Klippning i 2D: Cohen-Sutherland. Implementation aspects for display of computer graphics

Storlek: px
Starta visningen från sidan:

Download "Klippning i 2D: Cohen-Sutherland. Implementation aspects for display of computer graphics"

Transkript

1 Displylgoritmer: rstrering, klippning, HSE, LOD, Grip, DGI, DOA vt2008 Lrs Kjelldhl, en del bilder lånde v Gustv Txén Implementtion spets for disply of omputer grphis Steps in the rendering proess: Modeling (definition of objets,, e.g. struture with polygons) Geometri proessing (oordinte trnsformtions, lipping, hidden surfe elimintion) Rsteriztion (trnsformtion of objet desriptions to pixels) Disply (disply of frme buffer on sreen, inludes e.g. lising) We will fous on some ommon lgorithms in this proess Objektrum oh bildrum The lipping problem Objektrum Mn rbetr den mtemtisk beskrivningsnoggrnnheten Bildrum Mn rbetr med den noggrnnhet som ges bildpunktern (pixlrn) lines window Det blir ntlet objekt som vgör komplexiteten Det blir upplösningen som vgör komplexiteten The lipping problem Klippning i 2D: Cohen-Sutherlnd window lines lipped

2 Klippning i 2D: Cohen-Sutherlnd Klippning i 2D: Cohen-Sutherlnd Båd hr kod 0000: Linjen ligger i fönstret En hr kod 0000, den ndr inte. Linjen måste klipps mot fönstret Klippning i 2D: Cohen-Sutherlnd Klippning i 2D: Cohen-Sutherlnd AND 0100! 0000 Linjen syns inte i fönstret AND 0100 = 0000 Linjen knske behöver klipps mot fönstret Prmeter lipping (Cyrus-Bek, Ling-Brsky) Use p(") ) = (1- ")*p1 + " *p2 Clipping is done by first lulting " for lines tht you might lip (less work thn to lulte both x nd y) To lip with the egde x=xmin we get: " =(xmin- x1)/(x2-x1) P2 "1=0; "2=1; P1 for (ll four edges of window) { " =lulte(edgenr); if entering(edgenr) "11 =mx("1, 1,") ) else "22 =min("2, ")}; if "22 > "11 then drwline("1, "2); Polygon lipping Cn we use the line lipping lgorithm to lip polygon? new point With line lipping the new point ould not be inluded 2

3 Sutherlnd-Hodgemn's lgorithm Sutherlnd-Hodgemn's lgorithm Clip top s p Clip bottom Clip left Clip right for ll_window_edges { p=polypoint(1); for n=2 to n+1 { s=p; p=polypoint(n); if inside(s) nd inside(p) then sve(p); if inside(s) nd outside(p) then sve(interset interset(s,p)); if outside(s) nd inside(p) then {sve(interset(s,p)); sve(p) } } updte(polypoint polypoint); } Note tht in eh lipping phse of the polygon you hve to keep the order of the verties Wht hppens if the lipping give more thn one polygon? Uppdelening i konvex polygoner (tesseltion) Klippning i 3D x x z z 3

4 Rstrering Rstrering v linjer: Digitl Differentil Anlyzer (DDA) (x 1, y 1 ) (x 0, y 0 ) Låt linjens lutning vr m = (y 1 y 0 ) / (x 1 x 0 ) oh ntg tt 0 < m < 1. Diskretisering v en mtemtisk linje eller polygon. Sätt x = x 0 oh y = y 0. För vrje x = x + 1, låt y = y + m. Avrund oh rit ut pixel. Fungerr för m < 1 Vd gör vi om m > 1? Rstrering v linjer med heltlsritmetik: Bresenhm Rstrering v polygoner Line eqution n be written s F(x,y)=dy*x-dx*y+B*dx=0 (x p,y p ) NE M E d1 d2 The sign of F(x M,y M ) deides if we should hoose E or NE We denote d1=f(x M,y M )= dy*(x p +1)-dx*(y p +0.5)+B*dx Suppose we get d1<0, hoose E d2=f(x M +1,y M )= dy*(x p +2)-dx*(y p +0.5)+B*dx= d1+dy Similr result if d1>=0 Rstrering v polygoner Rstrering v polygoner Bresenhm för tt hitt x-värden. Lgr interpolerde värden längs med kntern. Fyll oh interpoler värden från vänster till höger. Sorter m..p. x-värden. 4

5 Rstrering v polygoner Rstrering v polygoner, särskild hntering v kntern kn iblnd behövs Linjär interpoltion Perspetive-orret Multi-Smple Anti-Alising (MSAA) Borttgning v skymd ytor Smplingsmönster Beräkn först pixelvärden för smplingspunktern......nvänd sedn 5 värden vid filtreringen! Hidden surfe removl Bkfe ulling Hdden surfe removl Hidden surfe removl Two min pprohes: investigte visibility for every pixel, i.e. resolution dependent (imge spe) investigte visibility for every objet, i.e. lulte intersetions et for ll objets, lines et with the preision of the omputer (objet( spe) Min ides Try to use the properties the objets, suh s: onvex objets? few objets, perhps only one objet? objets non interseting? stti view? dvned rendering wnted? 5

6 Bk-fe removl Imge spe hidden surfe removl The bk-fing polygons n be removed through simple test bs (#) < 90 or n o v > 0 n! eye v Z-buffer lgorithm Z-buffer lgorithm Use n extr buffer with depth vlues for eh pixel for every polygon { for eh pixel in polygom { if newpolygondepth(x,y) < depthvl_in_zbuffer(x,y) then {depthvl_in_zbuffer(x,y) <- newpolygondepth(x,y); frmebuffervlue <- newpolygonvlue } }} frmebuffer Z-buffer Z-buffring frmebuffer Z-buffer Fördelr: Effektiv. Funkr oberoende v komplexiteten i det som rits. Enkel tt implementer i hårdvr. Nkdelr: Alising! 8 bitr $ 256 distinkt djupvärden. Krävs extr minne på grfikkortet. frmebuffer Z-buffer 6

7 Depth sort lgorithm 1. Sort ll objet ording to depth 2. Pint (rsterize) them into frme buffer in the sorted order (strt with objet fr wy) Problem med pinter s s lgorithm inresing depth Vi måste del åtminstone någon polygon Binry Spe Prtitioning Trees (BSP-träd) b b Löser sorteringsproblemet för sttisk, pln, konvex polygoner (som dok kn h hur mång hörn som helst). 1) Välj en polygon.,, 2) Del rummet i två delr oh prtitioner. 3) För vrje delmängd, gör om rekursivt. 7

8 3) För vrje delmängd, gör om rekursivt. Klrt! Pinter s s lgorithm oh BSP-träd Pinter s s lgorithm oh BSP-träd Kmerposition Kmerposition Kmern är frmför, så vi sk först rit ut llt bkom, sedn oh sist llt frmför. Kmern är frmför, så vi sk först rit ut llt bkom, sedn oh sist llt frmför. Pinter s s lgorithm oh BSP-träd Vl v prtitionspln Kmerposition b b Slutordning:,,,. Vl v prtitionspln kn h stor betydelse för slutresulttet. Tumregel: Välj det prtitionspln som skpr minst ntl polygondelningr. 8

9 Kombintion v BSP-träd oh Z-buffring Overdrw Med pinter pinter s lgorithm kommer polygoner långt bk tt rits över v polygoner längre frm. frm. Betyder tt ljussättning, ljussättning, texturering, texturering, m.m. ppliers i onödn för de flest polygoner! polygoner! Dett problem klls för overdrw overdrw.. Så vrför nvänds BSP-träd om mn lik gärn kunde nvänd z-buffring för tt undvik overdrw? Detil ulling, Level of Detil b1 b1 b2 b2 Osynligt delträd Eftersom kmerns frustum inte korsr :s pln, kn vi strunt i llt som ligger frmför! Använd sedn z-buffring för tt undvik overdrw. Level-of-detil Rit inte sker som är långt bort eller förenkl dem! Kombiners oft med någon form v dimm-effekt. Just Cuse - Avlnhe Studios Ultim IX Asension, Origin Systems Level-of-detil Morrowind, Bethesd Softworks Även om mn måste rit mång objekt kn mn oft spr resurser genom tt nvänd grövre detljnivåer långt bort från kmern. Potentilly Visible Sets / Portler Närliggnde vrint: Del världen i eller (knske m.h.. BSP-träd). För vrje ell C, t red på vilk ndr eller som kn syns från C. Lgr i en list. Vid körning, t red på vilken ell kmern är i. Rit den ellen. Rit ll eller i PVS:en. 9

10 Exempel Portler Portler kn speifiers utomtiskt med hjälp v lgoritmer eller plers ut för hnd i en 3D-editor. Portler Ry sting Skik en riktd linje (ry) från kmern (betrktren) genom vrje pixel oh t red på om/vr den korsr ll föremål. Välj den korsning som ligger närmst kmern. Sätt pixelfärgen till färgen på motsvrnde föremål. betrktren Quke II, Id Softwre Ry tring Bounding volumes Kmern kn se b.v: behndl modellen. Reflektion Skuggor (direkt ljus) Kmern kn delvis se b.v: behndl modellen. Kmern kn inte se b.v: bortse från modellen. Ry tring är en s.k. globl belysningsmodell oh kn ses som en slgs utbyggd ry sting Användbrt för modeller med begränsd utsträkning i rummet oh för sker som flytts omkring. 10

11 Hierrkisk bounding volumes Exempel på olik sorters bounding volumes Sfär Axis-ligned box Oriented box Oriented plnes Hierrkier kn okså skps dynmiskt under körning för föremål som flytts omkring. Wrnok lgorithm Divide the plne into four squres Qudtrees / Otrees B 0 B 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 B 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 Vrint v BSP-träd som kn vr enklre tt hnter. Smidig för stor, sttisk modeller med stor detljrikedom. Kombiners med Z-buffring på ungefär smm sätt som i BSP-fllet. 11

12 Otrees Otrees Olusion ulling Olusion ulling Frustum Frustum Oluder Ög Ög Impostors Impostors Billbord Clouds, Xvier D eoret m.fl. Plerr mn texturern smrt kn mn pproximer föremål på ett sådnt sätt tt mn kn roter dem okså! 12

13 Impostors Impostors Originl Billbord loud Billbord Clouds, Xvier D eoret m.fl. Impostors Impostors Mirosoft Flight Simultor 2004 Mirosoft Flight Simultor 2004 Moln är ett exempel på objekt som oft kn ersätts v impostors. I flygsimultorfllet lönr det sig tt rbet med impostors i två steg: dels som ersättning för 3D-moln, dels för tt pproximer moln långt från kmern. 13

Rastrering och displayalgoritmer. Gustav Taxén

Rastrering och displayalgoritmer. Gustav Taxén Rastrering och displayalgoritmer Gustav Taxén gustavt@csc.kth.se 2D1640 Grafik och Interaktionsprogrammering VT 2007 Klippning Man vill undvika att rastrera de primitiver som hamnar utanför fönstret. Man

Läs mer

DGI/SUDOA Diverse grundbegrepp. Translation. Linjens ekvation. Linjens ekvation. Linjens ekvation

DGI/SUDOA Diverse grundbegrepp. Translation. Linjens ekvation. Linjens ekvation. Linjens ekvation DGI/SUDOA - 060324 Följande hann jag inte gå igenom: detaljer i clip-algoritmer, Warnocks algortim, bilderna efter småuppgift nr 3. Some fundamental concepts Transformations Hidden surface elimination

Läs mer

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning.

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning. TANA09 Föreläsning 3 Tillämpning - Ry Trcing och Bézier Ytor z = B(x, y) q o Ekvtionslösning Tillämpning Existens Itertion Konvergens Intervllhlveringsmetoden Fixpuntsitertion Newton-Rphsons metod Anlys

Läs mer

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1 Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert

Läs mer

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

TMV151/TMV181. Fredrik Lindgren. 19 november 2013

TMV151/TMV181. Fredrik Lindgren. 19 november 2013 TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment

Läs mer

Frami transportbult 2,5kN

Frami transportbult 2,5kN 07/2012 Orginlbruksnvisning 999281910 sv Sprs för frmtid behov Frmi trnsportbult 2,5kN rt.nr 588494000 fr.o.m. tillverkningsår 2009 Orginlbruksnvisning Frmi trnsportbult 2,5kN Produktbeskrivning d Underhåll

Läs mer

RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering.

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering. 1 Introduktion till progrmmering SMD180 Föreläsning 8: Listor 2 Listor = generliserde strängr Strängr = sekvenser v tecken Listor = sekvenser v vd som helst [10, 20, 30, 40] # en list v heltl ["spm", "ungee",

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT. Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild

Läs mer

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp

INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp rmin Hliloic: EXR ÖVNINGR Linjär bildningr LINJÄR VBILDNINGR INLEDNING: Fnktioner =bildningr Beteckningr och grndbegrepp Definition En fnktion eller bildning från en mängd till en mängd B är en regel som

Läs mer

Operativsystemets uppgifter. Föreläsning 6 Operativsystem. Skydd, allmänt. Operativsystem, historik

Operativsystemets uppgifter. Föreläsning 6 Operativsystem. Skydd, allmänt. Operativsystem, historik Opertivsystemets uppgifter Föreläsning 6 Opertivsystem Opertivsystemets uppgifter Historik Skydd: in- oh utmtning, minne, CPU Proesser, tidsdelning Sidindelt minne, virtuellt minne Filsystem Opertivsystemet

Läs mer

Spelutveckling - Scenegrafer. Scenegrafer Optimeringar Culling

Spelutveckling - Scenegrafer. Scenegrafer Optimeringar Culling Spelutveckling - Scenegrafer Scenegrafer Optimeringar Culling Scenegraf vad och varför? En hierkisk representation av en 3d-värld Directed acyclic Graph (DAG) Består av noder med med barn/föräldrar Gör

Läs mer

IE1204 Digital Design

IE1204 Digital Design IE1204 Digitl Design F1 F3 F2 F4 Ö1 Booles lgebr, Grindr MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombintorisk kretsr F7 F8 Ö4 F9 Ö5 Multipleor KK2 LAB2 Låskretsr, vippor, FSM F10 F11 Ö6

Läs mer

Svenska()(Bruksanvisning(för(handdukstork()(1400(x(250(mm(

Svenska()(Bruksanvisning(för(handdukstork()(1400(x(250(mm( 1 Svenska()(Bruksanvisning(för(handdukstork()(1400(x(250(mm( Läsnogaigenombruksanvisningeninnanproduktenanvänds 6Kontrolleraattduharalladelarenligtpacklistannedan.Kontaktadinåterförsäljareomnågondelär

Läs mer

Kurskod: TAMS11 Provkod: TENB 12 June 2014, 14:00-18:00. English Version

Kurskod: TAMS11 Provkod: TENB 12 June 2014, 14:00-18:00. English Version Kurskod: TAMS Provkod: TENB 2 June 204, 4:00-8:00 Exmintor/Exminer: Xingfeng Yng (Tel: 070 2234765). You re permitted to bring: clcultor; formel -och tbellsmling i mtemtisk sttistik (from MAI); TAMS :

Läs mer

Programmeringsguide ipfg 1.6

Programmeringsguide ipfg 1.6 Progrmmeringsguide ipfg 1.6 Progrmmeringsklr i-ört pprter (CIC, knl, fullonh) Progrmmeringsklr kom-ört pprter CS-44 Phonk-version Progrmmeringsklr miropprter CS-44 Phonk-version 1 2 1 2 1 2 ipfg 1.6 stndrd

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer

Ett förspel till Z -transformen Fibonaccitalen

Ett förspel till Z -transformen Fibonaccitalen Ett förspel till Z -trnsformen Fibonccitlen Leonrdo Pisno vnligen klld Leonrdo Fiboncci, den knske störste mtemtiker som Europ frmburit före renässnsen skrev år 10 en bok (Liber bci) i räknelär. J, fktiskt.

Läs mer

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför? Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde

Läs mer

Så här gör du? Innehåll

Så här gör du? Innehåll hp dvd writer Så här gör du? Innehåll hur vet jg vilket progrm jg sk nvänd? 1 svensk hur kopierr jg en skiv? 2 hur överför jg min nd till en skiv? 4 hur skpr jg en dvd-film? 9 hur redigerr jg en video-dvd-skiv?

Läs mer

4 Example exam questions

4 Example exam questions 4 Exmple exm questions Omvnl uttryket ( ) e / (f g / h ) från infix till postfix me hjälp v en stk oh vis vrje steg i proessen. (5p) Vis sen me hjälp v en stk hur mn skulle eräkn et postfix uttrykets väre

Läs mer

Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba.

Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba. Rtionell tl Låt oss skiss hur mn definierr de rtionell tlen utifrån heltlen. Förutom tt det ger en inblick i hur mtemtiken är uppbyggd, är dett är ett br exempel på ekvivlensreltioner och ekvivlensklsser.

Läs mer

Belöningsbaserad inlärning. Reinforcement Learning. Inlärningssituationen Belöningens roll Förenklande antaganden Centrala begrepp

Belöningsbaserad inlärning. Reinforcement Learning. Inlärningssituationen Belöningens roll Förenklande antaganden Centrala begrepp Belöningsbserd Inlärning Reinforcement Lerning 1 2 3 4 1 2 3 4 Belöningsbserd inlärning Reinforcement Lerning Inlärning v ett beteende utn tillgång till fcit. En belöning ger informtion om hur br det går

Läs mer

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B.

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B. Deinitionsmängd FUNKTIONER. DEFINITIONSMÄNGD OCH VÄRDEMÄNGD. Deinition En unktion (eller vbildning ) rån en mängd A till en mängd B är en regel som till någr element i A ordnr högst ett element i B. Att

Läs mer

Innovation GAT med guldkant

Innovation GAT med guldkant Innovtion GT med guldknt Med nytänknde och uppfinningsrikedom hr bubbelbdkret nu tgits till en helt ny nivå. tt bdkr ur GTs Innovtion-serie ger dig fler vlmöjligheter, enklre funktioner och mssge utöver

Läs mer

Föreläsning 7. Splay-träd. Prioritetsköer och heapar. Union/Find TDDC70/91: DALG. Innehåll. Innehåll. 1 Splay-träd

Föreläsning 7. Splay-träd. Prioritetsköer och heapar. Union/Find TDDC70/91: DALG. Innehåll. Innehåll. 1 Splay-träd Föreläsning 7 Sply-träd. rioritetsköer oh hepr. Union/Find TDDC70/1: DALG Utskriftsversion v föreläsning i Dtstrukturer oh lgoritmer 7 septemer 01 Tommy Färnqvist, IDA, Linköpings universitet 7.1 Innehåll

Läs mer

Byt till den tjocka linsen och bestäm dess brännvidd.

Byt till den tjocka linsen och bestäm dess brännvidd. LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

Sidor i boken

Sidor i boken Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

Rationella uttryck. Förlängning och förkortning

Rationella uttryck. Förlängning och förkortning Sidor i boken 8-9, 0- Rtionell uttryck. Förlängning och förkortning Först någr begrepp. Aritmetik eller räknelär är den mest grundläggnde formen v mtemtik. Ett ritmetiskt uttryck innehåller tl, men ing

Läs mer

abbcba a) A regular expression over

abbcba a) A regular expression over 1 CD5560 FABER Forml Lnguges, Automt nd Models of Computtion Exerise Mälrdlen University 007 NEXT WEEK! Midterm Exm 1 Regulr Lnguges Ple: U-114 Time: Tuesdy 007-04-4, 10:15-1:00 t is OPEN BOOK. This mens

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

ASSEMBLY INSTRUCTIONS SCALE SQUARE - STANDARD

ASSEMBLY INSTRUCTIONS SCALE SQUARE - STANDARD ASSEMBLY INSTRUCTIONS ALL COMPONENTS Metal profile 0 mm Gripper Ceiling attachments Screws for ceiling attachements (not included) Wires Metal profile 60 mm Metal profile 00 mm Felt - Full Felt - Half

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste

Läs mer

Löpsedel: Integraler. Block 4: Integraler. Lärobok. Exempel (jfr lab) Exempel (jfr lab) Integrering i Matlab

Löpsedel: Integraler. Block 4: Integraler. Lärobok. Exempel (jfr lab) Exempel (jfr lab) Integrering i Matlab Löpsedel: Integrler Block : Integrler Grundidé, numerisk kvdrtur Noggrnnet, teoretiskt Prktisk feluppskttning med ricrdsonextrpoltion Adptiv kvdrtur Noggrnnet, inverkn v mätfel/vrundningsfel Lärook Kp

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

Pre-Test 1: M0030M - Linear Algebra.

Pre-Test 1: M0030M - Linear Algebra. Pre-Test : M3M - Linear Algebra. Test your knowledge on Linear Algebra for the course M3M by solving the problems in this test. It should not take you longer than 9 minutes. M3M Problem : Betrakta fyra

Läs mer

1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b.

1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b. UPPSAA UNIVERSITET Mtemtisk institutionen Slling (070-6527523) PROV I MATEMATIK AUTOMATATEORI 18 okt 2012 SKRIVTID: 8-13. HJÄPMEDE: Ing. MOTIVERA AA ÖSNINGAR NOGGRANT. BETYGSGRÄNSER: För etygen 3, 4 respektive

Läs mer

EasyMP Multi PC Projection-bruksanvisning

EasyMP Multi PC Projection-bruksanvisning EsyMP Multi PC Projection-bruksnvisning Innehåll 2 Om EsyMP Multi PC Projection Olik typer v möten med EsyMP Multi PC Projection... 5 Håll möten och nvänd fler bilder...5 Håll fjärrmöten över ett nätverk...

Läs mer

Tillämpning av integraler

Tillämpning av integraler CTH/GU LABORATION 3 MVE6 - /3 Mtemtisk vetenskper Inledning Tillämpning v integrler Vi skll se på två tillämpningr v integrler. Först ren oh volymen v rottionskropp sedn omkretsen v en ellips. Rottionskroppr

Läs mer

Sammanfattning, Dag 9

Sammanfattning, Dag 9 Smmnfttning, Dg 9 Idg studerde vi begrepp sklärprudokt (eller innerprodukt), norm och ortogonlitet på ett llmänt vektorrum. Vi börjde med en kort repetition på smm begrep för vektorrummet R 3. I rummet

Läs mer

Support Manual HoistLocatel Electronic Locks

Support Manual HoistLocatel Electronic Locks Support Manual HoistLocatel Electronic Locks 1. S70, Create a Terminating Card for Cards Terminating Card 2. Select the card you want to block, look among Card No. Then click on the single arrow pointing

Läs mer

Kan det vara möjligt att med endast

Kan det vara möjligt att med endast ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp

Läs mer

Kylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag]

Kylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag] Kylfrysguide [Nmn] Elektroskndi Sverige AB [år-månd-dg] Kylfrysguide Vilken kyl-frys sk du välj? Nturligtvis är det utrymmet som är det först tt t hänsyn till. Vnligst instlltionsbredd är 60 cm, men även

Läs mer

Skriv tydligt! Uppgift 1 (5p)

Skriv tydligt! Uppgift 1 (5p) 1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!

Läs mer

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen... Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................

Läs mer

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017 KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,

Läs mer

12 frågor om patent RESEARCHA-ÖVNING

12 frågor om patent RESEARCHA-ÖVNING reser 12 frågor om ptent En uppfinning är i sig ett llmänt begrepp och kn omftt vrje ny idé på ll möjlig områden. En uppfinning måste däremot, för tt kunn beviljs ptent, uppfyll viss bestämd kriterier.

Läs mer

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1 UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs

Läs mer

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,

Läs mer

BLÖTA BOKEN. Monteringsanvisning PALLADIUM DE LUXE II HÖRNA MED SKJUTDÖRR W1 E1= 10 VIKTIG INFORMATION. LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS.

BLÖTA BOKEN. Monteringsanvisning PALLADIUM DE LUXE II HÖRNA MED SKJUTDÖRR W1 E1= 10 VIKTIG INFORMATION. LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS. W Monteringsnvisning BLÖTA BOKEN VIKTIG INFORMATION LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS 1 Läs igenom hel nvisningen innn monteringen påbörjs PALLADIUM DE LUXE II HÖRNA MED SKJUTDÖRR 2 Kontroller produkten

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del III

Mat-1.1510 Grundkurs i matematik 1, del III Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))

Läs mer

MEDIA PRO. Introduktion BYGG DIN EGEN PC

MEDIA PRO. Introduktion BYGG DIN EGEN PC BYGG DIN EGEN PC MEDIA PRO Introduktion Dett är Kjell & Compnys snguide till hur Dtorpketet MEDIA PRO monters. Att ygg en dtor är idg myket enkelt oh kräver ingen tidigre erfrenhet. Det ehövs ing djupgående

Läs mer

Matematisk statistik för B, K, N, BME och Kemister. Matematisk statistik slumpens matematik. Exempel: Utsläpp från Källby reningsverk.

Matematisk statistik för B, K, N, BME och Kemister. Matematisk statistik slumpens matematik. Exempel: Utsläpp från Källby reningsverk. Mtemtisk sttistik för B, K, N, BME och Kemister Föreläsning 1 John Lindström 1 september 2014 John Lindström - johnl@mths.lth.se FMS086/MASB02 F1 2/26 Exempel Tillämpningr Signlbehndling Mtemtisk sttistik

Läs mer

> VD har ordet: Frösunda satsar på anhörigfrågorna > Frösunda främjar kvinnors företagande i Indien > 5 frågor: Sofia Hägg-Jegebäck

> VD har ordet: Frösunda satsar på anhörigfrågorna > Frösunda främjar kvinnors företagande i Indien > 5 frågor: Sofia Hägg-Jegebäck > VD r ordet: Frösund stsr på nörigfrågorn > Frösund främjr kvinnors företgnde i Indien > 5 frågor: Sofi Hägg-Jegebäck APRIL 2015 Nyetsbld med ktuell informtion till dig som rbetr i Frösund. VD HAR ORDET

Läs mer

SPEL OM PENGAR FÖR - EN FRÅGA FÖR SKOLAN? VERKTYG, ÖVNINGAR OCH KUNSKAPSBANK FÖR ARBETE MED SPEL OM PENGAR I SKOLAN

SPEL OM PENGAR FÖR - EN FRÅGA FÖR SKOLAN? VERKTYG, ÖVNINGAR OCH KUNSKAPSBANK FÖR ARBETE MED SPEL OM PENGAR I SKOLAN Övningr och verktyg för år 7-9 och gymnsiet SPEL OM PENGAR - EN FRÅGA FÖR SKOLAN? ANPASSAT FÖR BLAND ANNAT SVENSKA, SPEL I KONSTHISTORIEN BILD, MATEMATIK OCH SAMHÄLLSKUNSKAP IILLEGALT SPEL VERKTYG, ÖVNINGAR

Läs mer

Finaltävling den 20 november 2010

Finaltävling den 20 november 2010 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning

Läs mer

BLÖTA BOKEN MONTERINGSANVISNING PALLADIUM DE LUXE PLUS VIKDÖRR I NISCH VIKTIG INFORMATION. LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS.

BLÖTA BOKEN MONTERINGSANVISNING PALLADIUM DE LUXE PLUS VIKDÖRR I NISCH VIKTIG INFORMATION. LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS. MONTERINGSANVISNING BLÖTA BOKEN PALLADIUM DE LUXE PLUS VIKDÖRR I NISCH VIKTIG INFORMATION. LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS. 1. Läs igenom hel nvisningen innn monteringen påbörjs. 2. Kontroller produkten

Läs mer

Uppsala Universitet Matematiska Institutionen T Erlandsson

Uppsala Universitet Matematiska Institutionen T Erlandsson Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.

Läs mer

EGENVÄRDEN och EGENVEKTORER

EGENVÄRDEN och EGENVEKTORER EGENVÄRDEN och EGENVEKTORER Definition. (Linjär vbildning) En funktion T från R n (n-dimensionell vektorer) till R m (m-dimensionell vektorer) säges vr en linjär vbildning ( linjär funktion eller linjär

Läs mer

Tentamen i Matematik 2: M0030M.

Tentamen i Matematik 2: M0030M. Tentamen i Matematik 2: M0030M. Datum: 203-0-5 Skrivtid: 09:00 4:00 Antal uppgifter: 2 ( 30 poäng ). Examinator: Norbert Euler Tel: 0920-492878 Tillåtna hjälpmedel: Inga Betygsgränser: 4p 9p = 3; 20p 24p

Läs mer

Tentamen Programmeringsteknik II Skrivtid: Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper.

Tentamen Programmeringsteknik II Skrivtid: Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper. Tentmen Progrmmeringsteknik II 014-10-4 Skrivtid: 1400 1900 Tänk på följnde Skriv läsligt! Använd inte rödpenn! Skriv r på frmsidn v vrje ppper. Börj lltid ny uppgift på nytt ppper. Lägg uppgiftern i ordning.

Läs mer

In Bloom CAL # 3. Nu ska du göra 8 separata blomblad. Ett mitt på varje sida och ett i varje hörn. Använd nål 3.5 mm.

In Bloom CAL # 3. Nu ska du göra 8 separata blomblad. Ett mitt på varje sida och ett i varje hörn. Använd nål 3.5 mm. In Bloom CAL # 3 I del 3 använder du virknål 3.5 mm och 3.0 mm. Efter varje varvsnummer står numret (1-7) för den färg du skall använda för det varvet, se färg/garn-tabellen. Du kommer att repetera varv

Läs mer

Appendix. De plana triangelsatserna. D c

Appendix. De plana triangelsatserna. D c ppendix e pln tringelstsern Pythgors sts: I en rätvinklig tringel gäller, med figurens etekningr: 2 = 2 + 2 1 2 evis: Vi utnyttjr likformigheten melln tringlrn, oh. v denn får vi, med figurens etekningr:

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET UPPSALA UNIVERSITET Mtemtik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Förfttre: Mrco Kuhlmnn 2013 (mindre revision Mts Dhllöf 2014) 6 Formell språk Det mänsklig språket

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn

Läs mer

Quicksort. Koffman & Wolfgang kapitel 8, avsnitt 9

Quicksort. Koffman & Wolfgang kapitel 8, avsnitt 9 Quicksort Koffman & Wolfgang kapitel 8, avsnitt 9 1 Quicksort Quicksort väljer ett spcifikt värde (kallat pivot), och delar upp resten av fältet i två delar: alla element som är pivot läggs i vänstra delen

Läs mer

AUBER 95 9 jan LÖSNINGAR STEG 1:

AUBER 95 9 jan LÖSNINGAR STEG 1: AUBER 95 9 jn AR. Den finit utomten nedn ccepterr ett språk L över = {, }. A B ε Konstruer ) ett reguljärt uttryck för L. ) L = ( ( ) ) = ( ) ) en reguljär grmmtik för L S A S A c) en miniml DFA för L.

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel Lösningsförslg till deltentmen i IM601 Fst tillståndets fysik Gitter och bs i dimensioner Fredgen den 18 mrs, 011 Teoridel 1. ) Den primitiv enhetscellen är den minst enhetscell som ger trnsltionssymmetri

Läs mer

Styrning av Dynamiska Fasader

Styrning av Dynamiska Fasader www.somfy.se Somfy utomtik för Styrning v Dynmisk Fsder nimeo : STYRNING AV DYNAMISKA FASADER Det är genom en byggnds ytterväggr som det huvudsklig värmeutbytet melln ute och innemiljön sker. Dett utbyte

Läs mer

Vilken rät linje passar bäst till givna datapunkter?

Vilken rät linje passar bäst till givna datapunkter? Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.

Läs mer

Grundläggande datalogi - Övning 3

Grundläggande datalogi - Övning 3 Grundläggande datalogi - Övning 3 Björn Terelius November 14, 2008 Utskrift av stackar Tornen i Hanoi Principerna för rekursion: Hitta ett enkelt basfall (som har en känd lösning). Reducera varje annat

Läs mer

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i

Läs mer

12.6 Heat equation, Wave equation

12.6 Heat equation, Wave equation 12.6 Heat equation, 12.2-3 Wave equation Eugenia Malinnikova, NTNU September 26, 2017 1 Heat equation in higher dimensions The heat equation in higher dimensions (two or three) is u t ( = c 2 2 ) u x 2

Läs mer

ASSEMBLY INSTRUCTIONS SCALE CIRCLE - STANDARD

ASSEMBLY INSTRUCTIONS SCALE CIRCLE - STANDARD ASSEMBLY INSTRUCTIONS ALL COMPONENTS Metal profile 0 mm Gripper Ceiling attachments Screws for ceiling attachements (not included) Wires Metal profile 60 mm Metal profile 00 mm Felt - Full Felt - Half

Läs mer

MER MASSAGE - MINDRE LJUD

MER MASSAGE - MINDRE LJUD MR MSSG - MINR LJU Nytt unikt bottensystem med vttenmssge Nytt unikt system - dkr med ljusterpi System sic, ett något enklre mssgesystem Nytt system i xclusive serien Revolutionernde tyst mssge ger en

Läs mer

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION Fredrik Andrésson Deprtment of Mthemtics, KTH Lplcetrnsformen. I förr delkursen studerde vi fouriertrnsformen v en funktion h(t) H(iω) F[h(t)] Vi definierr

Läs mer

M6410C,L / M7410C Öka / minska ställdon

M6410C,L / M7410C Öka / minska ställdon M8, UEC.13 M6410C,L / M7410C Ök / minsk ställdon SLGLÄNGD 6.5MM PRODUKTINFORMTION ESKRIVNING Kompkt design vilket möjliggör instlltion i trång utrymmen Lång livslängd Låg energiförrukning Visuell indikering

Läs mer

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, EITA50, LP4, 209 Inlämningsuppgift av 2, Assignment out of 2 Inlämningstid: Lämnas in senast kl

Läs mer

Webbaserad applikation för administrering av investeringar

Webbaserad applikation för administrering av investeringar Webbserd ppliktion för dministrering v investeringr Dtprtner softwre Dtprtner Oy grundt 1987 i Finlnd Progrmvr och tjänster för investeringsbedömning, värdering och finnsiell modellering I Sverige dotterbolget

Läs mer

Isometries of the plane

Isometries of the plane Isometries of the plane Mikael Forsberg August 23, 2011 Abstract Här följer del av ett dokument om Tesselering som jag skrivit för en annan kurs. Denna del handlar om isometrier och innehåller bevis för

Läs mer

H1009, Introduktionskurs i matematik Armin Halilovic. Definition. Mängden av alla lösningar till en ekvation kallas ekvationens lösningsmängd.

H1009, Introduktionskurs i matematik Armin Halilovic. Definition. Mängden av alla lösningar till en ekvation kallas ekvationens lösningsmängd. H009, Introuktionskurs i mtemtik Armin Hlilovi LINJÄRA OCH ANDRAGRADSEKVATIONER Inlening: Definition. Mängen v ll lösningr till en ekvtion klls ekvtionens lösningsmäng. Eemelvis är {-, } lösningsmängen

Läs mer

PRESS FÄLLKONSTRUKTION FOLDING INSTRUCTIONS

PRESS FÄLLKONSTRUKTION FOLDING INSTRUCTIONS PRESS FÄLLKONSTRUKTION FOLDING INSTRUCTIONS Vänd bordet upp och ner eller ställ det på långsidan. Tryck ner vid PRESS och fäll benen samtidigt. Om benen sitter i spänn tryck benen mot kortsidan före de

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969 Evighetsklender Vilken veckodg vr det när du föddes? På vilken veckodg fyller du 18 år? Med den här evighetsklendern kn du t red på det. Gör så här när du sk t red på veckodgen: Lägg ihop följnde fyr tl:

Läs mer

1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)

1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang) Tentamen i Programmeringsteori Institutionen for datorteknik Uppsala universitet 1996{08{14 Larare: Parosh A. A., M. Kindahl Plats: Polacksbacken Skrivtid: 9 15 Hjalpmedel: Inga Anvisningar: 1. Varje bevissteg

Läs mer

Gauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson

Gauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson Föreläsning 14/9 Guss och tokes nlog stser och fältsingulriteter: källor och virvlr Mts Persson 1 tser nlog med Guss och tokes stser 1.1 tser nlog med Guss sts Det finns ett pr stser som är mycket när

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

Lödda värmeväxlare, XB

Lödda värmeväxlare, XB Lödd värmeväxlre, XB Beskrivning/nvändning XB är en lödd plttvärmeväxlre utveckld för nvändning i fjärrvärmesystem t ex, luftkonditionering, värme, tppvrmvtten. XB lödd plttvärmeväxlre tillverks med fler

Läs mer