser att C = 3M/l 3. Dimensionen blir alltså

Läs mer

8. Atomfysik - flerelektronatomer

8. Atomfysik - flerelektronatomer Flerelektronatomer På motsvarande sätt som för väteatomen kommer elektronerna i atomerna hos grundämnen som har två eller fler elektroner också att vara instängda inom ett litet område runt kärnan. Det

Läs mer

Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik

Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1

Läs mer

1.7. Tolkning av våg partikeldualiteten

1.7. Tolkning av våg partikeldualiteten 1.7. Tolkning av våg partikeldualiteten [Understanding Physics: 13.7-13.12] En egenskap som är gemensam för både vågor och partiklar är förmågan att överföra energi. I vartdera fallet kan man representera

Läs mer

FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 2015, kl 17:00-22:00

FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 2015, kl 17:00-22:00 FK003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 015, kl 17:00 - :00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du klarar

Läs mer

1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter!

1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter! KVANTMEKANIKFRÅGOR, GRIFFITHS Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths. 1 Kapitel

Läs mer

Tentamen Fysikaliska principer

Tentamen Fysikaliska principer Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm NFYA/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 16 8: 1: Tentamen består av två

Läs mer

Tentamen i Modern fysik, TFYA11, TENA

Tentamen i Modern fysik, TFYA11, TENA IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11, TENA Tisdagen den 26/4 2011 kl. 08.00-12.00 i TER3 Tentamen består av 4 sidor (inklusive denna sida)

Läs mer

Medicinsk Neutron Vetenskap. yi1 liao2 zhong1 zi3 ke1 xue2

Medicinsk Neutron Vetenskap. yi1 liao2 zhong1 zi3 ke1 xue2 Medicinsk Neutron Vetenskap 医疗中子科学 yi1 liao2 zhong1 zi3 ke1 xue2 Introduction Sames 14 MeV neutrongenerator Radiofysik i Lund på 1970 talet För 40 år sen Om

Läs mer

1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner?

1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner? Session: okt28 Class Points Avg: 65.38 out of 100.00 (65.38%) 1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner? A 0% Vi måste ha haft "koincidens", dvs. flera

Läs mer

Andra EP-laborationen

Andra EP-laborationen Andra EP-laborationen Christian von Schultz Magnus Goffeng 005 11 0 Sammanfattning I denna rapport undersöker vi perioden för en roterande skiva. Vi kommer fram till, både genom en kraftanalys och med

Läs mer

s 1 och s 2 är icke kvantmekaniska partiklar? e. (1p) Vad blir sannolikheterna i uppgifterna b, c och d om vinkeln = /2?

s 1 och s 2 är icke kvantmekaniska partiklar? e. (1p) Vad blir sannolikheterna i uppgifterna b, c och d om vinkeln = /2? FK003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 7e mars 018, kl 17:00 - :00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du klarar

Läs mer

Tentamen i Modern fysik, TFYA11, TENA

Tentamen i Modern fysik, TFYA11, TENA IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11, TENA Måndagen den 19/12 2011 kl. 14.00-18.00 i KÅRA, T1, T2 och U1 Tentamen består av 2 A4-blad (inklusive

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.

Läs mer

Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012,

Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012, Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012, 9.00-14.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum

Läs mer

TENTAMEN I FYSIKALISK KEMI KURS: KEM040 Institutionen för kemi Göteborgs Universitet Datum: LÄS DETTA FÖRST!

TENTAMEN I FYSIKALISK KEMI KURS: KEM040 Institutionen för kemi Göteborgs Universitet Datum: LÄS DETTA FÖRST! TENTAMEN I FYSIKALISK KEMI KURS: KEM040 Institutionen för kemi Del: QSM Göteborgs Universitet Datum: 111206 Tid: 8.30 14.30 Ansvariga: Gunnar Nyman tel: 786 9035 Jens Poulsen tel: 786 9089 Magnus Gustafsson

Läs mer

Svar och anvisningar

Svar och anvisningar 15030 BFL10 1 Tenta 15030 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Enligt superpositionsprincipen ska vi addera elongationerna: y/cm 1 1 x/cm b) Reflektionslagen säger att reflektionsvinkeln är

Läs mer

Lösningsförslag envariabelanalys

Lösningsförslag envariabelanalys Lösningsförslag envariabelanalys 09-06-05. Ekvationen är linjär och har det karakteristiska polynomet pr) = r 4 + r 3 + 5r = r r + r + 5) = r r + i)r + + i). Således ges lösningarna till den homogena ekvationen

Läs mer

Tentamen: Atom och Kärnfysik (1FY801)

Tentamen: Atom och Kärnfysik (1FY801) Tentamen: Atom och Kärnfysik (1FY801) Onsdag 30 november 2013, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum

Läs mer

Fysikaliska modeller

Fysikaliska modeller Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda

Läs mer

Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion)

Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Kapitel 33 The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens

Läs mer

Lösningar del II. Problem II.3 L II.3. u u MeV O. 2m e c2= MeV T += MeV Rekylkärnans energi försummas 14N

Lösningar del II. Problem II.3 L II.3. u u MeV O. 2m e c2= MeV T += MeV Rekylkärnans energi försummas 14N Lösningar del II Problem II.3 Kärnan 14 O sönderfaller under utsändning av en positiv elektron till en exciterad nivå i 14 N, vilken i sin tur sönderfaller till grundtillståndet under emission av ett kvantum

Läs mer