Differentialens geometriska betydelse

Storlek: px
Starta visningen från sidan:

Download "Differentialens geometriska betydelse"

Transkript

1 Analys 360 En webbaserad analyskurs Differentialkalkyl Differentialens geometriska betydelse Anders Källén MatematikCentrum LTH

2 Differentialens geometriska betydelse 1 (9) Introduktion Vi ska i det här kapitlet tolka differentialen mer geometriskt och då bl.a. ur ett vektorperspektiv. Mer precist, vi ska ge en alternativ beskrivning av vad differentialen i en punkt är för något. Vi har definierat den som en linjära avbildning, men nu ska vi betrakta den som en vektor, den s.k. gradienten. Det svarar mot när vi i endimen betraktar riktningskoefficienten f (a) istället för differentialen df(a) som är den linjära avbildningen h f (a)h. Vi ska studera den geomtriska betydelsen av gradienten. Vi ska se att den pekar i den riktning funktionen växer snabbast, och att den därmed är vinkelrät mot den nivåkurva punkten ifråga ligger på. Sedan ska vi använda gradienten till att bestämma vilken väg en klättrare på ett berg ska ta, om han hela tiden vill klättra där det är som brantast. Gradient och riktningsderivata Vi börjar med att påminna oss definitionen av differentialen. En reellvärd funktion f sägs vara differentierbar i en punkt a om vi kan skriva f(a + h) f(a) = A(a, h)h där h är en kolonnmatris och A(a, h) en radmatris (A 1 (a, h),..., A n (a, h)), och där A(a, h) är kontinuerlig i h = 0, Här vet vi att A k (a, 0) = k f(a) är den partiella derivatan i punkten a av f m.a.p. x k. Funktionen df(a)[h] = A(a, 0)h kallar vi differentialen av f i punkten a. Den är en linjär funktion av h. Radmatrisen A(a, 0) betecknas f (a) (och är f:s funktionalmatris). Vi har då att df(a) = f (a)dx = n k f(a)dx k, k=1 där dx är kolonnmatrisen med element dx k. En riktning i planet bestäms lämpligen av en vektor v av längd ett, alltså sådan att v = 1. Tar vi en sådan vektor och skriver h = tv får vi att f(a + tv) f(a) lim t 0 t = lim t v A(a, tv)v = A(a, 0)v = df(a)[v]. (1) Detta ger oss en geometrisk tolkning av differentialen uträknad i enhetsvektor v som riktningsderivatan av f i punkten a i riktning av v. I en tvådimensionell situation, med x = (x, y) mäter riktningsderivatan lutningen av ytan z = f(x, y) i punkten a i riktningen v. Med lutning menas hur stor ändring det sker i z-led när vi rör oss en längdenhet i riktningen ifråga.

3 Differentialens geometriska betydelse 2 (9) Anmärkning Låt oss jämföra detta med endim. I endim har vi df(a)[h] = f (a)h. Vi har två riktningar från a, nämligen ±1. Vi får då först att df(a)[1] = f (a), vilket betyder precis att f (a) är riktningsderivatan åt höger. Sedan har vi att df(a)[ 1] = f (a), vilket är riktningsderivatan åt vänster. Så riktningsderivatan är detsamma som riktningskoefficient, bara det att vi behöver specificera i vilken riktning vi mäter den. Speciellt ser vi (i två dimensioner) att df(a)[(1, 0)] = 1 f(a), df(a)[(0, 1)] = 2 f(a). De partiella derivatorna är alltså inget annat än speciella riktningsderivator, de i riktning av de positiva koordinataxlarna. Exempel 1 Vi ska beräkna riktningsderivatan i riktningen ( 3, 4) av funktionen f(x, y) = y 2 x 2 4x 3 i punkten (1, 5). Vi har då att df(x, y) = 2(x+6x 2 )dx+2ydy, vilket betyder att df(1, 5) = 14dx+ 10dy. För att beräkna riktningsderivatan måste vi först normera riktningsvektorn. Eftersom denna har längden 5, sätter vi v = ( 3, 4 ). Den sökta riktningsderivatan 5 5 ges nu at df(1, 5)[v] = 14v v 2 = = I punkten (1, 5) går det alltså uppför med lutningen 82/5 i riktningen ( 3, 4). Vi kan alternativt lösa uppgiften mer direkt genom att stoppa in uttrycket (1) för riktningsderivatan. Vi sätter då in (x, y) = (1, 5) + t( 3, 4)/5 i funktionen och får g(t) = ( t 5 ) 2 ( 5 3t 5 ) 2 4( 5 3t ) 3 = t t t Den sökta riktningsderivatan ges då av g (0) = 82/5, vilket är samma resultat som ovan. För att få en bild av vad riktningsderivatan beskriver i två dimensioner betraktar vi en bergsklättrare som klättrar på ett berg som beskrivs av funktionsytan z = f(x, y). Antag att hans position på kartan är (a, b), och han alltså befinner sig i punkten (a, b, f(a, b)) i verkligheten. Om han på kartan tar ut en viss kompassriktning, beskriven av den normerade vektorn v = (v 1, v 2 ), så svarar riktningsderivatan i punkten (a, b) i riktningen v mot bergets stigning där, i den kompassriktningen. Om vi inför vektorn grad f(a) = ( 1 f(a),..., n f(a)) kan vi skriva riktningsderivatan som en skalärprodukt av två vektorer df(a)[v] = grad f(a) v.

4 Differentialens geometriska betydelse 3 (9) Här är skalärprodukten av två vektorer x = (x 1,..., x n ), y = (y 1,..., y n ) detsamma som summan n x y = x i y i. i=1 Anmärkning Skillnaden mellan gradienten grad f(a) och funktionalmatrisen f (a) är subtil: den senare är en radmatris, den förra en vektor. Bättre är att tänka på det som att vi har två olika beteckningar för samma sak, men att gradient är något som pekar ut en riktning. Diskussionen ger oss också en tolkning av gradienten. Vi vet nämligen att vi kan skriva x y = x y cos θ, där θ är vinkeln mellan vektorerna x, y. Ur detta får vi att för riktningsderivatan gäller att df(a)[v] = grad f(a) v = grad f(a) cos θ. Vi ser alltså att df(a)[v] grad f(a) med likhet precis då v och grad f(a) har samma riktning. Med andra ord Sats 1 Vektorn grad f(a) pekar i den riktning från punkten a i vilken funktionen växer fortast. Stigningshastigheten i den riktningen ges av dess absolutbelopp grad f(a). Exempel 2 Antag att vår bergsklättrares berg beskrivs av höjdfunktionen f(x, y) = 5 x 2 2y 2. Om han befinner sig i den punkt som på kartan är ( 3/2, 1) och vill gå i den riktning som har maximal stigning, vilken riktning ska han då välja? Enligt satsen ska vi först räkna ut df(x, y) = 2xdx 4ydy df( 3, 1) = 3dx + 4dy. 2 Det betyder att gradienten ges av grad f( 3, 1) = (3, 4), 2 så enligt observationen ovan är det den riktning ha ska gå i. Stigningen i denna punkt ges av grad f( 3 2, 1) = = 5.

5 Differentialens geometriska betydelse 4 (9) Differentialen och nivåer Låt oss fortsätta med att betrakta en bergsklättraren som vill följa en väg som hela tiden har en så kraftig stigning som möjligt. På kartan är bergets höjd angivet genom höjdkurvor, dvs som nivåkurvor till funktionen. Intuitivt förefaller det nu klart att en väg som hela tiden har maximal stigning på kartan svarar mot en kurva som skär höjdkurvorna vinkelrät. Vi ska nu se att så är fallet, inte bara för funktioner av två variabler, utan också för funktioner av flera variabler (lämpligt omformulerat). Vi börjar med att betrakta en funktion av två variabler f och en punkt a sådan att f är differentierbar i den punkten. Då gäller att ekvationen f(x) = f(a) definierar en nivåkurva till funktionen f, nämligen den som går genom punkten a. Vi kan parametrisera den kurvan nära punkten a genom en funktion c : I R 2 så att c(0) = a. Då vet vi att p grad f(p) f(c(t)) = f(a), t I. f = 0 df(p) = 0 Deriverar vi den relationen med avseende på t får vi då att df(c(t))[c (t)] = 0 grad f(c(t)) c (t) = 0. Det betyder att vektorn grad f(c(t)) är vinkelrät mot vektorn c (t), vilken i sin tur är en tangentvektor till nivåkurvan. Slutsatsen blir att Sats 2 För en funktion av två variabler gäller att gradienten i en punkt är vinkelrät mot tangenten till den nivåkurva till funktionen som går genom punkten. Exempel 3 Vektorn n = (a, b) är normal till den räta linjen ax + by = c. Denna räta linje är nämligen nivåkurva till funktionen f(x, y) = ax+by vars gradient är (a, b) i alla punkter. Nästa exempel visar hur man kan använda detta till att bestämma tangenten till en kurva som är given på implicit form.

6 Differentialens geometriska betydelse 5 (9) Exempel 4 Vi ska bestämma ekvationen för tangenten i punkten (1, 5) till kurvan y 2 = x 2 + 4x Vi gör detta genom att observera att kurvan är nivåkurva till funktionen f(x, y) = y 2 x 2 4x 3, nämligen för nivån 20. Räkningarna bygger nu på observationen att f(x, y) = C df(x, y) = 0. Vi har att df(x, y) = (2x + 12x 2 )dx + 2ydy df(1, 5) = 14dx + 10dy. Sista steget här är att sätta dx = x 1 och dy = y 5, så att vi får ekvationen 14(x 1) + 10(y 5) = 0 7x 5y = 18. Detta är ekvationen för tangenten till nivåkurvan i den punkten. I varje punkt där funktionen f är differentierbar finns alltså en gradientvektor. Det betyder att funktionen grad f är en funktion R n R n. I fallet n = 2 (och i princip i fallet n = 3 också) kan vi illustrera denna genom att i varje punkt a i kartan rita en vektor som beskriver gradienten grad f(a) i den punkten. Härigenom definieras ett vektorfält i kartan, gradientfältet. Genom att studera detta kan vi få en viss uppfattning om hur funktionsytan ser ut, eftersom gradienten alltid pekar i den riktning där stigningen är störst. Om vi t.ex. betraktar figuren till höger där både nivåkurvor och gradientfält är antydda (vi kan aldrig rita ut alla gradienter, lika lite som vi kan rita ut alla nivåkurvor). För att göra bilden tydligare har alla gradienter normerats till längd ett i figuren. Eftersom gradienten pekar i en riktning där ytan växer, ser vi att om vi går mot höger från centrum kommer vi att gå uppåt, medan om vi går mot vänster kommer vi att gå nedåt. Vi ser också att alla vektorer pekar bortåt från den röda punkten, vilket berättar att den punkten är ett lokalt minimum. Två andra punkter av intresse är de blå punkterna som båda ligger på två olika nivåkurvor som skär varandra i dessa punkter. Nära en sådan punkt delas omgivning upp i fyra delområden där det pekar uppåt i två och nedåt i två från punkten. De är sadelpunkter på ytan. Om alla pilarna i en omgivning av en punkt väsentligen pekar i riktning bort från punkten a (mer och mer ju närmre punkten vi kommer), så kommer a att vara ett lokalt minimum för funktionen. Detta därför att när vi rör oss uppåt så brant det går, rör vi oss hela tiden bort från punkten a. Om vi vänder på alla pilarna betyder figuren att om vi klättrar uppåt på ytan när vi närmar oss punkten a. I den situationen är a ett lokalt maximum.

7 Differentialens geometriska betydelse 6 (9) Motsvarande är sant även för funktioner av fler variabler. Antag nu t.ex. att vi har en funktion av tre variabler, a en punkt i vilken den är differentierbar och betrakta vad som nu är en nivåyta: f(x) = f(a). Betrakta nu en kurva i denna yta som går genom den aktuella punkten. Mer precist, betrakta en kurva c : I R 3 sådan att f(c(t)) = f(a) för alla t och c(0) = a. Samma resonemang som ovan ger då att grad f(a) är vinkelrät mot denna kurvas tangent. Men till varje tangentvektor till nivåytan kan vi hitta en sådan kurva, vilket betyder att Sats 3 För en funktion av tre variabler gäller att gradienten i en punkt är vinkelrät mot tangentplanet till den nivåyta till funktionen som går genom punkten. Exempel 5 Att bestämma tangentplanet till ytan z = f(x, y) i punkten (a, b, f(a, b)) kan göras genom att man noterar att ytan är nivåyta till funktionen g(x, y, z) = z f(x, y) i punkten ifråga. Denna bestämmer vi ur ekvationen dg(x, y, z) = 0, alltså dz df(x, y) = 0 dz = f (a, b)dx + 2 f(a, b)dy, varefter vi sätter in dx = x a, dy = y b, dz = z f(a, b) i detta. Det ger oss z f(a, b) = f (a, b)(x a) + 2 f(a, b)(y b), vilket är den vanliga ekvationen för tangentplanet till en funktionsyta. Naturligtvis kan man generalisera detta senare resonemang till att visa ett motsvarande påstående för funktioner av fler än tre variabler. Vägar med maximal stigning Vi kan utvidga diskussionen i förgående avsnitt till att bestämma hela vägar med maximal stigning på en funktionsyta. För att fixera beteckningarna, låt z = f(x, y) vara en funktionsyta och c(t) = (x(t), y(t)) en kurva i dess karta. Det innebär att r(t) = (x(t), y(t), f(x(t), y(t)) blir motsvarande kurva på ytan. Så r(t) betecknar kanske en stig på ett berg medan c(t) är dess beskrivning på kartan. Villkoret för att kurvan r(t) ska ha maximal stigning i varje punkt blir nu att kartkurvans tangent c (t) = (x (t), y (t)) ska ha samma riktning som gradienten, grad f(c(t)) i alla punkter på kurvan: c (t) = λ(t) grad f(c(t)) (x (t), y (t)) = (λ(t) 1 f(x(t), y(t)), λ(t) 2 f(x(t), y(t))).

8 Differentialens geometriska betydelse 7 (9) Utskrivet har vi alltså differentialekvationssystemet { x (t) = λ(t) 1 f(x(t), y(t)) y (t) = λ(t) 2 f(x(t), y(t)) att lösa. Proportionalitetskonstanten λ(t) kan här variera från punkt till punkt på kurvan, men om vi bara säker kurvan, alltså bilden γ = {c(t); a t b}, så kan vi sätta den till ett överallt. Det ger oss ett ekvationssystem som vi kan lösa, åtminstone numeriskt, för att finna vägen. Ett annat sätt att eliminera proportionalitetskonstanten är att istället titta på riktningskoefficienterna. Riktningskoefficienten för en vektor (a, b) är b/a, så tangentvektorn har riktningskoefficienten y (t)/x (t) medan gradienten har riktningskoefficienten 2 f(c(t))/ 1 f(c(t)). Det betyder att y (t) x (t) = 2f(x(t), y(t)) 1 f(x(t), y(t)). Med hjälp av detta kan vi ibland bestämma sådana vägar. Detta fr.a. om vi kan separera variablerna x(t) och y(t) som i följande exempel. Exempel 6 Betrakta åter bergsklättraren i Exempel 2. Han beslutar sig för att inte bara i första steget utan hela vägen välja den absolut brantaste vägen till toppen. Hur ska han välja den? Vi har sett att grad f(x, y) = ( 2x, 4y), så villkoret ovan blir y (t) x (t) = 4y(t) 2x(t) y (t) y(t) = (t) 2x x(t). Detta känner vi igen som allometriekvationen. Integrerar vi den finner vi att Här bestäms C av starvillkoret: Det följer att ln y(t) = 2 ln x(t) + C. ln 1 = 2 ln C C = ln 4 9. y(t) = 4 9 x(t)2. Eftersom kurvan ska starta i punkten ( 3, 1), måste y(t) vara negativ, åtminstone 2 i början. Det följer att kurvan beskrivs av de (x, y) som uppfyller y = 4 9 x2, 3 2 x 0. (Toppen ligger i (0, 0), så där slutar kurvan.) Vägen i kartan liksom på berget illustreras i figuren nedan.

9 Differentialens geometriska betydelse 8 (9) Vi kan använda ovanstående idéer till att numeriskt försöka finna en lokal extrempunkt för en funktion. Antag att funktionen f har ett lokalt maximum i punkten (a, b). Vi vet dock inte detta, men har gissat oss till en punkt (a 0, b 0 ) som bör ligga i närheten. För att finna (a, b) skulle vi då kunna förfara så att vi från startpunkten på kartan går rakt ut i gradientens riktning och betraktar f:s värden på denna linje, dvs funktionsvärdena φ(t) = f((a 0, b 0 ) + tgrad f(a 0, b 0 )). Vi bestämmer sedan det t som gör denna funktion så stor som möjligt. I praktiken söker man inte maximum av φ(t), utan nöjer sig med att hitta något t 1 som gör φ(t 1 ) > φ(0). Man börjar t.ex. med t = 1 och halverar t tills villkoret är uppfyllt. Sedan sätter man (a 1, b 1 ) = (a 0, b 0 ) + t 1 grad f(a 0, b 0 ). Därefter beräknar man gradienten i den nya punkten och skaffar sig nya värden. På detta sätt håller man på tills man kommit tillräckligt nära maximipunkten. Vilket man märker genom att gradienten blir försvinnande liten (och då är det svårt att gå vidare). Exempel 7 Vi söker maximipunkt för funktionen f(x, y) = 5 x 2 2y 2 och har som närmevärde ( 1.5, 1). Om vi använder metoden ovan med t = 0.2 som start för t ger de första 10 iterationerna följande tabell (se också polygonkurvan i den vänstra figuren ovan). n x n 1 grad f(x n 1 ) t f(x n ) 1 ( 1.500, 1.000) (3.000, 4.000) ( 0.900, 0.200) (1.800, 0.800) ( 0.540, 0.040) (1.080, 0.160) ( 0.324, 0.008) (0.648, 0.032) ( 0.194, 0.002) (0.388, 0.006) ( 0.117, 0.000) (0.233, 0.001) ( 0.070, 0.000) (0.140, 0.000) ( 0.042, 0.000) (0.084, 0.000) ( 0.025, 0.000) (0.050, 0.000) ( 0.015, 0.000) (0.030, 0.000)

10 Differentialens geometriska betydelse 9 (9) Här har vi skrivit x n = (a n, b n ). Vi ser att vi närmar oss (0, 0), som sig bör, men det går långsamt mot slutet. Detta är typiskt för denna metod, vilket gör att den inte gärna används när man är nära en lokal extrempunkt. Då finns det snabbare numeriska metoder. Däremot har denna metod fördelen att den alltid letar sig uppåt, vilket är en god egenskap om vi har gjort en dålig första gissning av den lokala maximipunkten. Vi ser också ur tabellen ovan att gradienten går mot (0, 0). Detta stämmer väl med den tidigare gjorda observationen att en lokal extrempunkt är en stationär punkt.

1. Gradient och riktningsderivata till funktioner av två variabler (2.7) 2. Gradient och riktningsderivata till funktioner av tre variabler (2.

1. Gradient och riktningsderivata till funktioner av två variabler (2.7) 2. Gradient och riktningsderivata till funktioner av tre variabler (2. Lektion 5 Innehål 1. Gradient och riktningsderivata till funktioner av två variabler (2.7) 2. Gradient och riktningsderivata till funktioner av tre variabler (2.7) Innehål 1. Gradient och riktningsderivata

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet

Läs mer

MVE035. Sammanfattning LV 1. Blom, Max. Engström, Anne. Cvetkovic Destouni, Sofia. Kåreklint, Jakob. Hee, Lilian.

MVE035. Sammanfattning LV 1. Blom, Max. Engström, Anne. Cvetkovic Destouni, Sofia. Kåreklint, Jakob. Hee, Lilian. MVE035 Sammanfattning LV 1 Blom, Max Engström, Anne Cvetkovic Destouni, Sofia Kåreklint, Jakob Hee, Lilian Hansson, Johannes 11 mars 2017 1 Partiella derivator Nedan presenteras en definition av partiell

Läs mer

1. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform,

1. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform, Lösningsförslag, Matematik 2, E, I, M, Media och T, 2 2 8.. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform, 2 2 2 a 2 2 2 a 2 2-2 2 a 7 7 2 a 7 7-7 2 a +

Läs mer

Om att rita funktioner av två variabler

Om att rita funktioner av två variabler Analys 360 En webbaserad analyskurs Differentialkalkyl Om att rita funktioner av två variabler Anders Källén MatematikCentrum LTH anderskallen@gmail.com Om att rita funktioner av två variabler 1 (10) Introduktion

Läs mer

En normalvektor till g:s nivåyta i punkten ( 1, 1, f(1, 1) ) är gradienten. Lektion 6, Flervariabelanalys den 27 januari z x=y=1.

En normalvektor till g:s nivåyta i punkten ( 1, 1, f(1, 1) ) är gradienten. Lektion 6, Flervariabelanalys den 27 januari z x=y=1. Lektion 6, Flervariabelanals den 27 januari 2000 1272 Givet funktionen och punkten p 1, 1, beräkna a gradienten till f i p, f, + b en ekvation för tangentplanet till f:s graf i punkten p, fp, c en ekvation

Läs mer

Flervariabelanalys E2, Vecka 3 Ht08

Flervariabelanalys E2, Vecka 3 Ht08 Flervariabelanalys E2, Vecka 3 Ht8 Omfattning och innehåll 2.7 Gradienter och riktningsderivator. 2.8 Implicita funktioner 2.9 Taylorserier och approximationer 3. Extremvärden 3.2 Extremvärden under bivillkor

Läs mer

SF1626 Flervariabelanalys

SF1626 Flervariabelanalys 1 / 15 SF1626 Flervariabelanalys Föreläsning 6 Henrik Shahgholian Vid Institutionen för matematik, KTH VT 2018, Period 3 2 / 15 SF1626 Flervariabelanalys Dagens Lektion För funktioner från R n till R ska

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016 Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Primitiva funktioner i flerdim

Primitiva funktioner i flerdim Analys 36 En webbaserad analyskurs Differentialkalkyl Primitiva funktioner i flerdim Anders Källén MatematikCentrum LTH anderskallen@gmail.com Primitiva funktioner i flerdim 1 (11) 1 Introduktion Att bestämma

Läs mer

Tavelpresentation. Gustav Hallberg Jesper Strömberg Anthon Odengard Nils Tornberg Fredrik Blomgren Alexander Engblom. Januari 2018

Tavelpresentation. Gustav Hallberg Jesper Strömberg Anthon Odengard Nils Tornberg Fredrik Blomgren Alexander Engblom. Januari 2018 Tavelpresentation Gustav Hallberg Jesper Strömberg Anthon Odengard Nils Tornberg Fredrik Blomgren Alexander Engblom Januari 2018 1 Partiella derivator och deriverbarhet Differentierbarhet i en variabel

Läs mer

Lektion 3. Partiella derivator, differentierbarhet och tangentplan till en yta, normalen i en punkt till en yta, kedjeregeln

Lektion 3. Partiella derivator, differentierbarhet och tangentplan till en yta, normalen i en punkt till en yta, kedjeregeln Lektion 3 Partiella derivator, differentierbarhet och tangentplan till en yta, normalen i en punkt till en yta, kedjeregeln Innehål 1. Partiella derivator (12.3) 2. Differentierbarhet och tangentplan till

Läs mer

Differentierbara funktioner

Differentierbara funktioner Analys 36 En webbaserad analyskurs Differentialkalkyl Differentierbara funktioner Anders Källén MatematikCentrum LTH anderskallen@gmail.com Differentierbara funktioner 1 (16) Introduktion I det här kapitlet

Läs mer

Tavelpresentation - Flervariabelanalys. 1E January 2017

Tavelpresentation - Flervariabelanalys. 1E January 2017 Tavelpresentation - Flervariabelanalys 1E January 2017 1 Innehåll 1 Partiella derivator 3 2 Differentierbarhet 3 3 Kedjeregeln 4 3.1 Sats 2.3.4............................... 5 3.2 Allmänna kedjeregeln........................

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de

Läs mer

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig

Läs mer

Optimering av funktioner, med och utan bivillkor

Optimering av funktioner, med och utan bivillkor Analys 360 En webbaserad analyskurs Differentialkalkyl Optimering av funktioner, med och utan bivillkor Anders Källén MatematikCentrum LTH anderskallen@gmail.com Optimering av funktioner, med och utan

Läs mer

Tentamen i TATA43 Flervariabelanalys

Tentamen i TATA43 Flervariabelanalys Linköpings universitet Matematiska institutionen Kurskod: TATA4 Provkod: TEN Tentamen i TATA4 Flervariabelanalys 5--7 kl 8 Inga hjälpmedel tillåtna inte heller miniräknare 8//6 poäng med minst /4/5 uppgifter

Läs mer

1. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t).

1. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t). Repetition, analys.. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t). 2. Beräkna längden av kurvan r(t) =

Läs mer

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag SF1646 Analys i flera variabler Tentamen 18 augusti 11, 14. - 19. Svar och lösningsförslag (1) Låt f(x, y) = xy ln(x + y ). I vilken riktning är riktningsderivatan till f i punkten (1, ) som störst, och

Läs mer

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg ATM-Matematik Mikael Forsberg 74-4 För studenter i Flervariabelanalys Flervariabelanalys MAB 8 Skrivtid: 9:-4:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler bifogas

Läs mer

x ( f u 2y + f v 2x) xy = 24 och C = f

x ( f u 2y + f v 2x) xy = 24 och C = f Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet

Läs mer

Några viktiga satser om deriverbara funktioner.

Några viktiga satser om deriverbara funktioner. Några viktiga satser om deriverbara funktioner Rolles sats Differentialkalkylens medelvärdessats (=) 3 Cauchys medelvärdessats Sats Om funktionen f är deriverbar i en punkt x 0 så är f kontinuerlig i samma

Läs mer

TMV036 Analys och linjär algebra K Kf Bt, del C

TMV036 Analys och linjär algebra K Kf Bt, del C MATEMATIK Chalmers tekniska högskola Tentamen 20-0-, kl. 4.00-8.00 TMV036 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Richard Lärkäng, telefon: 0703-088304 Hjälpmedel: Inga, bara papper och penna.

Läs mer

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer). Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och

Läs mer

Antag att du går rakt norrut i ett bergslandskap. Ibland går du uppför, ibland nerför men hela tiden rakt mot norr. Vi kallar detta bäring 0.

Antag att du går rakt norrut i ett bergslandskap. Ibland går du uppför, ibland nerför men hela tiden rakt mot norr. Vi kallar detta bäring 0. Karlstads universitet matematik Peter Mogensen Flervariabelanalys 1. Antag att du går rakt norrut i ett bergslandskap. Ibland går du uppför, ibland nerför men hela tiden rakt mot norr. Vi kallar detta

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt. 1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.

Läs mer

Lösning till kontrollskrivning 1A

Lösning till kontrollskrivning 1A KTH Matematik Olle Stormark Lösning till kontrollskrivning 1A i SF1626 Flervariabelanalys för E, vt 28. Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 5 poäng sammanlagt. 1. Funktionen f(x,

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013

SF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013 SF626 Flervariabelanalys Tentamen Måndagen den 27 maj, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mattias Dahl Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. De tre

Läs mer

Analys av stationära punkter

Analys av stationära punkter Analys 36 En webbaserad analyskurs Differentialkalkyl Analys av stationära punkter Anders Källén MatematikCentrum LTH anderskallen@gmail.com Analys av stationära punkter 1 (17) Introduktion I det här kapitlet

Läs mer

SF1626 Flervariabelanalys

SF1626 Flervariabelanalys 1 / 14 SF1626 Flervariabelanalys Föreläsning 7 Henrik Shahgholian Vid Institutionen för matematik, KTH VT 2018, Period 3 2 / 14 SF1626 Flervariabelanalys Dagens Lektion Kap 12.8 1. Implicit definierade

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1

Läs mer

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1. Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf

Uppsala Universitet Matematiska Institutionen Bo Styf Uppsala Universitet Matematiska Institutionen Bo Styf Flervariabelanalys 5 hp, för STS 010-03-19 Genomgånget på föreläsningarna 6-11. Föreläsning 6, 14/4 010: Vi fortsatte med ett par exempel, där kedjeregeln

Läs mer

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Onsdagen den 5 mars 7 DEL A. I nedanstående rätvinkliga koordinatsystem är varje ruta en enhet lång. (a) Bestäm de rymdpolära

Läs mer

Linjärisering, Jacobimatris och Newtons metod.

Linjärisering, Jacobimatris och Newtons metod. Linjärisering, Jacobimatris och Newtons metod Analys och Linjär Algebra, del C, K/Kf/Bt, vt0 Inledning Vi skall lösa system av icke-linjära ekvationer Som exempel kan vi ta, x = 0, x = 0, som är ett system

Läs mer

Flervariabelanalys E2, Vecka 2 Ht08

Flervariabelanalys E2, Vecka 2 Ht08 Omfattning och innehåll Flervariabelanalys E2, Vecka 2 Ht08 12.2 Gränsvärden och kontinuitet. 12.3 Partiella derivator, tangentplan och normaler till funktionsytor. 12.4 Högre ordningens derivator. 12.5

Läs mer

2.5 Partiella derivator av högre ordning.

2.5 Partiella derivator av högre ordning. 2.3 Kedjeregeln Pass 4 Antag att: 1. funktionen f( x) = (f 1 (x 1, x 2,..., x n ),..., f m (x 1, x 2,..., x n )) är dierentierbar i N R n ; 2. funktionen g( t) = (g 1 (t 1, t 2,..., t p ),..., g n (t 1,

Läs mer

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1)

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1) ATM-Matematik Mikael Forsberg 734 41 3 31 Flervariabelanalys mag31 1669 Skrivtid: 9:-14:. Inga hjälpmedel förutom bifogad formelsamling. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Uppgifter inför KS4 den 11 april Matematik II för CL. SF1613.

Uppgifter inför KS4 den 11 april Matematik II för CL. SF1613. Uppgifter inför KS4 den 11 april 011. Matematik II för CL. SF1613. 1. En humla flyger längs kurvan (given på parameterform) x = t,y = t 3, t " 0. Då t = 1 upptäcker humlan en blomma i punkten (5,3) och

Läs mer

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.) Lösningsskisser till TATA69 Flervariabelanalys 16-1- 1 Stationära punkter ges av f (4x 3 + 4x, 3y + 6z, z + 6y (,,, dvs (x, y, z (,, eller (x, y, z (, 6, 18 Ur andraderivatorna fås de kvadratiska formerna

Läs mer

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet

Läs mer

Parabeln och vad man kan ha den till

Parabeln och vad man kan ha den till Parabeln och vad man kan ha den till Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I det här dokumentet diskuterar vi vad parabeln är för geometrisk konstruktion och varför den

Läs mer

Y=konstant V 1. x=konstant. TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN.

Y=konstant V 1. x=konstant. TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN. Tangentplan Linjära approimationer TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z LINEARISERING NORMALVEKTOR NORMALRIKTNING TILL YTAN Låt z vara en dierentierbar unktion i punkten a b Då är N a b a b en normalvektor

Läs mer

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5

Läs mer

1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f.

1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f. 1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f. 2. Beräkna gränsvärdet (eller visa att det inte finns):

Läs mer

Matlab övningsuppgifter

Matlab övningsuppgifter CTH/GU MVE5-7/8 Matematiska vetenskaper Matlab övningsuppgifter Inledning Vi skall först se hur man kan lösa system av icke-linjära ekvationer. Därefter skall vi se på optimering utan bivillkor. Vi skall

Läs mer

x +y +z = 2 2x +y = 3 y +2z = 1 x = 1 + t y = 1 2t z = t 3x 2 + 3y 2 y = 0 y = x2 y 2.

x +y +z = 2 2x +y = 3 y +2z = 1 x = 1 + t y = 1 2t z = t 3x 2 + 3y 2 y = 0 y = x2 y 2. Lösningar till tentamen i Inledande matematik för M/TD, TMV155/175 Tid: 2006-10-27, kl 08.30-12.30 Hjälpmedel: Inga Betygsgränser, ev bonuspoäng inräknad: 20-29 p. ger betyget 3, 30-39 p. ger betyget 4

Läs mer

MMA127 Differential och integralkalkyl II

MMA127 Differential och integralkalkyl II Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA17 Differential och integralkalkyl II Tentamen Lösningsförslag 9..19 8. 11. Hjälpmedel: Endast skrivmaterial (gradskiva tillåten).

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 14 19

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 14 19 LINKÖPINGS UNIVERSITET Matematiska Institutionen Joakim Arnlind Tentamen i Anals B för KB/TB (TATA9/TEN1 214-3-21 kl 14 19 Inga hjälpmedel är tillåtna. Varje uppgift kan ge maximalt 3 poäng. Betgsgränser:

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015

SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Torsdagen den 2 augusti 215 Skrivtid: 8:-1: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Optimering med bivillkor

Optimering med bivillkor Kapitel 9 Optimering med bivillkor 9.1. Optimering med bivillkor Låt f(x) vara en funktion av x R. Vi vill optimera funktionen f under bivillkoret g(x) =C (eller bivllkoren g 1 (x) =C 1,..., g k (x) =C

Läs mer

Repetitionsfrågor i Flervariabelanalys, Ht 2009

Repetitionsfrågor i Flervariabelanalys, Ht 2009 Repetitionsfrågor i Flervariabelanalys, Ht 2009 Serier 1. Visa att för en positiv serie är summan oberoende av summationsordningen. 2. Visa att för en absolutkonvergent serie är summan oberoende av summationsordningen.

Läs mer

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z. Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del, flervariabel, för F1. Tentamen onsdag 7 maj 9, 1.-19. 1. Låt F (x, y, z) sin(x + y z) + x + y + 6z. a)

Läs mer

Figur 1: Postföretagets rektangulära låda, definitioner.

Figur 1: Postföretagets rektangulära låda, definitioner. ATM-Matematik Mikael Forsberg 734-41 3 31 För distans och campus Flervariabelanalys ma1b 14 8 13 Skrivtid: 9:-14:. Inga hjälpmedel, förutom den bifogade formelsamlingen. Lösningarna skall vara fullständiga

Läs mer

Kontrollskrivning 1A

Kontrollskrivning 1A Kontrollskrivning 1A i 5B1147 Flervariabelanalys för E, vt 2007. 1. Låt g(t) vara en deriverbar envariabelsfunktion. Visa att tvåvariabelsfunktionen f(x, y) = g(2x y 2 ) satisfierar den partiella differentialekvationen

Läs mer

Om ellipsen och hyperbelns optiska egenskaper

Om ellipsen och hyperbelns optiska egenskaper Om ellipsen och hyperbelns optiska egenskaper Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning Ellipser och hyperbler är, liksom parabeln, s.k. kägelsnitt, dvs kurvor som uppkommer

Läs mer

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm

Läs mer

Partiella differentialekvationer av första ordningen

Partiella differentialekvationer av första ordningen Partiella differentialekvationer av första ordningen Kjell Holmåker 23 februari 2005 En kvasilinjär partiell differentialekvation av första ordningen är av formen P (x, y, u)u x + Q(x, y, u)u y = R(x,

Läs mer

Inlämningsuppgift nr 2, lösningar

Inlämningsuppgift nr 2, lösningar UPPALA UNIVRITT MATMATIKA INTITUTIONN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 8 Inlämningsuppgift nr, lösningar. Visa att ekvationen x + x(y ) + (y ) + z + sin(yz) definierar z som en funktion

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 15-8- EL A 1. Betrakta funktionen f som är definierad i området där x + y genom f(x, y, z) x z x + y. (a) Beräkna gradienten f(x, y, z). (1 p) (b)

Läs mer

SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017

SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017 Institutionen för matematik SF66 Flervariabelanalys Tentamen Onsdagen den 5 mars 7 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

Optimering med bivillkor

Optimering med bivillkor Optimering med bivillkor Vi ska nu titta på problemet att hitta max och min av en funktionen f(x, y), men inte över alla möjliga (x, y) utan bara för de par som uppfyller ett visst bivillkor g(x, y) =

Läs mer

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Måndagen den 16 mars 2015 SF1626 Flervariabelanalys Bedömningskriterier till tentamen Måndagen den 16 mars 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det

Läs mer

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z)

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z) Kap. 15.1 15.2, 15.4, 16.3. Vektorfält, integralkurva, konservativa fält, potential, linjeintegraler av vektorfält, enkelt sammanhängande område, oberoendet av vägen, Greens formel. A 1701. Undersök om

Läs mer

x f x + y f y x. 2 Funktionen f(x, y) uppfyller alltså given differentialekvation.

x f x + y f y x. 2 Funktionen f(x, y) uppfyller alltså given differentialekvation. SF1626 Flervariabelanalys Svar och lösningsförslag till Tentamen 14 mars 211, 8. - 13. 1) Visa att funktionen f, y) = y4 y ) 2 +2 sin är en lösning till differentialekvationen f + y f y = 2f. Lösning:

Läs mer

1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 26-3-2 DEL A. Låt D vara fyrhörningen med hörn i punkterna, ), 6, ),, 5) och 4, 5). a) Skissera fyrhörningen D och beräkna dess area. p) b) Bestäm

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Sep 4, 2018 1. Fält och derivator Ett fält är en fysikalisk storhet

Läs mer

Optimeringsproblem. 1 Inledning. 2 Optimering utan bivillkor. CTH/GU STUDIO 6 TMV036c /2015 Matematiska vetenskaper

Optimeringsproblem. 1 Inledning. 2 Optimering utan bivillkor. CTH/GU STUDIO 6 TMV036c /2015 Matematiska vetenskaper CTH/GU STUDIO TMV3c - 1/15 Matematiska vetenskaper Optimeringsproblem 1 Inledning Vi skall söka minsta eller största värdet hos en funktion på en mängd, dvs. vi skall lösa s.k. optimeringsproblem min f(x)

Läs mer

TMV036 Analys och Linjär Algebra K Kf Bt, del C

TMV036 Analys och Linjär Algebra K Kf Bt, del C MATEMATIK Hjälpmedel: Inga Chalmers tekniska högskola Datum: -- kl 4 8 Tentamen Telefonvakt: Richard Lärkäng tel 3-8834 TMV36 Analys och Linjär Algebra K Kf Bt, del C Tentan rättas och bedöms anonymt Skriv

Läs mer

SF1626 Flervariabelanalys Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1626 Flervariabelanalys Tentamen 18 augusti 2011, Svar och lösningsförslag SF166 Flervariabelanalys entamen 18 augusti 11, 14. - 19. Svar och lösningsförslag 1) Låt fx, y) = xy lnx + y ). I vilken riktning är riktningsderivatan till f i punkten 1, ) som störst, och hur stor är

Läs mer

Övningstenta: Lösningsförslag

Övningstenta: Lösningsförslag Övningstenta: Lösningsförslag Onsdag 5 mars 7 8:-: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. (4 poäng) Bestäm tangentplanet i punkten (,, ) till ytan z f(x, y) där f(x, y) x 4

Läs mer

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2 Lösningsförslag till tentamen TMA43 Flervariabelanalys E 4-8-3 kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Åse Fahlander, telefon: 73 88 34 Hjälpmedel: bifogat formelblad,

Läs mer

Tentamensskrivning i matematik GISprogrammet MAGA45 den 23 augusti 2012 kl 14 19

Tentamensskrivning i matematik GISprogrammet MAGA45 den 23 augusti 2012 kl 14 19 Karlstads universitet matematik Peter Mogensen Tentamensskrivning i matematik GISprogrammet MAGA45 den 23 augusti 2012 kl 14 19 Tillåtna hjälpmedel: Godkänd räknare, bifogad formelsamling. Jourtelefon:

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 21 mars 2016

SF1626 Flervariabelanalys Tentamen Måndagen den 21 mars 2016 Institutionen för matematik SF626 Flervariabelanalys Tentamen Måndagen den 2 mars 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

III. Analys av rationella funktioner

III. Analys av rationella funktioner Analys 360 En webbaserad analyskurs Grundbok III. Analys av rationella funktioner Anders Källén MatematikCentrum LTH anderskallen@gmail.com III. Analys av rationella funktioner () Introduktion Vi ska nu

Läs mer

SF1626 Flervariabelanalys Tentamen 14 mars 2011,

SF1626 Flervariabelanalys Tentamen 14 mars 2011, SF1626 Flervariabelanalys Tentamen 14 mars 2011, 08.00-13.00 Skrivtid: 5 timmar Inga tillåtna hjälpmedel Eaminator: Hans Thunberg Tentamen består av nio uppgifter som vardera ger maimalt fyra poäng. På

Läs mer

Omtentamen (med lösningar) MVE085 Flervariabelanalys

Omtentamen (med lösningar) MVE085 Flervariabelanalys Omtentamen (med lösningar) MVE85 Flervariabelanalys 26--4 kl. 8.3 2.3 Examinator: Dennis Eriksson, Matematiska vetenskaper, Chalmers Telefonvakt: Anna Persson, telefon: 73 88 34 Hjälpmedel: endast bifogat

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 24-8-2 DEL A. Bestäm och skissera definitionsmängden till funktionen fx, y) = x 2 + y 2 + 2x 4y + + x. Är definitionsmängden kompakt? 4 p) Lösning.

Läs mer

201. (A) Beräkna derivatorna till följande funktioner och förenkla så långt som möjligt: a. x 7 5x b. (x 2 x) 4. x 2 +1 x + 1 x 2 (x + 1) 2 f.

201. (A) Beräkna derivatorna till följande funktioner och förenkla så långt som möjligt: a. x 7 5x b. (x 2 x) 4. x 2 +1 x + 1 x 2 (x + 1) 2 f. Kap..5,.8.9. Lutning, tangent, normal, derivata, höger och vänsterderivata, differential, allmänna deriveringsregler, kedjeregel, derivator av högre ordning, implicit derivering. Gränsvärden. 0. (A) Beräkna

Läs mer

x (t) = 2 1 u = Beräkna riktnings derivatan av f i punkten a i riktningen u, dvs.

x (t) = 2 1 u = Beräkna riktnings derivatan av f i punkten a i riktningen u, dvs. MATEMATIK Chalmers tekniska högskola Tentamen -8-8, kl. 4.-8. TMV6 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Adam Andersson, telefon: 7-884 Hjälpmedel: Inga, bara papper och penna. För full

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Christoffer Standar LMA033a Matematik BI

Chalmers tekniska högskola Datum: kl Telefonvakt: Christoffer Standar LMA033a Matematik BI MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 443 kl. 8.3.3 Tentamen Telefonvakt: Christoffer Standar 73 88 34 LMA33a Matematik BI Tentan rättas och bedöms anonymt. Skriv tentamenskoden

Läs mer

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp MAA7 Derivatan 2. Funktionens egenskaper 2.1 Repetition av grundbegerepp - Det finns vissa begrepp som återkommer i nästan alla kurser i matematik. Några av dessa är definitionsmängd, värdemängd, största

Läs mer

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

Övningar till Matematisk analys III Erik Svensson

Övningar till Matematisk analys III Erik Svensson MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik -8-8 Övningar till Matematisk analys III Erik Svensson. För varje gränsvärde nedan bestäm gränsvärdet eller visa att gränsvärdet inte existerar.

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så

Läs mer

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015 SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XV. Föreläsning XV. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XV. Föreläsning XV. Mikael P. Sundqvist Föreläsning XV Mikael P. Sundqvist Förändring och lutning Till snälla funktioner kan man prata om förändring. Med det menar vi lutningen på den linje som tangerar grafen (se den blå linjen). Den röda och

Läs mer

Gamla tentemensuppgifter

Gamla tentemensuppgifter Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi

Läs mer

1. Beräkna och klassificera alla kritiska punkter till funktionen f(x, y) = 6xy 2 2x 3 3y 4 2. Antag att temperaturen T i en punkt (x, y, z) ges av

1. Beräkna och klassificera alla kritiska punkter till funktionen f(x, y) = 6xy 2 2x 3 3y 4 2. Antag att temperaturen T i en punkt (x, y, z) ges av ATM-Matematik Mikael Forsberg 74-41 1 För ingenjörs- och distansstudenter Flervariabelanalys ma1b 15 1 14 Skrivtid: 9:-14:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja

Läs mer

6 Derivata och grafer

6 Derivata och grafer 6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg OvnTenta Matematik Skrivtid. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor. Skriv namn på

Läs mer

x(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen:

x(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen: Differentialekvationer II Modellsvar: Räkneövning 6 1. Lös det icke-homogena linjära DE-systemet ( ( 0 e x t (t = x(t + 1 3 e t med elimineringsmetoden. Lösning: den explicita formen av DE-systemet är

Läs mer

Parabeln och vad man kan ha den till

Parabeln och vad man kan ha den till Parabeln och vad man kan ha den till Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I den här artikeln diskuterar vi vad parabeln är för geometrisk konstruktion och varför den

Läs mer