AERODYNAMISKA BERÄKNINGSMETODER

Storlek: px
Starta visningen från sidan:

Download "AERODYNAMISKA BERÄKNINGSMETODER"

Transkript

1 AERODYNAMISKA BERÄKNINGSMETODER Utvecklingen på Saab Utdrag ur Saab-Minnen Del Av Bert Arlinger & Yngve Sedin Copyright by the authors: Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

2 Problembeskrivning Det ultimata målet Att beräkna värden på tryck, friktion och hastighet över ett flygplans alla ytor vid godtycklig flyghastighet Problem En komplett matematisk beskrivning av luft är de sk Navier-Stokes ekvationer: 5 ickelinjära andra ordningens partiella differentialekvationer. Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

3 Vad har hänt? Fram till och med 1960-talet Förenklade linjära ekvationer, grova modeller Från 70-talet och framåt Två avgörande faktorer bakom enorm utveckling inom CFD (Computational Fluid Dynamics): Datorutvecklingen Datorutvecklingen (processorer, ( processorer, minne) minne ) Ny numerisk teknik för lösning av strömningsekvationerna i alltmer komplett form Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

4 Datorutvecklingen Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

5 Tekniknivåer på Saab för T strömningsekvationerna Linjära potentialekvationen (Laplace ekvation) - 60-talet Ickelinjära potentialekvationen Småstörningsform -68, Fullständiga -72 Eulerekvationerna Ren överljud - sent 70-tal, Alla farter - tidigt 80-tal Navier-Stokes ekvationer - sent 80-tal Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

6 Masskontinuitet: Linjära Lmetoder ρu x + ρv y = 0 i 2D Konstant täthet (dvs låg fart) och rotationsfrihet leder då till Den linjära potentialekvationen (Laplace ekv) φ xx + φ yy = 0 med u = φ x och v = φ y Lösningsmetodik: Superponera elementarlösningar till Laplace ekv från singulariteter (källor, sänkor, dipoler, etc) på kroppens yta uppdelad i småbitar - paneler Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

7 Linjära metoder Panelmetoder På varje panel summeras hastighetsbidragen från singulariteter över alla panelerna. Den resulterande hastigheten normalt mot varje panel måste vara = 0. (Det får inte blåsa igenom) Leder till stort linjärt ekvationssystem för singulariteterna, vars lösning möjliggör beräkning av den sökta hastighetsfördelningen utefter kroppen Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

8 Linjära metoder Panelmetoder NASA-Wing-body - programmet M = 0.6, α = 4 Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

9 Linjära metoder Panelmetoder PHOBOS - utvecklat på Saab 1984 Saab 340, M=0.15, α = 0 Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

10 Linjära metoder Saab utvecklade invers metod: vingprofil beräknas ur given tryckfördelning i lågfart I början av 70-talet utvecklade NASA den superkritiska profilen. Koordinaterna hemliga - sökte patent på den Publicerade tryckfördelning för den superkritiska profilen i lågfart, se fig. Med Saabs inversmetod beräknade vi profilen Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

11 D Den ickelinjära potentialekvationen Varierande täthet men fortfarande rotationsfrihet Masskontinuitet + Newtons kraftekvationer behövs och ger då i 2D 1 u2 a 2 φ xx + 1 v2 a 2 φ yy 2 uv a 2 φ xy = 0 För slanka och tunna kroppar kan den förenklas till den sk småstörningsekvationen 1 M 2 φ xx + φ yy = 0 där M är det lokala Machtalet Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

12 Den ickelinjära potentialekvationen Lösningsteknik Går ej att superponera lösningar Hela strömningsfältet måste ingå i lösningen dvs måste diskretiseras numeriskt på ett nät Nätgenerering blir en primär och väsentlig ingrediens med stor betydelse för lösningens noggrannhet Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

13 Den ickelinjära potentialekvationen Lösningsteknik Den ickelinjära potentialekvationen diskretiseras, dvs varje derivata ersätts av differensuttryck För varje nätpunkt kan då ett nytt potential-värde beräknas ur de närliggande Hela fältet genomsveps många gånger till konvergens (relaxation). Mycket datorkrävande! Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

14 Den ickelinjära potentialekvationen Transsonisk strömning I överljudsområden fungerar inte den vanliga diskretiseringen med centraldifferenser kring varje nätpunkt: lösningen divergerar Problemet löstes 1971 (Murman & Cole): Diskretisera uppströms i överljud (ingen information kan komma från nedströmssidan i överljud) Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

15 Den ickelinjära potentialekvationen Småstörningsekvationen Transsoniska arearegeln: Ett flygplans vågmotstånd är ungefär lika med det för dess ekvivalenta rotationskropp Beräkningar för en Saab J35 Draken, med en axisymmetrisk metod, som utvecklats på Saab (sent 60-tal, tidigt 70-tal): Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

16 Den ickelinjära potentialekvationen Småstörningsekvationen i 3D SPICA-programmet, utvecklat på Saab i början och mitten av 80- talet Kopplade inre och yttre problemområden Beräkning på JAS M = 0.92, α = 3.3 Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

17 Den ickelinjära potentialekvationen Transsonisk strömning kring vingprofil Vid besök på Grumman 1972 fick Saab tillgång till ett program för lösning av fulla potentialekvationen Gav oss en bra startpunkt för egen fortsatt programutveckling NACA-profil, M=0.72, α=0 Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

18 Den ickelinjära potentialekvationen Transsonisk strömning kring axisymmetriska luftintag Beräkningar med Saabutvecklad metod 1975 Ovan: LU-3 vid M=0.9 Till vänster: LU-28 vid M=0.9 Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

19 Eulerekvationerna E Rotationsfriheten borta ur fysiken, dvs entropiförluster och virvlar kan förekomma i lösningen Ingen viskositet De kompletta Eulerekvationerna i 3D W t + F x + G y + H z = 0 W = ρ ρu ρv ρw ρe F = ρu ρu 2 + p ρuv ρuw ρe + p u G = ρv ρvu ρv 2 + p ρvw ρe + p v H = ρw ρwu ρwv ρw 2 + p ρe + p w Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

20 Eulerekvationerna e Lösningsteknik Nät (volymer) i hela fältet, även oregelbundna, t ex med tetraedrar som celler Eulerekvationerna diskretiseras med värden för lösningsvektorn W i varje cell ( finit-volym-teknik ) W stegas i tiden till konvergens (mycket datorkrävande) Finit-volym-formulering: t W dv + F, G, H ds = 0 Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

21 Beräkningsexempel Eulerekvationerna e Jämförelse mellan en potentialmetod (SPICA/TSP) och en Eulermetod (Flo57, Jameson, Princeton) Vinge M6 (sym. vingprofil) M = 0.84, α = 3.06 Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

22 Eulerekvationerna Ren överljudsströmning Inga signaler kan gå uppströms, dvs en lösning kan marscheras fram i ett enda svep nedströms Saabs överljudsprogram SUMA utvecklades i slutet av 70-talet Exempel på nät i tvärsnittsplan Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

23 Eulerekvationerna e SUMA-beräkning kring JAS vid M=1.8 Isobarer i några tvärsnitt samt i 3D Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

24 Hermes i hypersonisk strömning Hypersoniska beräkningar kring den europeiska rymdskytteln Hermes (slutet av 80-talet) Eulerekvationerna Tidsmarscherande Euler (Flo57) kring framkroppen pga underljudsområden kring nos och kabin Rumsmarscherande Euler (SUMA) därefter Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

25 Eulerekvationerna Hermes i hypersonisk strömning Nät och Machtalskonturer i tvärsnitt långt bak på Hermes M = 6.4, α = 30 Machtalskonturer på Hermes yta M = 10, α = 30 Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

26 Navier-Stokes n ekvationer Inkludera även viskositet och värmeflöde i Eulerekvationerna Leder till Navier-Stokes ekvationer: ρ t + div(ρv) = 0 ρv t + DIV ρvv + pi τ = 0 ε t + div[ ε + p V V tr τ + q] = 0 5 ickelinjära partiella differentialekvationer av andra ordningen Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

27 Navier-Stokes n ekvationer Viskositet kräver högupplöst nät nära ytor (upplösning av gränsskikt) Innebär stort minnesbehov och långa beräkningstider Lösningsmetod: finit-volym-teknik (vidareutveckling av metoden för Eulerekv.) Saabs första N-S-lösare baserades på en 2D FFA-kod (Müller-Rizzi). Den vidareutvecklades på Saab i 3D under sent 80-tal Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

28 Tidiga beräkningsexempel Överljud och hypersonik Laminär strömning Navier-Stokes n ekvationer Värmeflöde Bogvågens läge (sfär) Motstånd Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

29 Navier-Stokes n ekvationer ESA s CASSINI-Huygens projekt Sköts upp 1997 Saabs roll i CASSINI-projektet: Att beräkna viskösa gränsskiktstjockleken på Huygens yta under nedfarten till Saturnus måne Titan (jan 2005) Totaltrycksförluster, strömlinjer och en avlöst torusvirvel i fältet runt Huygens Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

30 Navier-Stokes ekvationer Exempel på den fortsatta utvecklingen N-S-koden MULTNAS utvecklad på Saab ur Flo57 Med turbulensmodell Beräkning (90-talet): Luftintag, M = 0.17, α = 15 Totaltrycksförluster i några tvärsnitt, friktionslinjer Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del

1 Potentiallösningen för strömningen kring en cylinder

1 Potentiallösningen för strömningen kring en cylinder Föreläsning 9. 1 Potentiallösningen för strömningen kring en cylinder I denna föreläsningen ska vi behandla strömningen kring en kropp som inte är strömlinjeformad och som ett speciellt exempel ska vi

Läs mer

Vingprofiler. Ulf Ringertz. Grundläggande begrepp Definition och geometri Viktiga egenskaper Numeriska metoder Vindtunnelprov Framtid

Vingprofiler. Ulf Ringertz. Grundläggande begrepp Definition och geometri Viktiga egenskaper Numeriska metoder Vindtunnelprov Framtid Vingprofiler Ulf Ringertz Grundläggande begrepp Definition och geometri Viktiga egenskaper Numeriska metoder Vindtunnelprov Framtid Vingprofiler Korda Tjocklek Medellinje Läge max tjocklek Roder? Lyftkraft,

Läs mer

1 Potenitallösningen för strömningen kring en cylinder

1 Potenitallösningen för strömningen kring en cylinder Föreläsning 9 1 Potenitallösningen för strömningen kring en cylinder I denna föreläsning ska vi kortfattat behandla potentialströmning, som traditionellt varit ett stort område inom aerodynamiken, men

Läs mer

Grundläggande aerodynamik

Grundläggande aerodynamik Grundläggande aerodynamik Introduktion Grundläggande aerodynamik Lyftkraft Aerodynamiska grunder Vingprofiler Historik Sedan urminnes tider har människan blickat upp mot himlen Förekomst inom mytologin:

Läs mer

BERNOULLIS EKVATION. Friktionsfri strömning, Eulers ekvation på vektorform:

BERNOULLIS EKVATION. Friktionsfri strömning, Eulers ekvation på vektorform: BERNOULLIS EKVATION Friktionsfri strömning, Eulers ekvation på vektorform: dv dt = V t +(V )V = g ρ 1 p (1) Cartesiska koordinater: V = (u,v,w), = ( / x, / y, / z). Vektoridentitet: (V )V = (V 2 /2)+ξ

Läs mer

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: 004-08- Observera Om tentamensuppgiften är densamma som på den nya kursen MTM3 är uppgiften löst med den metod som är vanligast i denna kurs.

Läs mer

FYSIKENS MATEMATISKA METODER

FYSIKENS MATEMATISKA METODER FYSIKENS MATEMATISKA METODER TREDJE UPPLAGAN TORBJÖRN ERIKSON HENRIK CHRISTIANSSON ERIK LINDAHL JOHAN LINDE LARS SANDBERG MATS WALLIN mfl Boken är typsatt i L A TEX med 11pt Times Printed in Sweden by

Läs mer

Grundläggande aerodynamik, del 6

Grundläggande aerodynamik, del 6 Grundläggande aerodynamik, del 6 Motstånd Laminära profiler Minskning av inducerat motstånd Förhållande mellan C D,0 och C D,i Höghastighetsströmning 1 Laminära profiler Enl. tidigare: Typen av gränsskikt

Läs mer

Grundläggande aerodynamik, del 5

Grundläggande aerodynamik, del 5 Grundläggande aerodynamik, del 5 Motstånd Totalmotstånd Formmotstånd Gränsskiktstypens inverkan på formmotstånd 1 Motstånd Ett flygplan som rör sig genom luften (gäller alla kroppar) skapar ett visst motstånd,

Läs mer

Grundläggande aerodynamik, del 2

Grundläggande aerodynamik, del 2 Grundläggande aerodynamik, del 2 Mer om vingprofiler Kort om flygplanets anatomi Lyftkraft/lyftkraftskoefficienten, C L Alternativa metoder för lyftkraftsalstring Vingar 1 Vingprofiler Välvd/tjock profil

Läs mer

TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20

TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 2016-05-31, kl 08-11 SF1547+SF1543 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Uppgift 1 Man vill lösa ekvationssystemet

Läs mer

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 00-06-0 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan

Läs mer

1. Det totala tryckfallet från pumpens utlopp, via rörledningen och alla komponenterna tillbaks till pumpens inlopp ges av. p = d

1. Det totala tryckfallet från pumpens utlopp, via rörledningen och alla komponenterna tillbaks till pumpens inlopp ges av. p = d MEKANIK KTH Förslag till lösningar vid tentamen i 5C9 Teknisk strömningslära för M den 6 maj 004. Det totala tryckfallet från pumpens utlopp, via rörledningen och alla komponenterna tillbaks till pumpens

Läs mer

p + ρv ρgz = konst. [z uppåt] Speciellt försumbara effekter av gravitation (alt. horisontellt):

p + ρv ρgz = konst. [z uppåt] Speciellt försumbara effekter av gravitation (alt. horisontellt): BERNOULLIS EKVATION Vid inkompressibel, stationär strömning längs strömlinjer samt längs röravsnitt med homogena förhållanden över tvärsnitt, vid försumbara effekter av friktion, gäller Bernoullis ekvation:

Läs mer

Lösningsförslag, preliminär version 0.1, 23 januari 2018

Lösningsförslag, preliminär version 0.1, 23 januari 2018 Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel

Läs mer

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH TERMODYNAMIK? Termodynamik är den vetenskap som behandlar värme och arbete samt de tillståndsförändringar som är förknippade med dessa energiutbyten. Centrala tillståndsstorheter är temperatur, inre energi,

Läs mer

v0.2, Högskolan i Skövde Tentamen i matematik

v0.2, Högskolan i Skövde Tentamen i matematik v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.

Läs mer

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 2004-08-21 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar

Läs mer

Ordinära differentialekvationer,

Ordinära differentialekvationer, (ODE) Ordinära differentialekvationer, del 1 Beräkningsvetenskap II It is a truism that nothing is permanent except change. - George F. Simmons ODE:er är modeller som beskriver förändring, ofta i tiden

Läs mer

u = Ψ y, v = Ψ x. (3)

u = Ψ y, v = Ψ x. (3) Föreläsning 8. Blasius gränsskikt Då en en friström, U, möter en plan, mycket tunn platta som är parallell med friströmshastigheten uppkommer den enklaste typen av gränsskikt. För detta gränsskikt är tryckgradienten,

Läs mer

p + ρv ρgz = konst. Speciellt försumbara effekter av gravitation (alt. horisontellt): Om hastigheten ökar minskar trycket, och vice versa.

p + ρv ρgz = konst. Speciellt försumbara effekter av gravitation (alt. horisontellt): Om hastigheten ökar minskar trycket, och vice versa. BERNOULLIS EKVATION Vid inkompressibel, stationär strömning längs strömlinjer samt längs röravsnitt med homogena förhållanden över tvärsnitt, vid försumbara effekter av friktion, gäller Bernoullis ekvation:

Läs mer

LEONARDO DA VINCI ( )

LEONARDO DA VINCI ( ) LEONARDO DA VINCI (1452 1519) En kropp som rör sig med en viss hastighet i stillastående luft erfar samma strömningsmotstånd som om kroppen vore stillastående och utsatt för en luftström med samma hastighet.

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt. 1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de

Läs mer

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Fredag 30 augusti 2002 TID:

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Fredag 30 augusti 2002 TID: Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 22-8-3 DAG: Fredag 3 augusti 22 TID: 8.45-2.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 772 94 (ankn. 94) Förfrågningar:

Läs mer

Aerodynamik. Swedish Paragliding Event november Ori Levin. Monarca Cup, Mexico, foto Ori Levin

Aerodynamik. Swedish Paragliding Event november Ori Levin. Monarca Cup, Mexico, foto Ori Levin Aerodynamik Swedish Paragliding Event 2008 1-2 november Ori Levin Monarca Cup, Mexico, foto Ori Levin Behöver man förstå hur man flyger för att kunna flyga? 2008-10-31 www.offground.se 2 Nej 2008-10-31

Läs mer

Poissons ekvation och potentialteori Mats Persson

Poissons ekvation och potentialteori Mats Persson 1 ärmeledning Föreläsning 21/9 Poissons ekvation och potentialteori Mats Persson i vet att värme strömmar från varmare till kallare. Det innebär att vi har ett flöde av värmeenergi i en riktning som är

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

1 Cirkulation och vorticitet

1 Cirkulation och vorticitet Föreläsning 7. 1 Cirkulation och vorticitet Ett mycket viktigt teorem i klassisk strömningsmekanik är Kelvins cirkulationsteorem, som man kan härleda från Eulers ekvationer. Teoremet gäller för en inviskös

Läs mer

Kroklinjiga koordinater och räkning med vektoroperatorer. Henrik Johanneson/(Mats Persson)

Kroklinjiga koordinater och räkning med vektoroperatorer. Henrik Johanneson/(Mats Persson) Föreläsning 7/9 Kroklinjiga koordinater räkning med vektoroperatorer Kroklinjiga koordinater Henrik Johanneson/Mats Persson) Allmänt behöver vi tre parametrar u, u 2, u 3 för att beskriva en godtycklig

Läs mer

1 Materiell derivata. i beräkningen och så att säga följa med elementet: φ δy + δz. (1) φ y Den materiella derivatan av φ definierar vi som.

1 Materiell derivata. i beräkningen och så att säga följa med elementet: φ δy + δz. (1) φ y Den materiella derivatan av φ definierar vi som. Föreläsning 2. 1 Materiell erivata ätskor och gaser kallas me ett sammanfattane or för fluier. I verkligheten består fluier av partiklar, v s atomer eller molekyler. I strömningsmekaniken bortser vi från

Läs mer

Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem.

Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem. 11 april 2005 2D1212 NumProg för T1 VT2005 A Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem. Kapitel 8 och 5 i Q&S Stationär värmeledning i 1-D Betrakta

Läs mer

Navier-Stokes ekvationer och mikrofluiddynamik

Navier-Stokes ekvationer och mikrofluiddynamik Navier-Stokes ekvationer och mikrofluiddynamik Gästföreläsning i PDE för F2, 2003-05-19 Erik Svensson Beräkningsmatematik Chalmers Notation Funktioner: Om inte annat anges förutsätter vi att de funktioner

Läs mer

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232)

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232) Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232) Tid och plats: Lösningsskiss: Tisdagen den 20 december 2016 klockan 0830-1230 i M-huset Christian Forssén Detta är enbart en skiss av den

Läs mer

Tentamen i matematik. f(x) = 1 + e x.

Tentamen i matematik. f(x) = 1 + e x. Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 202-03-23 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver

Läs mer

Bestämning av lyftkraft på en symmetrisk vingprofil.

Bestämning av lyftkraft på en symmetrisk vingprofil. Bestämning av lyftkraft på en symmetrisk vingprofil. November 5, 2002 1 Laborationens innehåll Laborationen avser en undersökning av strömningen kring en tvådimensionell vingprofil vid olika anfallsvinklar.

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg. TME055 Strömningsmekanik 2015-01-16

CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg. TME055 Strömningsmekanik 2015-01-16 CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg TME055 Strömningsmekanik 2015-01-16 Tentamen fredagen den 16 januari 2015 kl 14:00-18:00 Ansvarig lärare: Henrik Ström Ansvarig lärare besöker

Läs mer

Tentamen: Lösningsförslag

Tentamen: Lösningsförslag Tentamen: Lösningsförslag Onsdag 5 mars 7 8:-3: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. 4 poäng Avgör om följande gränsvärde existerar och beräkna gränsvärdet om det existerar:

Läs mer

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Runge-Kuttas metoder. Repetition av FN6 (GNM kap 6.

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Runge-Kuttas metoder. Repetition av FN6 (GNM kap 6. Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN7 09-03-23 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN6 (GNM kap 6.1G-2G)! Runge-Kuttas metoder ökad noggrannhet!

Läs mer

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.) Lösningsskisser till TATA69 Flervariabelanalys 16-1- 1 Stationära punkter ges av f (4x 3 + 4x, 3y + 6z, z + 6y (,,, dvs (x, y, z (,, eller (x, y, z (, 6, 18 Ur andraderivatorna fås de kvadratiska formerna

Läs mer

Den vanliga koordinaterna, betecknas (x, y, z) med enhetsvektorerna î, ĵ och. z k

Den vanliga koordinaterna, betecknas (x, y, z) med enhetsvektorerna î, ĵ och. z k Vektorkalkl I fsiken har vektorfält stor betdelse inom bl.a. mekaniken och elektrodnamiken. I ett skalärfält har varje punkt i rmden ett visst värde, t.e. i en vattenbalja kan vi sätta en temperatur i

Läs mer

Lösningar/svar till tentamen i MTM119/052 Hydromekanik Datum:

Lösningar/svar till tentamen i MTM119/052 Hydromekanik Datum: Lösningar/svar till tentamen i MTM9/05 Hydromekanik Datum: 005-08-4 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan saknas

Läs mer

PM Bussdepå - Gasutsläpp. Simulering av metanutsläpp Verkstad. 1. Förutsättningar

PM Bussdepå - Gasutsläpp. Simulering av metanutsläpp Verkstad. 1. Förutsättningar Simulering av metanutsläpp Verkstad 1. Förutsättningar 1.1 Geometri Verkstaden var 35,5 meter lång, 24 meter bred och takhöjd 6 meter. En buss med måtten längd 18 meter, bredd 2,6 meter och höjd 3,4 meter

Läs mer

Re baseras på medelhastighet V samt hydraulisk diameter D h, Re = Re Dh = ρv D h. , D h = 4 A P. = V D h ν

Re baseras på medelhastighet V samt hydraulisk diameter D h, Re = Re Dh = ρv D h. , D h = 4 A P. = V D h ν RÖRSTRÖMNING Trots dess stora tekniska betydelse är den samlade kunskapen inom strömning i rörsystem väsentligen baserad på experiment och empiriska metoder, även när det gäller inkompressibel, stationär

Läs mer

bh 2 π 4 D2 ] 4Q1 πd 2 =

bh 2 π 4 D2 ] 4Q1 πd 2 = MEKANIK KTH Förslag till lösningar vid tentamen i 5C1921 Teknisk strömningslära för M den 27 maj 2005 1. Medelhastigheten i rören är ū 1 4Q 1 πd 2 ochikanalenär den ū 2 och ges av Q 2 [bh 2 π ] 4 D2 Kravet

Läs mer

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan

Läs mer

Högre ordnings ekvationer och system av 1:a ordningen

Högre ordnings ekvationer och system av 1:a ordningen Institutionen för matematik, KTH 05020 Tillägg för 5B209/HT05/E.P. Högre ordnings ekvationer och system av :a ordningen Vi har hittills lärt oss lösa linjära ekvationer med konstanta koefficienter och

Läs mer

FEM1: Randvärdesproblem och finita elementmetoden i en variabel.

FEM1: Randvärdesproblem och finita elementmetoden i en variabel. MVE255/TMV191 Matematisk analys i flera variabler M/TD FEM1: Randvärdesproblem och finita elementmetoden i en variabel. 1 Inledning Vi ska lösa partiella differentialekvationer PDE, dvs ekvationer som

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Oct 16, 2018 9. Lösningar av Poissons ekvation Vi vet att Poissons

Läs mer

Uppdragets syfte var att med CFD-simulering undersöka spridningen av gas vid ett läckage i en tankstation.

Uppdragets syfte var att med CFD-simulering undersöka spridningen av gas vid ett läckage i en tankstation. Gasutsläpp Busstankning Syfte Uppdragets syfte var att med CFD-simulering undersöka spridningen av gas vid ett läckage i en tankstation. Förutsättningar Läckage Den läckande gasen var metan med en densitet

Läs mer

v = dz Vid stationär (tidsoberoende) strömning sammanfaller strömlinjer, partikelbanor och stråklinjer. CH Strömningslära C.

v = dz Vid stationär (tidsoberoende) strömning sammanfaller strömlinjer, partikelbanor och stråklinjer. CH Strömningslära C. STRÖMLINJER, STRÅKLINJER,... En strömlinje (eng. streamline) är en kurva (linje) i rummet vars tangentvektor i varje punkt är parallell med hastighetsvektorn V. I vanliga rätvinkliga koordinater gäller:

Läs mer

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20. Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0

Läs mer

Tentamen i El- och vågrörelselära,

Tentamen i El- och vågrörelselära, Tentamen i El- och vågrörelselära, 05-0-05. Beräknastorlekochriktningpådetelektriskafältetipunkten(x,y) = (4,4)cm som orsakas av laddningarna q = Q i origo, q = Q i punkten (x,y) = (0,4) cm och q = Q i

Läs mer

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1.

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1. Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B Lördagen den januari, kl 9-4 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är

Läs mer

= = i K = 0, K =

= = i K = 0, K = ösningsförslag till tentamensskrivning i SF1633, Differentialekvationer I Tisdagen den 14 augusti 212, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1. Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x

Läs mer

ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683. Inofficiella mål

ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683. Inofficiella mål ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683 KARL JONSSON Nyckelord och innehåll Andra ordningens linjära differentialekvationer Homogena ekvationen Fundamental lösningsmängd, y 1 (t),

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.

Läs mer

Datorbaserade beräkningsmetoder

Datorbaserade beräkningsmetoder Material, form och kraft, F10 Datorbaserade beräkningsmetoder Finita elementmetoden Beräkningar Strukturmekaniska analyser Kraft-deformation, inverkan av temperatur, egenfrekvens, buckling COSMOS/Works

Läs mer

MMA127 Differential och integralkalkyl II

MMA127 Differential och integralkalkyl II Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA127 Differential och integralkalkyl II Tentamen Lösningsförslag 211.8.11 14.3 17.3 Hjälpmedel: Endast skrivmaterial (gradskiva

Läs mer

Egenvärdesproblem för matriser och differentialekvationer

Egenvärdesproblem för matriser och differentialekvationer CTH/GU STUDIO 7 TMV36b - 14/15 Matematiska vetenskaper 1 Inledning Egenvärdesproblem för matriser och differentialekvationer Vi skall se lite på egenvärdesproblem för matriser och differentialekvationer.

Läs mer

För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant.

För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant. Lösningsförslag till tentamensskrivning i Differentialekvationer I, SF633(5B6) Tisdagen den 6 augusti, kl -9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

FFM232, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM232, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM232, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Oct 3, 2016 8. Potentialteori Konservativa fält och potentialer

Läs mer

5C1201 Strömningslära och termodynamik

5C1201 Strömningslära och termodynamik 5C2 Strömningslära och termodynamik Föreläsning 7: Gränsskikt invid plana plattor. Målsättning: att diskutera uppkomsten av gränsskiktet invid plana plattor, att formulera en relation mellan hastighetsfördelningen

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Oct 2, 2017 10. Värmeledning, diffusionsekvation Betrakta ett temperaturfält

Läs mer

Tentamen, del 2 DN1240 Numeriska metoder gk II för F

Tentamen, del 2 DN1240 Numeriska metoder gk II för F Tentamen, del DN140 Numeriska metoder gk II för F Fredag 14 december 01 kl 14 17 Lösningar DEL : Inga hjälpmedel. Rättas endast om del 1 är godkänd. Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p

Läs mer

SA105X Examensarbete inom Farkostteknik grundnivå 10,5 Hp Mekanikinstitutionen KTH. Handledare: Luca Brandt Zhu Lailai

SA105X Examensarbete inom Farkostteknik grundnivå 10,5 Hp Mekanikinstitutionen KTH. Handledare: Luca Brandt Zhu Lailai ANALYS AV NACA0018 VINGPROFIL SA105X Examensarbete inom Farkostteknik grundnivå 10,5 Hp Mekanikinstitutionen KTH David Norrby Thomas Långfors dnorrby@kth.se langfors@kth.se Handledare: Luca Brandt Zhu

Läs mer

τ ij x i ρg j dv, (3) dv + ρg j dv. (4) Detta samband gäller för en godtyckligt liten kontrollvolym och därför måste det + g j.

τ ij x i ρg j dv, (3) dv + ρg j dv. (4) Detta samband gäller för en godtyckligt liten kontrollvolym och därför måste det + g j. Föreläsning 4. 1 Eulers ekvationer i ska nu tillämpa Newtons andra lag på en materiell kontrollvolym i en fluid. Som bekant säger Newtons andra lag att tidsderivatan av kontrollvolymens rörelsemängd är

Läs mer

Tekniska beräkningar. Vad är tekn beräkningar? Vad är beräkningsvetenskap? Informationsteknologi. Informationsteknologi

Tekniska beräkningar. Vad är tekn beräkningar? Vad är beräkningsvetenskap? Informationsteknologi. Informationsteknologi Tekniska beräkningar stefan@it.uu.se Vad är tekn beräkningar? Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska

Läs mer

A. Egenskaper hos plana figurer (MTM458)

A. Egenskaper hos plana figurer (MTM458) uleå tekniska universitet Hans Åkerstedt Aerodynamik f37t 8/9 FORMESAMING I AEROYNAMIK INNEHÅ:. Hydrostatik och standard atmosfären. Kinematik 3. Konserveringslagar 4. Modellförsök och likformighet 5.

Läs mer

Projekt Finit Element-lösare

Projekt Finit Element-lösare Projekt Finit Element-lösare Emil Johansson, Simon Pedersen, Janni Sundén 29 september 2 Chalmers Tekniska Högskola Institutionen för Matematik TMA682 Tillämpad Matematik Inledning Många naturliga fenomen

Läs mer

Lösningar till Matematisk analys

Lösningar till Matematisk analys Lösningar till Matematisk analys 685. Sätt fx x. Rotationskroppens volym är π fx dx π ] x 6 dx π 7 x7 π 7. Rotationskroppens area är summan av arean av kroppens mantelyta och arean av kroppens cirkulära

Läs mer

Energitransport i biologiska system

Energitransport i biologiska system Energitransport i biologiska system Termodynamikens första lag Energi kan inte skapas eller förstöras, endast omvandlas. Energiekvationen de sys dt dq dt dw dt För kontrollvolym: d dt CV Ändring i kontrollvolym

Läs mer

1. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t).

1. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t). Repetition, analys.. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t). 2. Beräkna längden av kurvan r(t) =

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Alpin Aerodynamik. Åk fortare. Dr Fredrik Hellström. Christian Jansson. Aerodynamikrådgivare. Landslagsåkare S1

Alpin Aerodynamik. Åk fortare. Dr Fredrik Hellström. Christian Jansson. Aerodynamikrådgivare. Landslagsåkare S1 Alpin Aerodynamik Åk fortare Dr Fredrik Hellström Aerodynamikrådgivare Christian Jansson Landslagsåkare S1 En föreläsning om att åka fort och om förluster! Agenda Målsättning Introduktion till Speedskiing

Läs mer

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken

Läs mer

Hydrodynamik Mats Persson

Hydrodynamik Mats Persson Föreläsning 5/10 Hydrodynamik Mats Persson 1 De hydrodynamiska ekvationerna För att beskriva ett enkelt hydrodynamiskt flöde behöver man känna fluidens densitet,, tryck p hastighet u. I princip behöver

Läs mer

Föreläsning 16, SF1626 Flervariabelanalys

Föreläsning 16, SF1626 Flervariabelanalys Föreläsning 16, SF1626 Flervariabelanalys Haakan Hedenmalm (KTH, Stockholm) 5 december 2017 KTH Rekommenderade uppgifter: 16.1: 3, 7, 11. 16.2: 9, 15, 17. Gradient, divergens, och rotation Gradienten Om

Läs mer

HYDRAULIK (ej hydrostatik) Sammanfattning

HYDRAULIK (ej hydrostatik) Sammanfattning HYDRAULIK (ej hydrostatik) Sammanfattning Rolf Larsson, Tekn Vattenresurslära För VVR145, 4 maj, 2016 NASA/ Astronaut Photography of Earth - Quick View VVR145 Vatten/ Hydraulik sammmanfattning 4 maj 2016

Läs mer

Partiella differentialekvationer: Koppling Diskret - Kontinuum och Finita Elementmetoden

Partiella differentialekvationer: Koppling Diskret - Kontinuum och Finita Elementmetoden Partiella differentialekvationer: Koppling Diskret - Kontinuum och Finita Elementmetoden Johan Jansson November 29, 2010 Johan Jansson () M6 November 29, 2010 1 / 26 Table of contents 1 Plan och Syfte

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF66 Flervariabelanalys Lösningsförslag till tentamen 4-3-7 EL A. Betrakta funktionen f, y y. a Beräkna riktningsderivatan av f i punkten, i den riktning som ges av vektorn 4, 3. p b Finns det någon riktning

Läs mer

Tentamen i Envariabelanalys 2

Tentamen i Envariabelanalys 2 Linköpings universitet Matematiska institutionen Kurskod: TATA42 Provkod: TEN Tentamen i Envariabelanalys 2 206 0 8, 4 9 Inga hjälpmedel. Lösningarna ska vara fullständiga, välmotiverade, ordentligt skrivna

Läs mer

TATA44 ösningar till tentamen 13/01/ ) Paraboloiden z = 2 x 2 y 2 skär konen z = x 2 + y 2 då x 2 + y 2 = 2 x 2 y 2. Med

TATA44 ösningar till tentamen 13/01/ ) Paraboloiden z = 2 x 2 y 2 skär konen z = x 2 + y 2 då x 2 + y 2 = 2 x 2 y 2. Med TATA44 ösningar till tentamen 1/1/211. 1. Paraboloiden z 2 x 2 y 2 skär konen z x 2 + y 2 då x 2 + y 2 2 x 2 y 2. Med ρ x 2 + y 2 då är ρ 2 + ρ 2 vilket ger ρ + 2ρ 1. åledes är ρ 1 ty ρ. Vi betecknar den

Läs mer

TMA226 datorlaboration

TMA226 datorlaboration TMA226 Matematisk fördjupning, Kf 2019 Tobias Gebäck Matematiska vetenskaper, Calmers & GU Syfte TMA226 datorlaboration Syftet med denna laboration är att du skall öva formuleringen av en Finita element-metod,

Läs mer

Partiella differentialekvationer (TATA27)

Partiella differentialekvationer (TATA27) Partiella differentialekvationer (TATA27) Linköpings universitet Vår termin 2015 Inneåll 1 Introduktion 1 1.1 Notation............................................. 1 1.2 Differentialekvationer......................................

Läs mer

x ( f u 2y + f v 2x) xy = 24 och C = f

x ( f u 2y + f v 2x) xy = 24 och C = f Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet

Läs mer

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015 SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt

Läs mer

Omtentamen i DV & TDV

Omtentamen i DV & TDV Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga

Läs mer

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1) Matematik Hjälpmedel: Inga Chalmers Tekniska Högskola Tentamen 5--7 kl. 4: 8: Telefonvakt: Samuel Bengmark ankn.: 7-87644 Betygsgränser :a poäng, 4:a poäng, 5:a 4 poäng, max: 5 poäng Tentamensgranskning

Läs mer

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232)

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232) Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM23 och FFM232) Tid och plats: Måndagen den 29 oktober 208 klockan 00-800, Maskinsalar Lösningsskiss: Christian Forssén Detta är enbart en skiss

Läs mer

Grundläggande aerodynamik, del 4

Grundläggande aerodynamik, del 4 Grundläggande aerodynamik, del 4 Gränsskiktet Definition/uppkomst Friktionsmotstånd Avlösning/stall Gränsskiktets inverkan på lyftkraften Gränsskiktskontroll Höglyftsanordningar 1 Bakgrund Den klassiska

Läs mer

Tentamen TMA044 Flervariabelanalys E2

Tentamen TMA044 Flervariabelanalys E2 Tentamen TMA44 Flervariabelanalys E 4--3 kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, halmers Telefonvakt: Elin Solberg, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan från

Läs mer

TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2

TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2 Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 218-5-28, kl 8-11 SF1547 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2 Rättas endast om del 1 är godkänd. Betygsgräns

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI Delkurs 207 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.. För

Läs mer

printed: October 19, 2001 last modied: October 19, 2001 Laborationen avser en undersokning av stromningen kring en tva-dimensionell vingprol vid olika

printed: October 19, 2001 last modied: October 19, 2001 Laborationen avser en undersokning av stromningen kring en tva-dimensionell vingprol vid olika Bestamning av lyftkraft pa en symmetrisk vingprol. printed: October 19, 2001 last modied: October 19, 2001 1 Laborationens innehall Laborationen avser en undersokning av stromningen kring en tva-dimensionell

Läs mer

Studietips info r kommande tentamen TEN1 inom kursen TNIU23

Studietips info r kommande tentamen TEN1 inom kursen TNIU23 Studietips info r kommande tentamen TEN inom kursen TNIU3 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer