Tentamen i Allmän Kemi, del 2

Storlek: px
Starta visningen från sidan:

Download "Tentamen i Allmän Kemi, del 2"

Transkript

1 Linköpings Universitet Institutinen ör Fysik, Kemi ch Bilgi (IFM) Tentmen i llmän Kemi, del (NKE04 m.l.) Måndg den 4 kter 0, kl Hjälpmedel: peridiskt system, rmelsmling (igs tentn) miniräknre, rdk nsvrig lärre: Helen Herertssn Per-Olv Käll Henrik Pedersen Tentn mttr 6 uppgiter m 0 päng 60 p Säkert gdkänt 0 p OBS : Fullständig lösningr skll lltid ges! OBS : Om ej nnt nges är temperturen 5 C ch trycket.00 tm. Uppgit ) Skriv jämviktsuttrycket ör 4NH (g) 5O (g) 4NO(g) 6H O(g). Åt vilket håll örskjuts jämvikten m jämvikten ställts in i ett slutet kärl ch kärlets vlym minskr? Mtiver. ( p) ) Jämviktsknstnten ör rektin () nedn är vid 700 C. () H (g) S (g) H S(g) Beräkn utirån dett jämviktsknstnten ör rektin (): () H S(g) H (g) ½S (g) ( p) c) Initilt örs 4.0 ml vätejdid, HI, in i ett kärl sm rymmer 9.60 l. När jämvikten HI(g) H (g) I (g) ställt in sig vid 40 C kunde mn knstter tt det nns M H i systemet. Beräkn K c smt K p ör jämvikten. ( p) d) En student vill ered en cettuert sm sk h ph Hn utgår rån 0.00 l 0.5 M ättikssyr (pk 4.76) ch sätter till st ntriumcett (NOOCCH ). Hur mycket ntriumcett sk hn tillsätt? Brtse rån eventuell vlymökning. ( p) Uppgit ) Studentern på en kurs i llmän kemi genmörde syr-stitrering med ph-meter v öljnde svg, enprtnig syrr: Nmn Frmel Mlmss Ättiksyr CH COOH nilinhydrklrid C 6 H 5 NH Cl 9.58 Bensesyr C 6 H 5 COOH. Butnsyr (smörsyr) C H 7 COOH 88.0 En v studentern löste 0.59 g v sin syr i vjnt vtten, så tt lösningens ttlvlym lev 80 ml. Prvlösningen titrerdes med 0.50 M NOH, vrvid öljnde titrerkurv erhölls:

2 0 9 ph ml (i) vgör genm lämplig eräkning vilken v syrrn vn vår student titrerde. (4 p) (ii) nge ett ungeärligt pk -värde ör syrn. ( p) ) Beräkn lösligheten ör klciumst, C (PO 4 ), i rent vtten (uttryckt i g/dm ). K sp ör C (PO 4 ) är. 0. ( p) c) Är C (PO 4 ) mer löslig i sur, neutrl eller sisk lösning? Mtiver ditt svr. ( p) d) Briumsult, BSO 4, är ett svårlösligt slt sm nvänds sm kntrstmedel vid röntgenundersökning v rämst mg- ch trmknlen. Kmmer en ällning v riumsult tt ilds m 0.0 ml M N SO 4 sätts till 00 ml. 0 4 M BCl? För BSO 4 är K sp ( p) Uppgit mmniumnitrt, sm nvänds åde ör knstgödning ch sm sprängämne, kn sönderdels i lustgs (dikvävexid) ch vttenång enligt: NH 4 NO (s) N O(g) H O(g) Termdynmisk dt ör de ktuell ämnen är: Ämne H (kj ml ) (kj ml ) S (J K ml ) NH 4 NO (s) N O(g) H O(g) ) vgör åt vilket håll rektinen vn är örskjuten vid 5 C. ( p) ) Är rektinen ex- eller endterm? ( p)

3 c) Ökr eller minskr entrpin ör rektinen sm den är skriven? Diskuter m entrpiörändringen är örväntd eller inte. ( p) d) Beräkn den termdynmisk jämviktsknstnten, K, ör rektinen vid 5 C. ( p) e) (i) Teckn rektinskvten (rectin qutient), Q, ör rektinen vn. (Rektinskvten är ju det termdynmisk jämviktsuttrycket ör rektinen innn jämvikt uppnåtts.) ( p) (ii) ntg tt rektinen vn sker i ett slutet kärl med knstnt vlym vid 5 C. ntg vidre tt NH 4 NO (s) öreligger i översktt ch tt P NO P HO 0.0 tm. Beräkn ändringen i den ri energin () ör systemet. ( p) Uppgit 4 ) Ordn öljnde ämnen eter stignde kkpunkt. Mtivering krävs! vtten (H O) hexn (C 6 H 4 ) helium (He) vätesulid (H S) ( p) ) vgör vilken/vilk typer v krter, sm håller ihp öljnde ämnen i st tillstånd: mmnik (NH ) kvrts (SiO ) ntriumrmid (NBr) ( p) c) Förklr vrör 0.05 M NCl(q) örvänts h någt lägre kkpunkt än 0.05 M CrCl (q) ( p) d). g svvel löstes i g kldisulid (CS ). För ren CS är kkpunkten 46.0 C. Eter tt svvlet löst sig ökde kkpunkten till 46.5 C. vgör i vilken mlekylär rm (S x ) svvlet löser sig i CS. För kldisulid är K.4 C kg ml ( p) e) Metllen vndin (V) kristlliserr i ett rymdcentrert kuiskt gitter (dy centred cuic cc). tmrdien ör vndin är pm. (i) Hur mång tmer innehåller vndins enhets? ( p) (ii) Beräkn densiteten ör V(s). ( p) Uppgit 5 Mn lät tillverk öljnde elektrkemisk : g(s) gi(s) NI(q, c M) gno (q, 0.05 M) g(s) De två hlvrektinern ör denn är: E 0 g (q) e g(s) 0.80 V gi(s) e g(s) I (q) 0.5 V ) Vd är E 0? ( p)

4 ) Teckn ttlrektinen ör en. ( p) c) ntg tt c 0.05 M. Vd lir då ens EMK (E )? ( p) d) Vid mätning v en känd jdidkncentrtin ( c ) nn mn tt E V. Beräkn [I (q)] i prvet. ( p) e) Beräkn löslighetsprdukten (K sp ) ör silverjdid, gi(s), ur vnstående elektrkemisk dt. ( p) Uppgit 6 Sönderllet v kvävexyrmid, NOBr, sker med en : rdningens rektin enligt NOBr(g) NO(g) Br (g) Vid ett experiment utört vid 0 C mättes kncentrtinen v kvävexyrmid, [NOBr], sm en unktin v tiden, t, ch öljnde tell erhölls: t / s [NOBr] / ml dm ) Vis tt rektinen är v ndr rdningen genm tt på lämpligt sätt vsätt dt ör kncentrtinen mt tiden. nvänd millimeterppper! ( p) ) Beräkn hstighetsknstnten, k, ör rektinen ch nge krrekt enhet. ( p) c) ntg tt experimentet utörs i ett slutet kärl med knstnt vlym. ntg dessutm tt vid tiden t 0 s kärlet endst innehåller NOBr(g). Beräkn ttltrycket i kärlet (välj själv tryckenhet) vid (i) t 0 s respektive t s ( p) (ii) t 00 s ( p) Listn över persner sm ått Nelpriset mer än en gång är inte lång. Den upptr endst yr nmn, ch örst på listn återinns en kvinn: Mrie Skldwsk Curie (867-94). Mrie Curie ick priset örst gången år 90 tillsmmns med sin mke Pierre ch ysikerkllegn Henri Becquerel. Mrie Curie vr då 6 år ch de tre delde ysikpriset ör upptäckten ch studiet v rdiktiv grundämnen. I Vetenskpskdemiens mtivering ör tt ge en hlvn v priset till mkrn Curie sägs tt de år priset 4

5 såsm ett erkännnde v den utmrdentlig örtjänst de inlgt genm sin gemensmt utörd reten rörnde de v Pressr Henri Becquerel upptäckt strålningsenmenen. Ått år senre, 9, ick Mrie Curie priset ör ndr gången. Den gången ick hn ensmt t emt priset i kemi ch mtiveringen löd såsm ett erkännnde ör den örtjänst hn inlgt m kemins utveckling genm upptäckten v grundämnen rdium ch plnium, genm krkteriserndet v rdium ch dess islernde i metlliskt tillstånd smt genm sin undersökningr ngående dett märklig grundämnes öreningr. Vid dett tillälle vr mken Pierre redn död. Hn hde mkmmit i en triklyck en vårdg i Pris tre år eter det tt de tgit emt priset i Stckhlm. Mri Slme Skldwsk öddes sm det yngst v em syskn i Wrszw i det då rysk Plen. Båd öräldrrn vr lärre. På tiden visserligen ett yrke med hög sttus men knppst ett sm resulterde i örmögenhet. Sysknens rmtidsutsikter i det ryskstyrd Plen vr dessutm dålig, då åd öräldrrn km rån miljer sm gjrt sig känd genm sitt enggemng ör Plens självständighet. Tjugyr år gmml lyttde Mri därör till Pris ör tt studer vid det erömd Srnne, där en syster till henne redn enn sig. För tt kunn innsier sin studier hde systrrn kmmit överens m tt Mri örst skulle ret i två år ör tt understödj systerns studier, vrpå de skulle skit ch systern örsörj Mri under lik lång tid. Mri lyttde in i den tidens studentrum, en ytterst primitiv vindskup, ch örjde läs ysik, kemi ch mtemtik vid universitetet. År 894 träde hn den ått år äldre lärren ch ysikern Pierre Curie ch ett år senre gite de sig. Mrie Curies ndr Nelpris vr resulttet v viss servtiner hn gjrt när hn ch Pierre hde studert egenskper hs rdiktiv ämnen. Mrie hde då örstått tt det måste inns ler rdiktiv grundämnen örutm urn ch genm en erhörd nlytiskkemisk retsinsts lyckdes det henne tt ren rm ch isler de två dittills känd grundämnen rdium ch plnium. Det sistnämnd grundämnet nmngv hn eter sitt hemlnd Plen. Plnium hr mycket krt hlveringstid, mindre än en sekund, ch kn endst servers sm sönderllsprdukt v långsmmre sönderllnde grundämnen. Vid denn tid insåg mn ännu inte till ull rn med jnisernde strålning ch det är trligt tt Mrie Curies häls tg llvrlig skd v hennes rete med rdiktiv ämnen ch genm hennes senre rete med röntgenstrålning. Mkrn Curie ick två döttrr: Irène Jlit-Curie ( ), sm km tt gå i öräldrrns tspår. Tillsmmns med sin mke Frédéric Jlit elöndes hn med Nelpriset i kemi 95 endst ett år eter tt hennes mmm vlidit. Dttern Ève Curie ( , hn lev lltså över 00 år) lev örttre ch skrev lnd nnt en erömd igri m sin mr (svensk titel Min mr Mrie Skldwsk Curie ). Idg vet vi tt Ève Curie i igrin undvek tt t upp någr v de mer smärtsmm episdern i Mrie Curies liv ch tt ilden v denn smmnstt ch pssinerde kvinn knske därmed lev någt idylliskt tillrättlgd. Å ndr sidn är det knske inte så lldeles enkelt ör en dtter tt skriv ullständigt jektivt m en världserömd mr. 5

6 Pierre ch Mrie Curie i ders lrtrium i Pris mkr Bilden vn är rån den erömd Först Slveyknerensen i ysik ch kemi i Bryssel år 9. Snett km den vid rdet sittnde Mrie Curie, sm vr den end kvinnlig deltgren (med huvudet vilnde mt hndltn), ses lnd ndr den unge lert Einstein (nr rån höger). 6

7 Linköpings universitet ht 0 Institutinen ör Fysik, Kemi ch Bilgi (IFM) Termdynmik H U PV H U RT H S n gs n H (prdukt) ns (prdukt) G H TS G H T S Frmelsmling ör llmän Kemi, del deinitin v entlpi n (prdukt) ms m H deinitin H (rektnt) m (rektnt) v Gis T S (rektnt) ri energi e { E} { F} { } { B}... För rektinen B... ee F... är rektinskvten Q... G Kemisk jämvikt RT ln K RT ln Q K termdynmisk jämviktsknstnt e { E} { F} { } { B} { } ktivitet... För jämviktsrektinen B... ee F... är K Mssverkns lg... Vid utspädd lösning resp. vid måttlig gstryck kn mn nsätt {(q)} [(q)] (M) ch {(g)} P (tm). För rent ämne gäller tt {}. Oserver tt ktiviteten, { }, liksm den termdynmisk jämviktsknstnten, K, sknr enhet. K p n ( RT ) gs K c Syrjämvikt H H K w O H O - syrknstnt K - 4 [ H O ][ OH ].0 0 (5 C) vttnets jnprdukt pk w ph poh 4.0 (5 Bsjämvikt B H O OH HB sknstnt K w w C) K K K pk pk pk - [ ] - [ H O ] [ ] [ H] - [ OH ] [ HB ] [ B] ph pk lg uertekvtinen H H O HO [ H] m n Löslighetsjämvikt pbq (s) p qb löslighetsprdukt Ksp [ ML n ] [ M] [ L] Kmplexjämvikt M nl ML n stilitetsknstnt K β n - m p n [ ] [ B ] q 7

8 Elektrkemi E E E E E E - E, E är nrmlptentiler (stndrd reductin ptentils) ör respektive hlv EMK (elektrmtrisk krt) E E nfe nfe Kinetik [ ] [ ] RT ln Q nf RT ln K 0 : e rdningens hstighetsekvtin kt ln[ ] ln[ ] [ ] [ ] e ln k (integrerd rm) : rdningens hstighetsekvtin t [ ] [ ] [ ] Nernsts ekvtin ör rektinen (ttlrektin) (expnentiell rm) K termdynmisk jämviktsknstnt [ ] d dt [ ] d dt kt (integrerd rm) kt k k [ ] hlveringstid : rdningens hstighetsekvtin : rdningens hstighetsekvtin t k k e E RT kt E ln k ln R T (integrerd rm) [ ] d dt k [ ] hlveringstid : rdningens hstighetsekvtin rrheniusekvtinen Klligtiv egenskper P P X Rults lg ör idel lösning i i [ ] k H P Henryslg Ptt P P prtiell ångtrycket ör T K cm kkpunktsörhöjning T K cm Π V nrt smtiskt tryck i ryspunktssänkning 8

Tentamen i Allmän kemi 8BKG11. 2012-10-23, kl. 8 00-13 00

Tentamen i Allmän kemi 8BKG11. 2012-10-23, kl. 8 00-13 00 Tentmen i llmän kemi 8BKG 0-0-, kl. 8 00-00 nsvrig lärre: Helen Herertssn 85605, 070-5669944 Lrs Ojmäe 880 Per-Olv Käll 070-0 67 04 50% rätt ger säkert gdkänt! Hjälpmedel: Miniräknre ch krt med peridisk

Läs mer

Uppgift 1 a) i) Namnge följande föreningar med deras systematiska namn: (3p) P 2 S 3 Ca(ClO 4 ) 2 CuBr 2

Uppgift 1 a) i) Namnge följande föreningar med deras systematiska namn: (3p) P 2 S 3 Ca(ClO 4 ) 2 CuBr 2 Uppgit ) i) Nmnge öljnde öreningr med ders systemtisk nmn: P S 3 C(ClO 4 ) CuBr ii) nge kemisk rmlern ör öljnde öreningr: ntriumst mngn(iv)xid ) i) Hur ritler i en tm kn h kvnttlet n 3? (p) ii) Vilken

Läs mer

Tentamen i Allmän Kemi, del 2

Tentamen i Allmän Kemi, del 2 Linköpings Universitet Institutinen ör Fysik, Kemi ch Bilgi (IFM) Tentmen i llmän Kemi, del (NKE04 m.l.) Måndg den 4 kter 0, kl 08 00-00 Hjälpmedel: miniräknre, rdk, peridiskt system, rmelsmling (de två

Läs mer

Allmän Kemi 2 (NKEA04 m.fl.)

Allmän Kemi 2 (NKEA04 m.fl.) Allmän Kemi (NKEA4 m.fl.) --4 Uppgift a) K c [NO] 4 [H O] 6 /([NH ] 4 [O ] 5 ) eller K p P(NO) 4 P(H O) 6 /(P(NH ) 4 P(O ) 5 ) Om kärlets volym minskar ökar trycket och då förskjuts jämvikten åt den sida

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköings Universitet Datum för tentamen 203-05-30 Sal TER3 Tid 4-8 Kurskd TFKE52 Prvkd TEN Kursnamn/benämning Prvnamn/benämning Grundläggande kemi Skriftlig tentamen

Läs mer

ξ = reaktionsomsättning eller reaktionsmängd, enhet mol.

ξ = reaktionsomsättning eller reaktionsmängd, enhet mol. Kemisk jämvikt. Kp. 6.1 4. Spontn kemisk retion: r G < 0, p konst, T konst. Jämvikt där G hr minimum i syst. Kinetiken (hög ktiveringsenergi) kn hindr. 6.1 Minimet i Gibbs fri energi. (p konst, T konst.)

Läs mer

Byt till den tjocka linsen och bestäm dess brännvidd.

Byt till den tjocka linsen och bestäm dess brännvidd. LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,

Läs mer

TENTAMEN I KEMI TFKE

TENTAMEN I KEMI TFKE Linköpings Universitet IFM-Kemi. Kemi för Y, M. m. fl. (TFKE09) TENTAMEN I KEMI TFKE09. 2006-10-16 Lokl: TER2. Skrivtid: 14.00 18.00 Ansvrig lärre: Nils-l Persson, tel. 1387, lt 070-517 1088. Stefn Svensson,

Läs mer

RÄTTNINGSMALL TILL KEMIOLYMPIADEN 2014, OMGÅNG 2

RÄTTNINGSMALL TILL KEMIOLYMPIADEN 2014, OMGÅNG 2 RÄTTNINGSMALL TILL EMIOLYMPIADEN 201, OMGÅNG 2 Nmn: Födelsedtum: Skol: Hemdress: e-post: Uppg. Endst svr ing uträkningr Poäng L 1 b c d e f 2 2 b c d e 2,1 cm 2 0,20 mol/dm 2 b 1 kp 2 5 2ClO 2 + 2OH ClO

Läs mer

TENTAMEN I KEMI TFKE16 (4 p)

TENTAMEN I KEMI TFKE16 (4 p) Linköpings Universitet IFM-Kemi. Kemi för Y, M. m. fl. (TFKE16) TENTAMEN I KEMI TFKE16 (4 p). 2008-10-16 Lokl: TER1. Skrivtid: 14.00 18.00 Ansvrig lärre: Nils-l Persson, tel. 1387, lt 070-517 1088 (efter

Läs mer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel

Läs mer

Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger )

Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger ) Intrduktinskurs i mtemtik 1 v 5 Algerisk uttrk: Räknelgr: lgen distriutiv lgr ssitiv lgr kmmuttiv, Ptenser: 1 n L n gånger --------------------------------------- n udd tl, jämnt tl n, n n n 4 4.. ---------------------------------------

Läs mer

Lektionssammanfattning Syra-Bas-Jämvikter

Lektionssammanfattning Syra-Bas-Jämvikter Lektiossmmfttig SyrBsJämvikter Det fis ytterligre e typ v jämvikter som vi sk t upp i vi käer oss öjd. Nämlige Syrsjämvikter. De type v jämvikter väds huvudsklige för svg syror oh ser. Ett exempel på e

Läs mer

Meddelande. Föreläsning 2.5. Repetition Lv 1-4. Kemiska reaktioner. Kemi och biokemi för K, Kf och Bt 2012

Meddelande. Föreläsning 2.5. Repetition Lv 1-4. Kemiska reaktioner. Kemi och biokemi för K, Kf och Bt 2012 Energi Kemi ch bikemi för K, Kf ch Bt 2012 Föreläsning 2.5 Kemiska reaktiner Meddelande 1. Justerat labschema Lv5-7. Berör K6, Bt6, Bt2, Kf3 2. Mittmötet. Rättning av inlämningsuppgifter. Knstruktiv kritik

Läs mer

Rektangulär kanal, K. Produktbeteckning. Beteckningsexempel. Sida A (se storlekstabell) Sida B (se storlekstabell)

Rektangulär kanal, K. Produktbeteckning. Beteckningsexempel. Sida A (se storlekstabell) Sida B (se storlekstabell) K Rektngulär knl, K Produkteteckning Produkt K c d Sid A (se storlekstell) Sid B (se storlekstell) Längd 1=2000 mm 2= 1250 mm 3= 1000 mm 4= 600 mm 5= Löpnde längd nges i klrtext (mx 2500 mm) 1= Skrv i

Läs mer

Repetitionsuppgifter i matematik

Repetitionsuppgifter i matematik Lärrprogrmmet Ingång Mtemtik och Lärnde Repetitionsuppgifter i mtemtik Inför vårterminens mtemtikstudier kn det vr r tt repeter grundläggnde räknefärdigheter. Dett mteril innehåller uppgifter inom följnde

Läs mer

KEMA02 Oorganisk kemi grundkurs F10

KEMA02 Oorganisk kemi grundkurs F10 KEMA02 Organisk kemi grundkurs F10 Elektrkemi Redxreaktiner ch Galvaniska er 2 Atkins & Jnes kap 13.6 13.9 E = E RT nf lnq Walther Nernst 1864 1941. Nbelpris i kemi 1920. Senast Redxreaktiner Halvreaktiner

Läs mer

BLÖTA BOKEN MONTERINGSANVISNING PALLADIUM DE LUXE PLUS VIKDÖRR I NISCH VIKTIG INFORMATION. LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS.

BLÖTA BOKEN MONTERINGSANVISNING PALLADIUM DE LUXE PLUS VIKDÖRR I NISCH VIKTIG INFORMATION. LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS. MONTERINGSANVISNING BLÖTA BOKEN PALLADIUM DE LUXE PLUS VIKDÖRR I NISCH VIKTIG INFORMATION. LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS. 1. Läs igenom hel nvisningen innn monteringen påbörjs. 2. Kontroller produkten

Läs mer

Jämviktsreaktioner och kemisk jämvikt. Niklas Dahrén

Jämviktsreaktioner och kemisk jämvikt. Niklas Dahrén Jämviktsreaktiner ch kemisk jämvikt Niklas Dahrén De flesta kemiska reaktiner kan gå i båda riktningarna Vi är vana att rita kemiska reaktiner på följande sätt: H 2 + I 2 2HI Men de flesta reaktiner kan

Läs mer

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015.

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015. FÖRSÄTTSBLAD Institutionen för Nturgeogrfi och Ekosystemvetenskper Institutionen för Teknik och Smhälle Frågor för tentmen EXTA50 Smhällsmätning, 9 hp, kl. 8-13 12 jnuri, 2015. Denn tentmen rätts nonymt.

Läs mer

Internetförsäljning av graviditetstester

Internetförsäljning av graviditetstester Internetförsäljning v grviditetstester Mrkndskontrollrpport från Enheten för medicinteknik 2010-05-28 Postdress/Postl ddress: P.O. Box 26, SE-751 03 Uppsl, SWEDEN Besöksdress/Visiting ddress: Dg Hmmrskjölds

Läs mer

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen... Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................

Läs mer

Tentamen för KEMA02 lördag 14 april 2012, 08-13

Tentamen för KEMA02 lördag 14 april 2012, 08-13 Lunds Universitet, Kemiska Institutionen Tentamen för KEMA02 lördag 14 april 2012, 08-13 Tillåtna hjälpmedel är utdelat formelblad och miniräknare. Redovisa alla beräkningar. Besvara varje fråga på ett

Läs mer

Kemisk jämvikt. Niklas Dahrén

Kemisk jämvikt. Niklas Dahrén Kemisk jämvikt Niklas Dahrén Vad innebär en jämviktsreaktin ch vad innebär jämvikt? Jämviktsreaktin ch jämvikt: En jämviktsreaktin är en reaktin sm kan gå i båda riktningarna (reversibel reaktin) ch sm

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsld till skriftlig tentmen vid Linköpings Universitet Dtum för tentmen 2011-10-18 Sl TER3 Tid 14-18 Kurskod TFKE16 Provkod TEN1 Kursnmn/enämning Provnmn/enämning Kemi En skriftlig tentmen Institution

Läs mer

Kapitel Repetition inför delförhör 2

Kapitel Repetition inför delförhör 2 Kapitel 12-18 Repetition inför delförhör 2 Kapitel 1 Innehåll Kapitel 12 Kapitel 13 Kapitel 14 Kapitel 15 Kapitel 16 Kapitel 17 Kapitel 18 Kemisk kinetik Kemisk jämvikt Syror och baser Syra-basjämvikter

Läs mer

KEMA02 Oorganisk kemi grundkurs F10

KEMA02 Oorganisk kemi grundkurs F10 KEMA02 Organisk kemi grundkurs F10 Elektrkemi Redxreaktiner ch Galvaniska er 2 Atkins & Jnes kap 13.6 13.9 E = E RT nf lnq Walther Nernst 1864 1941. Nbelpris i kemi 1920. Senast Redxreaktiner Halvreaktiner

Läs mer

REPETITIONSKURS I KEMI LÖSNINGAR TILL ÖVNINGSUPPGIFTER

REPETITIONSKURS I KEMI LÖSNINGAR TILL ÖVNINGSUPPGIFTER KEMI REPETITIONSKURS I LÖSNINGAR TILL ÖVNINGSUPPGIFTER Magnus Ehinger Fullständiga lösningar till beräkningsuppgifterna. Kemins grunder.10 Vi antar att vi har 10 000 Li-atomer. Av dessa är då 74 st 6 Li

Läs mer

Fysiktävlingen Lösningsförslag. Uppgift 1. Vi får anta att kinetisk energi övergår i lägesenergi, och att tyngdpunkten lyftes 6,5 m.

Fysiktävlingen Lösningsförslag. Uppgift 1. Vi får anta att kinetisk energi övergår i lägesenergi, och att tyngdpunkten lyftes 6,5 m. SVESK FYSIKESMFUDET Fysiktälingen 006. Lösningsörslg. Uppgit. Vi år nt tt kinetisk energi öergår i lägesenergi, och tt tyngdpunkten lytes 6,5 m. m mgh gh t s gh 00 9,8 6,5 8,85 8,9 s Stöten stången mot

Läs mer

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n

Läs mer

Tentamen i Kemisk termodynamik kl 8-13

Tentamen i Kemisk termodynamik kl 8-13 entamen i emisk termdynamik 004-08-6 kl 8- Hjälmedel: Räknedsa, BE ch Frmeamling för kurserna i kemi vid H. Endast en ugift er blad! Skriv namn ch ersnnummer å varje blad! lla använda ekvatiner sm inte

Läs mer

Där a mol av ämnet A reagerar med b mol av B och bildar c mol av C och d mol av D.

Där a mol av ämnet A reagerar med b mol av B och bildar c mol av C och d mol av D. 1 Kemisk jämvikt oh termoynmik Vi en kemisk rektion omvnls en eller fler molekyler från en form till en nnn. Mång olik typer v kemisk rektioner hr ren reovists uner kursen. För tt eskriv v som häner vi

Läs mer

Skogstorp i framtiden

Skogstorp i framtiden I SKOGSTORP www.skogstorp.om/soildemokrtern Skogstorp i frmtiden Redovisning v enkät genomförd under perioden Novemer- Deemer 2005. 1. Tyker Du liksom fler v oss tt det ehövs yggs en förifrt utnför skogstorp?

Läs mer

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00 Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,

Läs mer

p Följ Kraft Där, Strå

p Följ Kraft Där, Strå Sånger söndg e domsöndg 0 Söndgsmorgon J.Hydn/J.O.Wlln Söndgsmorgon Musk v J.Hy. Svsk text v J.O.Wlln. Öpp r! Hel An skl bn skl nä kors ms d r m, ljud! bön, ljud? känn m vs, n rym m Se L Hur An m tds t

Läs mer

14. MINSTAKVADRATMETODEN

14. MINSTAKVADRATMETODEN 4 MINTAKADRATMETODEN Nu sk vi gå igenom någr olik sätt tt lös ekvtionssystemet Ax Om A är m n mtris med m n så sägs systemet vr överestämt och det sknr då i llmänhet lösningr Istället söker mn en pproximtiv

Läs mer

Råd och hjälpmedel vid teledokumentation

Råd och hjälpmedel vid teledokumentation Råd och hjälpmedel vid teledokumenttion Elektrisk Instlltörsorgnistionen EIO Innehåll: Vd skiljer stndrdern åt När sk vilken stndrd nvänds Hur kn gmml och ny stndrd kominers Hur kn dokumenttionen förenkls

Läs mer

Kapitel Kapitel 12. Repetition inför delförhör 2. Kemisk kinetik. 2BrNO 2NO + Br 2

Kapitel Kapitel 12. Repetition inför delförhör 2. Kemisk kinetik. 2BrNO 2NO + Br 2 Kapitel 1-18 Repetition inför delförhör Kapitel 1 Innehåll Kapitel 1 Kemisk kinetik Redoxjämvikter Kapitel 1 Definition Kapitel 1 Området inom kemi som berör reaktionshastigheter Kemisk kinetik Kapitel

Läs mer

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1 F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så

Läs mer

BLÖTA BOKEN. Monteringsanvisning PALLADIUM DE LUXE II HÖRNA MED SKJUTDÖRR W1 E1= 10 VIKTIG INFORMATION. LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS.

BLÖTA BOKEN. Monteringsanvisning PALLADIUM DE LUXE II HÖRNA MED SKJUTDÖRR W1 E1= 10 VIKTIG INFORMATION. LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS. W Monteringsnvisning BLÖTA BOKEN VIKTIG INFORMATION LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS 1 Läs igenom hel nvisningen innn monteringen påbörjs PALLADIUM DE LUXE II HÖRNA MED SKJUTDÖRR 2 Kontroller produkten

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6 Kurs plnering.se NpMC vt005 (5) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 005 Del I, 0 uppgifter utn miniräknre 4 Del II, 8 uppgifter med miniräknre 6 Förslg på lösningr till uppgifter

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017 KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

TentamensKod:

TentamensKod: ENEGITEKNIK 7,5 högskoleoäng rovmoment: Ldokkod: Tentmen ges för: Tentmen 4ET07 Bt TentmensKod: ------------------------------------------------------------------------------------------------------- Tentmensdtum:

Läs mer

AUBER 95 9 jan LÖSNINGAR STEG 1:

AUBER 95 9 jan LÖSNINGAR STEG 1: AUBER 95 9 jn AR. Den finit utomten nedn ccepterr ett språk L över = {, }. A B ε Konstruer ) ett reguljärt uttryck för L. ) L = ( ( ) ) = ( ) ) en reguljär grmmtik för L S A S A c) en miniml DFA för L.

Läs mer

Laboration 1: Kalorimetrisk bestämning av neutralisationsentalpi

Laboration 1: Kalorimetrisk bestämning av neutralisationsentalpi LINKÖPINGS UNIVERSITET 2013-10-03 Avd för kemi, IFM Fysikalisk kemi Labratin 1: Kalrimetrisk bestämning av neutralisatinsentalpi Labratin 1: Kalrimetrisk bestämning av neutralisatinsentalpi Uppgift: 1.

Läs mer

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055) Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF1) och F3 (ETE55) Tid och plts: 7 jnuri, 215, kl. 8. 13., lokl: MA9, E F. Kursnsvrig lärre: Anders Krlsson, tel. 222 4 89. Tillåtn hjälpmedel:

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

KEMA02 Oorganisk kemi grundkurs F9

KEMA02 Oorganisk kemi grundkurs F9 KEMA02 Organisk kemi grundkurs F9 Elektrkemi Redxreaktiner ch Galvaniska er 1 Atkins & Jnes kap 13.1 13.5 Översikt kapitel 13.1 13.5 Redxreaktiner Halvreaktiner Balansering av redxreaktiner Galvaniska

Läs mer

Kan det vara möjligt att med endast

Kan det vara möjligt att med endast ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn

Läs mer

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför? Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde

Läs mer

Kylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag]

Kylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag] Kylfrysguide [Nmn] Elektroskndi Sverige AB [år-månd-dg] Kylfrysguide Vilken kyl-frys sk du välj? Nturligtvis är det utrymmet som är det först tt t hänsyn till. Vnligst instlltionsbredd är 60 cm, men även

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

Uppsala Universitet Matematiska Institutionen T Erlandsson

Uppsala Universitet Matematiska Institutionen T Erlandsson Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.

Läs mer

Sidor i boken

Sidor i boken Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer

Läs mer

Allmän information (1 av 1)

Allmän information (1 av 1) ASI Uppföljning ASI Uppföljning är en stndrdintervju för uppföljning v personer i missruks- och eroendevård. Den nvänds för tt stämm v personens sitution och hjälpehov smt för uppföljning v instser. Intervjun

Läs mer

Skriv tydligt! Uppgift 1 (5p)

Skriv tydligt! Uppgift 1 (5p) 1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!

Läs mer

Bokstavsräkning. Regler och knep vid bokstavsräkning

Bokstavsräkning. Regler och knep vid bokstavsräkning Mtemtik Bokstvsräkning Du står nu inför en ny kurs i mtemtik, där meningen är tt du sk tillgodogör dig ny teorier, som smtlig leder frm till övningr och uppgifter. Även om du förstått vd teorin sk nvänds

Läs mer

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1 UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs

Läs mer

MATEMATISKT INNEHÅLL UPPGIFT METOD. Omvandla mellan olika längdenheter. METOD BEGREPP RESONEMANG. Ta reda på omkrets. 5 Vilken omkretsen har figuren?

MATEMATISKT INNEHÅLL UPPGIFT METOD. Omvandla mellan olika längdenheter. METOD BEGREPP RESONEMANG. Ta reda på omkrets. 5 Vilken omkretsen har figuren? Kn du dett? Uppgiftern här är tänkt tt nvänds för utvärdering v hur elevern tillägnt sig kpitlets mtemtisk innehåll. Låt elevern, prvis eller i mindre grupper, lös uppgiftern tillsmmns och förklr för vrndr

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8 Kurs plnering.se NpMC vt011 1(9) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 011 Krvgränser 4 Del I, 8 uppgifter utn miniräknre 5 Del II, 9 uppgifter med miniräknre 8 Förslg på lösningr

Läs mer

KEMA02 Oorganisk kemi grundkurs F12

KEMA02 Oorganisk kemi grundkurs F12 KEMA02 Organisk kemi grundkurs F12 Kinetik Kinetik Atkins & Jnes kap 14.1 14.5 Översikt Reaktinshastigheter Kncentratin ch reaktinshastighet Mmentan hastighetsekvatin Hastighetsekvatiner ch reaktinsrdning

Läs mer

Exponentiella förändringar

Exponentiella förändringar Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i

Läs mer

13.9.2006 Dnr 6/002/2006. Till pensionsstiftelser som bedriver tilläggspensionsskydd och är underställda lagen om pensionsstiftelser

13.9.2006 Dnr 6/002/2006. Till pensionsstiftelser som bedriver tilläggspensionsskydd och är underställda lagen om pensionsstiftelser FÖRESRIFT 13.9.2006 Dnr 6/002/2006 Till pensionsstiftelser som edriver tilläggspensionsskydd och är underställd lgen om pensionsstiftelser FÖRSÄRINGSTENIS BERÄNINGR OCH DERS BERÄNINGSGRUNDER FÖR PENSIONSSTIFTELSER

Läs mer

Tentamen i ETE115 Ellära och elektronik, 10/1 2015

Tentamen i ETE115 Ellära och elektronik, 10/1 2015 Tentmen i ETE Ellär och elektronik, 0/ 20 Tillåtn hjälpmedel: Formelsmling i kretsteori. Observer tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. g 2 v in

Läs mer

Lödda värmeväxlare, XB

Lödda värmeväxlare, XB Lödd värmeväxlre, XB Beskrivning/nvändning XB är en lödd plttvärmeväxlre utveckld för nvändning i fjärrvärmesystem t ex, luftkonditionering, värme, tppvrmvtten. XB lödd plttvärmeväxlre tillverks med fler

Läs mer

Namn och matrikelnummer: 1.a) Redogör kort för begreppet strikt ansvar inom skadeståndsrätten (5 p)

Namn och matrikelnummer: 1.a) Redogör kort för begreppet strikt ansvar inom skadeståndsrätten (5 p) Introduernde kurs i hndelsrätt 10.12.2002, Helsingfors oh Vs Skrivtid: 3 timmr Fråg 1 (Övrig frågor se särskild frågeformulär). Oserver tt tentmen omfttr fem (5) olik frågeformulär oh tt ll dess formulär

Läs mer

Allmän information (1 av 1)

Allmän information (1 av 1) ASI Grund ASI Grund är en stndrdintervju för krtläggning och edömning v prolem och resurser för personer med missruks- och eroendeprolem. Intervjun innehåller huvudskligen frågor om sju livsområden: fysisk

Läs mer

SLING MONTERINGS- OCH BRUKSANVISNING

SLING MONTERINGS- OCH BRUKSANVISNING SLING MONTERINGS- OCH BRUKSANVISNING FOC_SLING_1107 Introduktion Dett är en ruksnvisning för det dynmisk rmstödet SLING som monters på rullstol, stol eller nnn nordning. SLING tillverks v FOCAL Meditech,

Läs mer

Ett förspel till Z -transformen Fibonaccitalen

Ett förspel till Z -transformen Fibonaccitalen Ett förspel till Z -trnsformen Fibonccitlen Leonrdo Pisno vnligen klld Leonrdo Fiboncci, den knske störste mtemtiker som Europ frmburit före renässnsen skrev år 10 en bok (Liber bci) i räknelär. J, fktiskt.

Läs mer

Integraler och statistik

Integraler och statistik Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik

Läs mer

Tentamen i ETE115 Ellära och elektronik, 25/8 2015

Tentamen i ETE115 Ellära och elektronik, 25/8 2015 Tentmen i ETE5 Ellär och elektronik, 5/8 05 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. Bestäm Thévenin-ekvivlenten

Läs mer

m 2,0 1,5 1,0 0,5 2 p. Värden som godkänns är 0,19 m/s 0,23 m/s STUDENTEXAMENS- NÄMNDEN ANVISNINGAR FÖR BEDÖMNINGEN AV MODELLPROVET I FYSIK

m 2,0 1,5 1,0 0,5 2 p. Värden som godkänns är 0,19 m/s 0,23 m/s STUDENTEXAMENS- NÄMNDEN ANVISNINGAR FÖR BEDÖMNINGEN AV MODELLPROVET I FYSIK STUDETEXMES- ÄMDE VISIGR FÖR BEDÖMIGE V MODELLPROVET I FYSIK I dess odellösningr presenters sådn kt so åtinstone ör näns ör ull poäng ör ett sr Ino prentes näns sådn kt so det skulle r r tt nge, trots

Läs mer

Campingpolicy för Tanums kommun

Campingpolicy för Tanums kommun 1(8) Cmpingpolicy för Tnums kommun 1. Bkgrund Strömstds och Tnums kommuner diskuterde gemensmt sin syn på cmpingverksmhetern i respektive kommun år 2003 och kunde då se ett stort behov v tt en likrtd syn

Läs mer

Övningsuppgifter i matematik

Övningsuppgifter i matematik Yrkeshögskoln Hlmstd Repetitionsuppgifter mtemtik Övningsuppgifter i mtemtik Oserver! Multipliktion skrivs med Bokstven x med x Prefix. Omvndl följnde enheter ), dm till cm (centimeter) ) m till km (kilometer)

Läs mer

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00 Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:

Läs mer

Konc. i början 0.1M 0 0. Ändring -x +x +x. Konc. i jämvikt 0,10-x +x +x

Konc. i början 0.1M 0 0. Ändring -x +x +x. Konc. i jämvikt 0,10-x +x +x Lösning till tentamen 2013-02-28 för Grundläggande kemi 10 hp Sid 1(5) 1. CH 3 COO - (aq) + H 2 O (l) CH 3 COOH ( (aq) + OH - (aq) Konc. i början 0.1M 0 0 Ändring -x +x +x Konc. i jämvikt 0,10-x +x +x

Läs mer

N atom m tot. r = Z m atom

N atom m tot. r = Z m atom Räkneövning fri elektroner och reciprok gittret 1. Silver, Ag, hr fcc-struktur, tomnummer 47, tomvikten 17,87 u, yttre elektronkonfigurtionen 4d 1 5s 1 och densiteten 149 kg/m 3. ) Beräkn tätheten n v

Läs mer

Rättningstiden är i normalfall tre veckor, annars är det detta datum som gäller: Efter överenskommelse med studenterna är rättningstiden fem veckor.

Rättningstiden är i normalfall tre veckor, annars är det detta datum som gäller: Efter överenskommelse med studenterna är rättningstiden fem veckor. Kemi Bas A Provmoment: Tentamen Ladokkod: TX011X Tentamen ges för: Tbas, TNBas 7,5 högskolepoäng Namn: Personnummer: Tentamensdatum: 2012-10-22 Tid: 9:00-13:00 Hjälpmedel: papper, penna, radergummi kalkylator

Läs mer

Kemisk jämvikt. Niklas Dahrén

Kemisk jämvikt. Niklas Dahrén Kemisk jämvikt Niklas Dahrén Vad innebär en jämviktsreaktin ch vad innebär jämvikt? ü Jämviktsreak-n ch jämvikt: En jämviktsreak/n är en reak/n sm kan gå i båda riktningarna (reversibel reak/n) ch sm går

Läs mer

TENTAMEN HF0021 TEN1. Program: Examinator: Datum: Tid: :15-17:15. , linjal, gradskiva. Lycka till! Poäng

TENTAMEN HF0021 TEN1. Program: Examinator: Datum: Tid: :15-17:15. , linjal, gradskiva. Lycka till! Poäng TENTMEN Kursnummer: Moment: Progrm: Rättnde lärre: Emintor: Dtum: Tid: Hjälpmedel: Omfttning oc etgsgränser: H Mtemtik för sår I TEN Tekniskt sår Nicls Hjelm Nicls Hjelm -8- :-7: ormelsmling: ISBN 78--7-77-8

Läs mer

Lösningar och kommentarer till uppgifter i 1.2

Lösningar och kommentarer till uppgifter i 1.2 Lösningr och kommentrer till uppgifter i.2 202 d) t t 2 25 t (t 5)(t + 5) Med hjälp v konjugtregeln kn vi fktoriser nämnren. Eftersom nämnren inte får bli noll är ej t 5 eller t 5 tillåtn. 206 Först presenterr

Läs mer

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel Lösningsförslg till deltentmen i IM601 Fst tillståndets fysik Gitter och bs i dimensioner Fredgen den 18 mrs, 011 Teoridel 1. ) Den primitiv enhetscellen är den minst enhetscell som ger trnsltionssymmetri

Läs mer

Långtidssjukskrivna. diagnos, yrke, partiell sjukskrivning och återgång i arbete. En jämförelse mellan 2002 och 2003 REDOVISAR 2004:7.

Långtidssjukskrivna. diagnos, yrke, partiell sjukskrivning och återgång i arbete. En jämförelse mellan 2002 och 2003 REDOVISAR 2004:7. REDOVISAR 2004:7 Långtidssjukskrivn dignos, yrke, prtiell sjukskrivning och återgång i rbete En jämförelse melln 2002 och 2003 Smmnfttning Kvinnor svrr för 65 procent v de långvrig sjukskrivningrn som

Läs mer

upp maskinen och kontrollera komponenterna Strömkabel Bärark/ Bärark för plastkort Dvd-skiva

upp maskinen och kontrollera komponenterna Strömkabel Bärark/ Bärark för plastkort Dvd-skiva Snguide Strt här ADS-2100 Läs igenom Produktsäkerhetsguiden innn du ställer in mskinen. Därefter läser du igenom Snguiden så tt du kn ställ in oh instller mskinen på rätt sätt. VARNING VARNING indikerr

Läs mer

RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell

Läs mer

Varför är. kvinnor. mer sjukskrivna. änmän. -just här? Reflektioner och ett fortsatt lärande

Varför är. kvinnor. mer sjukskrivna. änmän. -just här? Reflektioner och ett fortsatt lärande Vrför är kvinnor mer sjukskrivn änmän -just här? Reflektioner och ett fortstt lärnde Smmnställning v vunnen kunskp och reflektioner Under tre dgr hr 29 medrbetre från sex myndigheter i norr Västmnlnd fördjupt

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7.

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7. Uppsl Universitet Mtemtisk Institutionen Bo Styf LAoG I, 5 hp ES, KndM, MtemA -9-6 Smmnfttning v föreläsningrn 5-7. Föreläsningrn 5 7, 7/9 6/9 : Det kommer, liksom i lärooken, inte tt finns utrymme för

Läs mer

12 frågor om patent RESEARCHA-ÖVNING

12 frågor om patent RESEARCHA-ÖVNING reser 12 frågor om ptent En uppfinning är i sig ett llmänt begrepp och kn omftt vrje ny idé på ll möjlig områden. En uppfinning måste däremot, för tt kunn beviljs ptent, uppfyll viss bestämd kriterier.

Läs mer

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 229 lottnummer 1.000 kronor vardera:

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 229 lottnummer 1.000 kronor vardera: Dragningsresultat vecka 37-2015 Här nedan kan du se om du är en av de lyckliga vinnarna i veckans utlottning i Svenska PostkodLotteriet. När du har vunnit betalar vi automatiskt ut dina vinstpengar till

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

1. a) Förklara, genom användning av något lämpligt kemiskt argument, varför H 2 SeO 4 är en starkare syra än H 2 SeO 3.

1. a) Förklara, genom användning av något lämpligt kemiskt argument, varför H 2 SeO 4 är en starkare syra än H 2 SeO 3. Lösning till tentamen 2008 12 15 för Grundläggande kemi 10 hp Sid 1(5) 1. a) Förklara, genom användning av något lämpligt kemiskt argument, varför H 2 SeO 4 är en starkare syra än H 2 SeO 3. b) Beräkna

Läs mer

Kmerobjektiv oc elokusering Zoomobjektiv Ett kmerobjektiv sk normlt vbil ett objekt som beinner sig på någr meters vstån på en ilm i en krtig örminskning. Det innebär tt okllängen på et objektiv mn sk

Läs mer