3.5. Schrödingerekvationen för atomer med en elektron

Relevanta dokument
2.4. Bohrs modell för väteatomen

2.4. Bohrs modell för väteatomen

2.7. Egenfunktionernas tolkning - fortsättning

2.8. Sannolikhetstäthetens vinkelberoende

19.4 Bohrs modell för väteatomen.

Andra föreläsningen kapitel 7. Patrik Lundström

Väteatomen. Matti Hotokka

F3: Schrödingers ekvationer

2.16. Den enkla harmoniska oscillatorn

TENTAMEN I KVANTFYSIK del 1 (5A1324 och 5A1450) samt KVANTMEKANIK (5A1320) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 2007

2.14. Spinn-bankopplingen

KEMA00. Magnus Ullner. Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från

4-1 Hur lyder Schrödingerekvationen för en partikel som rör sig i det tredimensionella

Utveckling mot vågbeskrivning av elektroner. En orientering

VI. Rörelsemängdsmomentets kvantisering

1.13. Den tidsoberoende Schrödinger ekvationen

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik

Rydbergs formel. Bohrs teori för väteliknande system

Instuderingsfrågor, Griffiths kapitel 4 7

Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0

Kvantmekanik. Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen (och i den makroskopiska!) Kvantmekanik.

Litiumatomens spektrum

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).

Atom- och kärnfysik med tillämpningar -

1.7. Tolkning av våg partikeldualiteten

Materiens Struktur. Lösningar

Atom- och kärnfysik med tillämpningar -

Kvantmekanik - Gillis Carlsson

Kvantmekanik. Kapitel Natalie Segercrantz

Kvantmekanik II (FK5012), 7,5 hp

Tentamen. TFYA35 Molekylfysik, TEN1 24 oktober 2016 kl Skrivsal: G34, G36, G37

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

c = λ ν Vågrörelse Kap. 1. Kvantmekanik och den mikroskopiska världen Kvantmekanik 1.1 Elektromagnetisk strålning

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

Kapitel 7. Atomstruktur och periodicitet

VIII. Spinn- och magnetisk växelverkan

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

Dugga i FUF040 Kvantfysik för F3/Kf3

1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter!

1.15. Andra potentialbrunnar och barriärer

7. Atomfysik väteatomen

1.7. Tolkning av våg partikeldualiteten

Kapitel 7. Atomstruktur och periodicitet. Kvantmekanik Aufbau Periodiska systemet

Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057).

Tentamen i Modern fysik, TFYA11/TENA

Formelsamling, Kvantmekanik

Fysik TFYA86. Föreläsning 11/11

1.5 Våg partikeldualism

1.13. Den rektangulära potentialbrunnen

Lösningsförslag envariabelanalys

Milstolpar i tidig kvantmekanik

Kapitel 7. Atomstruktur och periodicitet. Kvantmekanik Aufbau Periodiska systemet

Kapitel 4. Materievågor

Kvantfysik SI1151 för F3 Tisdag kl

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A

Dubbelintegraler och volymberäkning

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016

Mekanik I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av

Fysik TFYA86. Föreläsning 10/11

Vektoranalys I. Anders Karlsson. Institutionen för elektro- och informationsteknik

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)

Lösning till kontrollskrivning 1A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

ENDIMENSIONELL ANALYS A3/B kl INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. lim

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

Kommer sig osäkerheten av att vår beskrivning av naturen är ofullständig, eller av att den fysiska verkligheten är genuint obestämd?

Institutionen för Matematik, KTH Torbjörn Kolsrud

LUNDS TEKNISKA HÖGSKOLA MATEMATIK. LÖSNINGAR FLERDIMENSIONELL ANALYS, FMA kl 8 13

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

LABORATION ENELEKTRONSPEKTRA

Lösningar Heureka 2 Kapitel 14 Atomen

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller

SF1626 Flervariabelanalys Tentamen Måndagen den 26 maj, 2014

ANDREAS REJBRAND Elektromagnetism Coulombs lag och Maxwells första ekvation

Kvantmekanik II - Föreläsning 7

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

Dopplereffekt och lite historia

Relativitetsteorins grunder, våren 2016 Räkneövning 6 Lösningar

TENTAMEN I FYSIKALISK KEMI KURS: KEM040 Institutionen för kemi Göteborgs Universitet Datum: LÄS DETTA FÖRST!

16. Spridning av elektromagnetisk strålning

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

Fysik TFYA68. Föreläsning 11/14

Föreläsning 6. Amplituder Kvanttillstånd Fermioner och bosoner Mer om spinn Frågor Tentan. Fk3002 Kvantfysikens grunder 1

Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik

Elektrodynamik. Elektrostatik. 4πε. eller. F q. ekv

FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 2015, kl 17:00-22:00

Preliminärt lösningsförslag till Tentamen i Modern Fysik,

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

KVANTMEKANIK SAMMANFATTNING Om du hittar fel eller oklarheter, skicka mig ett mail.

Tentamen i Modern fysik, TFYA11/TENA

Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25.

TATA44 Lösningar 26/10/2012.

1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner?

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

Tentamen i Modern fysik, TFYA11, TENA

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

Transkript:

3.5. Schrödingerekvationen för atomer med en elektron [Understanding Physics: 19.5-19.8] Bohrs teori lyckas väl förklara energinivåerna för en atom med en elektron, och således också spektrallinjerna, men är otillfredsställande i andra avseenden: 1. Den fungerar endast för atomer med en elektron, men inte t.ex. för helium, och andra atomer med flere elektroner. 2. Teorin kan inte användas t.ex. för att beräkna spektrallinjernas intensiteter. 3. Postulaten är något godtyckliga, och kan strida mot den klassiska fysiken (t.ex. det andra postulatet). Postulaten är formulerade så att de stämmer överens med de experimentella resultaten ( bevarar fenomenen ), men utan närmare motivering. För att fördjupa vår förståelse av atomerna, skall vi nu behandla den väteliknande atomen kvantmekaniskt. Vi skall först skriva upp Schrödingerekvationen för systemet, och börjar med uttrycket för potentialenergin: U(r) = 1 4πɛ 0 Ze 2 r, Den moderna fysikens grunder, Tom Sundius 2007 1

som i kartesiska koordinater kan skrivas U(x, y, z) = 1 4πɛ 0 Ze 2 x2 + y 2 + z 2. Som vi ser, är potentialenergin sfäriskt symmetrisk. I tre dimensioner kan Schrödinger ekvationen uttryckas explicit ( ) 2 2 ψ 2m x + 2 ψ 2 y + 2 ψ + U(x, y, z)ψ = Eψ, 2 z 2 eller kortare med Laplace operatorn 2 2 2m 2 ψ + Uψ = Eψ. Vågfunktionen beror i detta fall i allmänhet av alla tre koordinaterna x, y och z. Atomens Schrödingerekvation skiljer sig från de tidigare behandlade endimensionella ekvationerna såtillvida, att vi nu har ett system med två partiklar, som emellertid kan reduceras till ett enkroppsproblem med hjälp av den reducerade massan. Dessutom är Schrödinger ekvationen nu ett tredimensionellt problem, vilket gör lösningen mera komplicerad. Den moderna fysikens grunder, Tom Sundius 2007 2

Den tredimensionella Schrödingerekvationen kan lösas genom separation av variablerna, vilket i detta fall underlättas, om vi först övergår till sfäriska koordinater r (radien), θ (polära vinkeln), och φ (azimutvinkeln)(se diagrammet): x = r sin θ cos φ y = r sin θ sin φ z = r cos θ. Den moderna fysikens grunder, Tom Sundius 2007 3

Genom att insätta uttrycket för Laplace operatorn i sfäriska koordinater (se s. 737) i Schrödinger ekvationen fås 2 2µ [ 1 r 2 r ( ) r 2 ψ r + 1 r 2 sin θ θ där ψ nu uppfattas som en funktion av r, θ och φ. ( sin θ ψ ) θ ] 1 2 ψ + r 2 sin 2 + U(r)ψ = Eψ, θ φ 2 Det visar sig nu att dessa tre variabler kan separeras, ifall egenfunktionen ψ(r, θ, φ) uttrycks som en produkt av tre endimensionella funktioner R(r), Θ(θ) och Φ(φ): ψ = RΘΦ. Vi går inte här igenom detaljerna (som finns i boken), utan ger endast slutresultatet: (1)... (2)... 1 d sin θ dθ ( ) 1 d r 2 dr (3)... r 2 dr dr ( sin θ dθ dθ ) d 2 Φ dφ 2 = m2 l Φ + m2 l Θ sin 2 θ = l(l + 1)Θ + 2µ 2 (E U)R = l(l + 1) R r 2 Den moderna fysikens grunder, Tom Sundius 2007 4

Vi har alltså slutligen erhållit tre differentialekvationer i avseende på variablerna r, θ och φ, som kan lösas var för sig. För att en lösning skall vara fysikaliskt meningsfull, så måste den vara entydig och överallt ändlig. Lösningen till ekvation (1) är Φ = e im l φ. Av entydighetsvillkoret följer då, att funktionen måste anta samma värde för φ = 0 och φ = 2π, dvs e im l 0 = e im l 2π, eller alltså 1 = cos m l 2π + i sin m l 2π. Detta villkor är uppfyllt endast om m l = 0, ±1, ±2,.... Lösningarna till ekvation (2), Θ(θ), visar sig vara ändliga endast om l är ett heltal, som antar värdena m l, m l + 1, m l + 2,..., dvs om l m l. Lösningarna kallas associerade Legendre polynom, och de beror av l och m: Θ l,ml (θ) = P m l l (cos θ). Ekvation (3) brukar kallas för den radiella Schrödinger ekvationen. Dess lösningar R n,l (r), som vi senare skall studera mera, beror av l och n, där n är ett heltal, som antar värdena 1, 2, 3,... då n > l. De motsvarande energierna för en väteliknande atom visar sig kunna skrivas i formen E n = Z2 µe 4 1 32π 2 2 ɛ 2 0 n = E 0 2 Z2 n 2 Som vi ser, överensstämmer uttrycket för Z = 1 med Bohrs resultat. Den moderna fysikens grunder, Tom Sundius 2007 5

De tre heltalen n, l och m som vi fått fram genom att studera väteatomens Schrödinger ekvation, är kvanttal, som uppfyller följande villkor: 1. n = 1, 2,... kallas huvudkvanttalet, emedan det bestämmer systemets totala energi. 2. l som kallas bankvanttalet (eller sidokvanttalet), antar endast sådana heltaliga värden för vilka l < n, dvs l = 0, 1, 2,..., n 1. För ett givet värde av n kan l därför anta n värden. 3. m l, som kallas det magnetiska kvanttalet, kan bara anta heltaliga värden som uppfyller villkoret m l l, dvs m l = l,..., 1, 0, +1,..., +l. För ett givet värde av l kan m l alltså anta 2l + 1 värden. Lösningarna till den tidsoberoende Schrödinger ekvationen för väteatomen kan alltså skrivas ψ n,l,ml (r, θ, φ) = R n,l (r)θ l,ml (θ)φ ml (φ) (vågfunktionen för en elektron kallas atomorbital (AO) i kemin). Vi skall ännu se hur man kan karaktärisera atomens olika tillstånd. Som vi ser, beror energierna endast av totala kvanttalet n, fastän många olika värden av l och m l är möjliga, och således också många egenfunktioner, för varje givet värde av n. Olika värden av l och m l svarar alltså mot samma värde av n, vilket kallas för degeneration (vi skall senare se att degenerationen kan upphävas). Den moderna fysikens grunder, Tom Sundius 2007 6

I det lägsta energitillståndet (n = 1), kan både l och m l endast anta värdet 0. Det finns alltså endast en uppsättning kvanttal (n, l, m l ) = (1, 0, 0), och således endast en egenfunktion, som betecknas ψ 1,0,0 (detta är inte ett degenererat tillstånd). I följande energitillstånd (n = 2), kan l antingen anta värdet 0 eller 1. Då l = 0, så är m l endast 0, men då l = 1, så kan m l anta värdena 1, 0 eller +1. Det finns alltså sammanlagt fyra olika uppsättningar kvanttal för n = 2, och fyra egenfunktioner: ψ 2,0,0, ψ 2,1, 1, ψ 2,1,0, ψ 2,1,1. Detta energitillstånd är alltså fyrfaldigt degenererat. Kvanttalen (n, l) för atomtillstånden brukar ofta anges med spektroskopiska beteckningar: l = 0, 1, 2, 3, 4, 5, 6, 7,... s, p, d, f, g, h, i, k,..., etc Dessa beteckningar har ursprungligen fått sitt namn efter utseendet på spektrallinjerna i vissa serier: skarpa, principala, diffusa och fundamentala. Tillstånd med kvanttalen (n, l) = (1, 0), (2, 0), (2, 1), (3, 0), (3, 1) och (3, 2) betecknas därför 1s, 2s, 2p, 3s, 3p och 3d. Den moderna fysikens grunder, Tom Sundius 2007 7

3.6. De lägsta tillståndens radiella egenfunktioner Om inte bara potentialenergin, utan också vågfunktionerna har sfärisk symmetri, är det speciellt enkelt att lösa Schrödinger ekvationen. Lösningarna beror då inte alls av vinklarna θ och φ ( ψ ψ θ = 0 och φ = 0), och Laplace operatorn antar en mycket enkel form: 2 ψ = d2 ψ dr + 2 dψ 2 r dr. Schrödinger ekvationen kan alltså skrivas 2 2m ( d 2 ψ dr 2 + 2 r ) dψ dr + U(r)ψ = Eψ, eller alltså d 2 ψ dr + 2 dψ 2 r dr + 2m (E U(r))ψ = 0, 2 som överensstämmer med den radiella Schrödinger ekvationen för väteatomen då l = 0. Den moderna fysikens grunder, Tom Sundius 2007 8

I allmänhet beror lösningarna givetvis på den exakta formen av U(r). Ett exempel är t.ex. en potentialfunktion, som är omvänt proportionell mot avståndet r: U = C r (för en väteliknande atom är C = Ze 2 /(4πɛ 0 )). Genom att substituera detta uttryck i den radiella ekvationen får vi d 2 ψ dr 2 + 2 r dψ dr + 2mE 2 ψ + 2mC 2 1 r ψ = 0. En enkel lösningsansats är ψ = Ae γr, γ > 0 (positiva exponenter ger icke-normerbara lösningar). Eftersom dψ dr = γae γr och d2 ψ dr 2 Ae γr γ 2 + 2 eller alltså ( γ 2 + 2mE = γ2 Ae γr, så ger substitution, och efterföljande division med 2mC ( γ) + r ) 2 + 1 2 r + 2mE = 0 2 ( 2γ + 2mC 2 ) 1 r = 0. Liksom tidigare kan vi konstatera, att om denna ekvation skall gälla för alla värden av r, så måste koefficienterna (parentesuttrycken) försvinna, och vi får alltså γ = mc 2 och E = 2 2m γ2 = 2 2m ( mc 2 ) 2 = mc2 2 2. Den moderna fysikens grunder, Tom Sundius 2007 9

Således är ψ 1 (r) = Ae mc 2 r en giltig lösning till ekvationen, och den visar sig också representera grundtillståndet. För en väteliknande atom är C = Ze 2 /(4πɛ 0 ), som kan skrivas C = [ 2 /(µa 0 )]Z om vi utnyttjar definitionen på a 0, och ersätter m med den reducerade massan µ. Således är γ = µc/ 2 = Z/a 0, och E 1 = µc2 2 2 = µ 2 2 ( Ze 2 4πɛ 0 ) 2 = µ 2 2 Z 2 e 4 (4πɛ 0 ) 2, som med utnyttjande av definitionen på E 0 kan skrivas E 1 = Z 2 E 0, vilket visar att detta är grundtillståndet för en väteliknande atom. Den motsvarande vågfunktionen kan också skrivas ψ 1 = Ae Zr/a 0. Detta är den radiella Schrödinger ekvationens lösning för n = 1, l = 0, varför vi alltså har R n,l (r) = R 1,0 (r) = Ae Zr/a 0. De högre tillstånden behandlas inte här. Den moderna fysikens grunder, Tom Sundius 2007 10

3.7. Egenfunktionernas tolkning Vi har nu visat hur man (i princip) kan bestämma egenfunktionerna ψ n,l,ml (r, θ, φ) och hur de motsvarande tillstånden karaktäriseras. Vi skall nu studera dem mera i detalj. Den allmänna formen av Φ ml (φ) och R n,l (r) känner vi redan. Egenfunktionerna Θ l,ml (θ), som är av formen kallas associerade Legendre funktioner. Θ l,ml (θ) = sin m l θf l, ml (cos θ). Tabell 19.1 visar egenfunktionerna för n = 1, 2 och 3. Dessa egenfunktioner är normerade, dvs sannolikheten för att finna elektronen någonstans i rummet är 1: ψ n,l,m ψ n,l,ml dv = 1, l hela rummet där dv är ett volymelement. Observera, att egenfunktionerna ψ 1,0,0 och ψ 2,0,0 är oberoende av vinklarna θ och φ, de är därför sfäriskt symmetriska. Beroendet av θ uppträder först i egenfunktionen ψ 2,1,0. I detta fall, där m l = 0, har polynomet Den moderna fysikens grunder, Tom Sundius 2007 11

F l,ml (cos θ) den enkla formen cos θ. För egenfunktionerna ψ 2,1,±1 gäller m l = ±1, så att sin m l θ = sin θ och polynomet F l,ml (cos θ) är lika med 1. Beroendet av φ uppträder först då m l är olika noll, alltså i egenfunktionerna ψ 2,1,±1. Vi har tidigare konstaterat, att en egenfunktion inte kan observeras direkt. Endast kvadraten på dess norm är en storhet som i princip kan mätas. Den beskriver sannolikheten för att man skall finna en partikel i en viss enhetsvolym. Vi studerar därför vågfunktionerna utgående från deras sannolikhetstätheter. I det endimensionella fallet är sannolikhetstätheten P (x)dx = ψ (x)ψ(x)dx, som anger sannolikheten att partikeln skall befinna sig inom intervallet [x, x + dx]. I det tredimensionella fallet är sannolikheten att elektronen skall befinna sig inom en volym dv som innehåller punkten (r, θ, φ) lika med P n,l,ml (r, θ, φ)dv = [R n,l R n,l][θ l,m l Θ l,ml ][Φ m l Φ ml ]dv Sannolikhetstätheten består därför av tre delar, en radiell del och två vinkelberoende delar. Vi skall först studera den radiella delen. Om vi integrerar sannolikhetstätheten över en volym som är innesluten mellan två sfäriska skal med radierna r och r + dr, får vi sannolikheten för att elektronen befinner sig på ett avstånd mellan r och r + dr från atomens medelpunkt: P n,l (r)dr = R n,l (r)r n,l(r) 4πr 2 dr, där volymelementet dv är 4πr 2 dr. Den moderna fysikens grunder, Tom Sundius 2007 12

Fig. 19.16 visar funktionerna P n,l (r) för n = 1, 2 och 3 (figuren nedan visar P 1,0, P 2,0 och P 2,1 ). Den moderna fysikens grunder, Tom Sundius 2007 13

Vi ser att P 1,0 (r) har endast ett maximum: ( Z ) 3 ( e 2Zr/a 0 Z 4πr 2 = 4 ) 3 r 2 e 2Zr/a 0. P 1,0 (r) = 1 π a 0 a 0 Då r a 0 /2Z, så är e 2Zr/a 0 1, och P 1,0 (r) ökar först proportionellt mot r 2. Men då r växer, kommer 2Zr att närma sig a 0, den exponentiella termen e 2Zr/a 0 minskar, och P 1,0 (r) närmar sig noll för stora värden av r. Således har P 1,0 (r) ett maximum för r = a 0. Alla väteatomens egenfunktioner innehåller en term e Zr/na 0, vilket innebär, att sannolikheten att finna elektronen på ett avstånd Zr na 0 är mycket liten. Pga den exponentiella termen är sannolikheten att finna elektronen långt utanför en Bohr bana ytterst liten. För egenfunktionen ψ 2,0,0 (eller alltså 2s tillståndet) är den radiella funktionens polynomfaktor 2 Zr/a 0, varför den motsvarande sannolikhetstätheten P 2,0 (r) är proportionell mot r 2 (2 Zr/a 0 ) 2. Denna funktion kommer därför att ha två maxima (se figuren), så att elektronen har en viss sannolikhet att befinna sig nära kärnan, men också en stor sannolikhet att befinna sig på ett större avstånd från kärnan. I Sommerfelds relativistiska atommodell kunde detta förklaras med hjälp av en elliptiska elektronbanor (se figuren). Den moderna fysikens grunder, Tom Sundius 2007 14

Fig. 19.16 visar också de radiella sannolikhetstätheterna för n = 3. Som vi kan se, har funktionerna P n,l (r) för de lägre l värdena extra maximer nära kärnan. Antalet maximer är som synes n l. Om elektronen befinner sig i något av dessa tillstånd är det sannolikare att elektronen befinner sig nära kärnan än om den befinner sig i något av tillstånden med större bankvanttal. Dessutom kan man visa, att väntevärdet av r: r n,l = 0 R n,l (r)rr n,l(r)4πr 2 dr avtar med ökande l för ett givet värde av n. Bohrmodellens banradie, n 2 a 0, stämmer bara någorlunda för tillstånd som har det största bankvanttalet n 1. De motsvarande sannolikhetsfördelningarna har då endast ett maximum, som uppnås för r = n 2 a 0. Den moderna fysikens grunder, Tom Sundius 2007 15

Härnäst skall vi studera vinkelberoendet av egenfunktionerna för n = 1 och n = 2. Den allmänna lösningen till den φ beroende ekvationen är Φ ml (φ) = e im l φ, varför sannolikheten Φ m l (φ)φ ml (φ) = e im l φ e im l φ = 1 för alla egenfunktioner för en elektron. Detta betyder att inga sådana sannolikhetstäthetsfunktioner kommer att att bero av φ. De förändras inte då φ varierar mellan 0 och 2π, dvs de är symmetriska i avseende på rotation kring z axeln. Beroendet av vinkeln θ kan åskådliggöras med hjälp av polära diagram för en funktion, som är proportionell mot Θ l,m l (θ)θ l,ml (θ) (se fig. 19.18, samt fig. ovan). Funktionerna ψ 1,0,0 (1s) och ψ 2,0,0 (2s) är oberoende av θ, så att Θ 0,0 (θ)θ 0,0(θ) = 1 och de polära diagrammen är följaktligen cirklar. För Den moderna fysikens grunder, Tom Sundius 2007 16

egenfunktionen ψ 2,1,0 (2p) är Θ 1,0 (θ)θ 1,0(θ) proportionell mot cos 2 θ, så att maxima ligger nära z axeln, där θ 0. För egenfunktionerna ψ 2,1,±1 (2p) är Θ 1,±1 (θ)θ 1,±1(θ) proportionell mot sin 2 θ, så att diagrammen uppvisar maximer i x, y planet, där θ π/2. För egenfunktionen ψ 3,2,±1 (3d) får man ett polärt diagram som liknar en fyrväppling. För högre l värden får man alltså ytterligare maxima i prefererade riktningar. I allmänhet är alla dessa distributioner symmetriska i avseende på rotation kring z axeln, så att det fullständiga tredimensionella vinkelberoendet erhålls genom att rotera de polära diagrammen kring z axeln. Distributionen för l = 0, m l = 0 blir således ett klot, för l = 1, m l = 0 får vi två ägg, och för l = 1, m l = ±1 en munkring. Atomens laddningsfördelning ρ n,l,ml (r, θ, φ) kan uttryckas med elektronens sannolikhetstäthet genom ekvationen ρ n,l,ml (r, θ, φ) = ep n,l,ml (r, θ, φ) = eψ n,l,m l (r, θ, φ)ψ n,l,ml (r, θ, φ), där e är elektronladdningen. Elektronens sannolikhetstäthet kan därför också uppfattas som en tredimensionell laddningsfördelning. Den moderna fysikens grunder, Tom Sundius 2007 17

3.7.1. Tolkningen. Bohrs modell och Schrödingers modell I kapitel 19 i boken beskrivs först Bohrs enkla planetmodell för atomen och därpå en mer komplicerad kvantmekanisk modell. Bohrs modell konstruerades ursprungligen för att förklara uppkomsten av atomspektra, och lyckades därmed riktigt bra, speciellt när det gällde väteliknande atomer. För atomer med flera elektroner misslyckades den, vilket observerades redan för helium. Den största skillnaden mellan Bohrs modell och den kvantmekaniska modellen är, att i Bohrs modell antas elektronerna röra sig i cirkulära banor (Sommerfeld införde senare elliptiska banor, som hade vissa fördelar), medan elektronerna i den kvantmekaniska modellen inte alls rör sig i bestämda banor, utan istället karaktäriseras av en sannolikhetstäthet, som har olika värden på olika ställen. Elektronernas rörelse är också beroende av Heisenbergs osäkerhetsrelation, som leder till att vi inte exakt vet var en elektron befinner sig, även om vi skulle känna dess hastighet noggrannt. Enligt kausalitetslagen kan vi beräkna en kropps rörelse i framtiden om vi vet exakt var den nu befinner sig. Heisenberg ansåg, att denna lag inte gäller i kvantmekaniken, eftersom vi inte alltid känner kroppens ursprungliga position fullt noggrannt. I Bohrs modell kan man beräkna var en elektron befinner i ett visst ögonblick, och med vilken hastighet den rör sig. Den är med andra ord helt deterministisk. Man kan använda den för att beräkna atomens energinivåer och spektrallinjernas lägen, men det är ingen garanti för att den är korrekt. Den moderna fysikens grunder, Tom Sundius 2007 18

Vi kan försöka förklara skillnaden mellan dessa två modeller med hjälp av en dialog mellan två hypotetiska personer, Simplicio och Salviati (idén lånad av Galilei): Simp. Är det något fel med att tänka sig elektroner som rör sig i cirkulära banor? Salv. En fysiker vid namn Louis de Broglie visade att elektronerna egentligen är vågor... Simp. Hej stopp! Vad menar du, är elektronerna vågor! Jag trodde de var partiklar! Salv. Här blir kvantfysiken rätt konstig. Om du gör ett experiment för att ta reda på var en partikel finns, då hittar du något som liknar en partikel. Men annars är den en våg som medför information om var elektronen sannolikt är. Diffraktionsexperimentet är ett annat sätt att upptäcka elektronernas vågpartikelnatur. Simp. Vad menar du, när du säger att elektronen sannolikt är någonstans. Är inte elektronen alltid på något bestämt ställe? Salv. Njaa... Innan du kontrollerar var den är, så är den egentligen bara en våg. Inte nog med det, Schrödinger har visat att elektronerna inte ens rör sig, vågorna är stationära. Varje gång du kollar var elektronen är kommer du att finna att den är på ett annat ställe, men det betyder inte att den har rört sig. Om man checkar positionen tillräckligt ofta, kommer man att kunna få ett banliknande mönster för vissa energinivåer, men vi skall inte inbilla oss att elektronerna verkligen rör sig i små cirklar. Simp. Var är då elektronen när jag inte tittar efter? Måste den inte vara nånstans? Den moderna fysikens grunder, Tom Sundius 2007 19

Salv. Det är just det som är det lustiga: elektronen är inte på något bestämt ställe när du inte tittar efter. Till all tur, för mestadels har det inte så stor betydelse var den i själva verket är, vi är bara intresserade av hur mycket energi den har. Simp. Aha! Det är därför banorna är till nytta! De kanske ger fel information om var elektronen är, men de säger hur mycket energi den har. Salv. Vi kallar detta för elektronens energinivå. Eftersom föreställningen om elektronbanor är missvisande, så har man börjat beskriva atomernas energinivåer med ett nivåschema. Simp. Och detta kallar vi för Schrödingers modell förstås. Den moderna fysikens grunder, Tom Sundius 2007 20

3.8. Spektrallinjernas intensitet; urvalsregler Vi har tidigare konstaterat, att Bohrs teori inte kan förklara spektrallinjernas intensitet. Den kvantmekaniska teorin har inte denna brist. Sannolikheten för att en övergång skall äga rum, kan beräknas om man känner vågfunktionerna för begynnelsetillståndet och sluttillståndet. Intensiteten kan därpå beräknas ur övergångssannolikheten. Atomen, där övergången sker, kan anses ha en laddningsfördelning, som oscillerar mellan distributionerna i grundtillståndet och sluttillståndet. Det oscillerande laddningsmolnet är inte sfäriskt symmetriskt, utan den positiva och negativa laddningen är åtskiljda, och separationen varierar då molnet oscillerar. Oscillationen innebär, att laddningen accelererar, och som vi vet, så alstrar en accelererande laddning elektromagnetisk strålning. Den största övergångssannolikheten, och därmed också den starkaste emissionen av elektromagnetisk strålning åstadkoms av ett oscillerande elektriskt dipolmoment (jfr s. 441). Atomens elektriska dipolmoment är p = er, där r är separationen mellan den positiva och negativa laddningen. Hastigheten, varmed den elektromagnetiska strålningen därvid emitteras, är proportionell mot p 2, som visar sig vara proportionell Den moderna fysikens grunder, Tom Sundius 2007 21

mot kvadraten på integralen hela rymden Ψ f (r, θ, φ, t)( er)ψ i(r, θ, φ, t)dv, där funktionerna Ψ i (r, θ, φ, t) = ψ i (r, θ, φ)e ie i t/ och Ψ f (r, θ, φ, t) = ψ f (r, θ, φ)e ie f t/ beskriver begynnelsetillståndet, resp. sluttillståndet, och E i och E f är de motsvarande energierna. Eftersom Ψ f (r, θ, φ, t) = ψ f (r, θ, φ)eie f t/, så kan integralen skrivas i formen hela rymden ψ f (r, θ, φ)eie f t/ ( er)ψ i (r, θ, φ)e ie i t/ dv = e i(e f E i )t/ hela rymden ψ f (r, θ, φ)( er)ψ i(r, θ, φ)dv Faktorn e i(e f E i )t/ är en periodisk funktion, vars frekvens är ω = 2πf = (E f E i )/. Den utsända strålningens frekvens är alltså f = (E f E i )/h. Den moderna fysikens grunder, Tom Sundius 2007 22

Den elektriska dipolintegralen hela rymden ψ f (r, θ, φ)( er)ψ i(r, θ, φ)dv bestämmer strålningens emissionshastighet. Integralen är i hög grad beroende av egenfunktionernas symmetriegenskaper. Man kan visa, att symmetrin för en egenfunktion är beroende av kvanttalet l. Om l f och l i är bankvanttalen för slut, resp. begynnelsetillståndet, så kan man visa att integralen försvinner, om inte l = l f l i = ±1. Elektrisk dipolstrålning kommer därför att produceras endast om l = ±1, vilket kallas för en urvalsregel för denna övergång. Vi ska tillämpa den på Lyman serien, vilken som vi sett motsvarar övergångar mellan de exciterade nivåerna med n i = 2, 3, 4,... till grundtillståndet n f = 1. Grundtillståndet har l = 0, varför övergångar endast är möjliga från exciterade tillstånd med l = 1, dvs 2p, 3p, 4p,... tillstånden. Om vi tillämpar samma urvalsregel på Balmer serien, så ser vi, att varje spektrallinje egentligen består av tre övergångar. T.ex. den röda linjen (n i = 3 n f = 2) byggs upp av övergångarna 3p 2s, 3s 2p och 3d 2p. På grund av degenerationen observeras inte spjälkning av linjerna. Den moderna fysikens grunder, Tom Sundius 2007 23