Arbetsblad 5:2. Förkorta och förlänga bråk. 1 Förkorta med 2. 2 Förkorta med 5. 3 Förkorta med 3. 4 a) 4 = b) a) 6 = b) 16.
|
|
- Lena Dahlberg
- för 8 år sedan
- Visningar:
Transkript
1 Arbetsblad 5:1 sid 142, 156 Repetition av bråk 1 Hur stor del av figuren är färgad? Skriv som ett bråk. a) b) c) d) 2 a) Skriv de bråk som är lika med en halv. b) Skriv de bråk som är mindre än en halv. c) Skriv de bråk som är större än en halv. d) Skriv de bråk som är större än en hel _ Skriv bråken i blandad form. 8 5 = Bråkform Blandad form 3 a) 6 5 = b) 5 4 = c) 9 7 = d) 11 8 = 4 a) 9 5 = b) 12 5 = c) 9 4 = d) 14 3 = 5 Skriv bråken i storleksordning a) b) Skriv bråken i decimalform. Använd räknare om du behöver. 6 a) 1 2 = 7 a) 3 4 = b) = b) 4 5 = c) 1 5 = c) 9 10 = d) 1 10 = d) 5 _ 100 = _
2 Arbetsblad 5:2 sid 143, 157 Förkorta och förlänga bråk 1 Förkorta med 2 a) 6 8 = b) 14 = c) = 2 Förkorta med 5 a) _ 5 15 = b) 25 = c) 65 = 3 Förkorta med 3 a) 3 9 = b) 21 = c) = Skriv med så liten nämnare som möjligt. 4 a) 4 = b) = 5 a) 6 = b) = 6 a) 3 = b) = 7 a) 7 = b) = 8 Förläng med 4 a) 3 5 = b) 5 7 = c) 6 8 = 9 Förläng med 10 a) 2 7 = b) 6 9 = c) 3 8 = 10 Förläng med 5 a) 3 4 = b) 7 8 = c) 4 9 = 11 Skriv med nämnaren 24 a) 3 8 = b) 5 6 = c) 3 4 = d) 4 48 = Skriv med nämnaren a) _ 7 = b) 6 = c) = d) 4 10 = 13 a) 3 4 = b) 2 = c) _ = d) _ =
3 Arbetsblad 5:3 sid 144, 159 Bråkform Decimalform Procentform 1 Fyll i tabellen Bråkform Decimalform Procentform 1 2 0, % 0, % 0, Skriv i decimalform 2 a) 32 % = _ b) 6 % = _ c) 80 % = 3 a) 2,5 % = _ b) 99,9 % = _ c) 101 % = Skriv som procent 4 a) 0,05 = _ b) 0,65 = _ c) 0,9 = 5 a) 0,065 = _ b) 0,987 = _ c) 1,02 =
4 Arbetsblad 5:4 sid 144, 159 Hur många procent? 1 Hur stor del av figuren är skuggad? Svara både i bråkform och i procentform. a) b) c) d) e) f) Hur många procent är 2 a) 3 av 10 = b) 8 av 10 = Tänk: Hur många är det av 100. c) 4 av 5 = d) 3 av 5 = 3 a) 5 av 20 = b) 12 av 20 = c) 14 av 50 = d) 30 av 200 = Hur många procent är Använd räknaren och avrunda till hela procent i uppgift 4 till 6. 4 a) 12 av 45 b) 17 av 65 c) 32 av 38 5 a) 6 av 81 _ b) 8 av 34 _ c) 5 av 42 6 a) 24 av 52 b) 78 av 89 _ c) 65 av 120 _
5 Arbetsblad 5:5 Jämför med procent Räkna i ditt räknehäfte. sid 147, 161 Exempel: B är 60 cm längre än A. B är _ 60 = 1 = 100 % längre än A. 60 A är 60 cm kortare än 120 cm. A är 60 = 0,5 = 50 % kortare än B. 120 Pingvin A 60 cm Kejsarpingvin B 120 cm 1 a) Hur många procent längre är D jämfört med C? b) Hur många procent kortare är C jämfört med D? Vandringsalbatross D 120 cm Jättestormfågel C 90 cm 2 a) Hur många procent längre är F än E? b) Hur många procent kortare är E än F? Havsgädda F 80 cm 3 a) Hur många procent tyngre är H än G? b) Hur många procent lättare är G än H? Sjökock E 20 cm G 40 cm Makrill H 50 cm 4 Jämför storleken mellan hane och hona av sjöelefanter. a) Hur många procent tyngre är hanen jämfört med honan? b) Hur många procent lättare är honan jämfört med hanen? c) Hur många procent längre är hanen jämfört med honan? d) Hur många procent kortare är honan jämfört med hanen? hane kg, 5 m hona 680 kg, 3 m
6 Arbetsblad 5:6 sid 148, 162 Addera och subtrahera bråk Beräkna. Svara i blandad form om det går. 1 a) = b) = c) = 2 a) = b) = c) = Börja med att skriva bråken med samma nämnare. Beräkna sedan. Svara i blandad form om det går. Förkorta om det går. 3 a) = b) = 4 a) = b) = 5 a) = b) = 6 a) = b) = 7 a) = b) = 8 a) = b) = 9 a) = b) = 10 a) = b) = 11 a) = b) =
7 Arbetsblad 5:7 sid 150, 163 Multiplicera bråk Multiplicera ett bråk med ett heltal Exempel: = = 6 4 = = Beräkna. Svara i blandad form. Förkorta om det går = 2 a) = b) = 3 a) = b) = 4 a) 8 2 = b) = 5 a) = b) = Multiplicera två bråk Exempel: = _ = = _ 3 1 = = Beräkna. Förkorta om det går = a) = b) = 8 a) = b) = 9 a) = b) = 10 a) = b) =
8 Arbetsblad 5:8 sid 151 Förkorta och multiplicera bråk Exempel: = När man multiplicerar bråken kan det vara enklare att förkorta bråken innan man multiplicerar. Skriv på samma bråkstreck. Beräkna, förkorta om det går. Skriv svaret i blandad form om det går. 1 a) = b) = 2 a) = b) = 3 a) = b) = 4 a) = b) = 5 a) = b) = 6 a) 15 _ 4 = b) = = = = =
9 Arbetsblad 5:9 sid 168 Algebraiska bråk Förenkla bråken 1 a) b 3 b = b) a 4 a 2 = 2 a) b 2 4 b = b) 5a _ b 10a = 3 a) x y x = b) y2 x y = 4 a) x 10 5 x 2 = b) 4 x x2 12y = 5 a) 6 5y 15y = b) 8x xy = 6 a) 6b _ 14a2 4a 27b 2 = 24a2 b) _ 10b 15 9a 3 = 7 a) _ 3ab 4a2 8a 5b 2 = b) _ 5x2 y 8y _ 2xy 10y 2 = 8 3a2 8 b 4a 9 b 2 = 9 _ 4xy y 2 3 x2 xy 2 = 10 5ab _ 3a b ab =
10 Arbetsblad 5:10 sid 170 Dividera med bråk 1 Hur många bitar blir det om fyra tårtor delas i a) halvor b) tredjedelar c) femtedelar 2 Hur många flaskor behövs det om man ska hälla 2 liter vatten i flaskor som rymmer a) 1 2 liter b) 1 3 liter c) 1 4 liter Beräkna 3 a) 1 1 = b) = c) = 7 4 a) 6 1 = b) = c) = a) = b) = c) 4 4 = 1 6 a) = b) = c) 12 _ 2 1 = 3 Vilket är det inverterade talet till 7 a) 1 4 = b) 7 = c) 6 = d) 2x 6 y 2 = 8 a) 3 2 = b) 2 5 = c) 11 = d) 3y 4 x 2 = Beräkna 9 a) = b) = c) 2 2 = 2 10 a) 10 _ 2 5 = b) = c) = a) = b) 11 4 _ 25 9 = c) = 8
11 Arbetsblad 5:11 sid 171 Dividera algebraiska bråk Vilket är det inverterade talet till 1 a) a b) b a x2 c) y 2 a) 3y x 2 3b2 b) 2a 3x2 c) 2y Beräkna. Förkorta så långt som möjligt. a 3 a) 6 x2 y a b) 2 _ 2 3x y a 4 a) 8 a 2 b a 2 b) 2 b 2 3b 5 a) 5a 2x3 ab b) 3 _ 2 xy 2 _ 10x2 4y 6 a) 2x 5y zy 7 a) x _ 3y xz 4b2 b) 9a 2b2 a 4x2 3zy b) 2x 6zy
Arbetsblad 1:1. 1 Svara i bråkform hur stor andel av den stora rutan som är. 2 Svara i decimalform hur stor andel av den stora rutan som är.
Arbetsblad 1:1 Tal i bråkform och i decimalform Grundbok: grundkurs s. 8 blåkurs s. 0 1 Svara i bråkform hur stor andel av den stora rutan som är a) grå b) kryssad c) prickad d) vit 2 Svara i decimalform
0,1 0,3 0,6 0,9 0,2 + 0,3 = 0,5 0,7 + 0,1 = 0,8 0,3 + 0,5 = 0,8 0,5 + 0,4 = 0,9 0,3 + 0,3 = 0,6 0,4 + 0,3 = 0,7
Facit följer uppgifternas placering i häftet. Sidan 2: Tal i decimalform Tiondelar 0,9 är närmast en hel Skriv talet i decimalform. sju tiondelar 0,7 en tiondel 0,1 fyra tiondelar 0,4 fem tiondelar 0,5
Facit följer uppgifternas placering i häftet.
Facit följer uppgifternas placering i häftet. Sidan 2: Ringa in talet som är närmast en hel. 0,9 Skriv talet i decimalform. tre tiondelar 0,3 en tiondel 0,1 två tiondelar 0,2 sex tiondelar 0,6 sju tiondelar
Arbetsblad 1:1. 1 Svara i bråkform hur stor andel av den stora rutan som är. 2 Svara i decimalform hur stor andel av den stora rutan som är.
Arbetsblad 1:1 Tal i bråkform och i decimalform Grundbok: grundkurs s. 8 blåkurs s. 0 1 Svara i bråkform hur stor andel av den stora rutan som är a) grå b) kryssad c) prickad d) vit 2 Svara i decimalform
1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk.
täljare bråkstreck ett bråk nämnare Vilket bråk är störst? Ett bråk kan betyda mer än en hel. Olika bråk kan betyda lika mycket. _ 0 två sjundedelar en hel och två femtedelar > 0 > 0 < > > < > Storlek
DOP-matematik Copyright Tord Persson Övning Bråkräkning. Matematik 1. Uppgift nr 14 Addera 9. Uppgift nr 15 Addera 3. Uppgift nr 16 Subtrahera 6 7-1 7
Övning Bråkräkning Uppgift nr 1 Vilket av bråken 1 och 1 är Uppgift nr Vilket av bråken 1 och 1 är Uppgift nr Skriv ett annat bråk, som är lika stort som bråket 1. Uppgift nr Förläng bråket med Uppgift
Lathund, bråk och procent åk 7
Lathund, bråk och procent åk 7 Är samma som / som är samma som en tredjedel och samma som en av tre. är täljaren (den säger hur många delar vi har), tänk täljare = taket = uppåt är nämnaren (den säger
KW ht-17. Övningsuppgifter
Övningsuppgifter Ht-2017 1 Innehållsförteckning: Taluppfattning, positionssystem s. 3 4 Räkning, prioriteringsregler s. 4 6 Tvåbassystemet s. 6-7 Avrundning och noggrannhet s. 8-11 Bråk s. 12-17 Decimaltal
Centralt innehåll som vi arbetar med inom detta område:
BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp
Matematik klass 4. Vårterminen. Namn: Anneli Weiland Matematik åk 4 VT 1
Matematik klass 4 Vårterminen Namn: Anneli Weiland Matematik åk 4 VT 1 Först 12 sidor repetition från höstterminen. Addition 7+5= 8+8= 7+8= 7+7= 8+3= 7+6= 6+6= 8+5= 6+5= 9+3= 9+5= 6+9= Subtraktion 11-2=
Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18
Innehåll 1 Allmän information Seriens uppbyggnad Lärobokens struktur 6 Kapitelinledning 7 Avsnitten 7 Pratbubbleuppgifter Aktivitet Taluppfattning och huvudräkning 9 Resonera och utveckla 9 Räkna och häpna
PLANERING MATEMATIK - ÅK 7. Bok: X (fjärde upplagan) Kapitel : 5 Geometri Kapitel : 6 Bråk och procent. Elevens namn: Datum för prov HÄLLEBERGSSKOLAN
PLANERING MATEMATIK - ÅK 7 Bok: X (fjärde upplagan) Kapitel : 5 Geometri Kapitel : 6 Bråk och procent Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA
,5 10. Skuggat. Svart ,2 4. Randigt. b) 0,4 10. b) 0,3 10. b) 0,08. b) 0, ,7 0, ,17 0,95 0,15 0,2 + 0,7
Tal a) 00 50 00 c) 5 00 a) 0,0 0,5 c) 0,05 Färg Bråkform Decimalform Röd Grön _ Gul _ Blå _ a) 7 00 70 00 07 00 5 00 50 00 05 00 00 0,0 00 0,0 0 00 0, 0 00 0, 0,07 0,7,07,05 0,5,5 5 a) Bråkform Decimalform
Matematik klass 4. Vårterminen FACIT. Namn:
Matematik klass 4 Vårterminen FACIT Namn: Använd ditt facit ofta för att se om du är på rätt väg och förstår. Om det är något som är konstigt, diskutera med din lärare eller en kompis. Du måste förstå
Arbetsblad 1:1. Decimaltal på tallinjen 1 0,8 1,1 0,05. Skriv rätt tal på linjen. 0 0,1 0,2 0,3 0,5 0,6 0,9 1 1,9 2. Grundboken sid 8, 22
Arbetsblad 1:1 sid 8, 22 Decimaltal på tallinjen 1 1 Skriv rätt tal på linjen. 0,8 0 1 2 0 1 3 1,1 1 2 4 0,05 0 0,1 5 0,2 0,3 6 0,5 0,6 7 0,9 1 8 1,9 2 Arbetsblad 1:2 sid 8, 22 Decimaltal på tallinjen
Matematik klass 4. Höstterminen. Namn: Anneli Weiland Matematik åk 4 HT 1
Matematik klass 4 Höstterminen Namn: Anneli Weiland Matematik åk 4 HT 1 Minns du addition? 7+5= 8+8= 7+8= 7+7= 8+3= 7+6= 6+6= 8+5= 6+5= 9+3= 9+5= 6+9= 9+2= 8+4= 7+4= 9+4= 6+7= 9+6= 9+7= 7+9= 8+7= 6+8=
Att förstå bråk och decimaltal
Att förstå bråk och decimaltal Flera undersökningar som är gjorda visar att elever har svårt att förstå bråk. I undervisningen är det också vanligt att eleverna lär sig olika regler för bråk, men få förstår
Sammanfattningar Matematikboken Y
Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller
Blandade uppgifter om tal
Blandade uppgifter om tal Uppgift nr A/ Beräkna värdet av (-3) 2 B/ Beräkna värdet av - 3 2 Uppgift nr 2 Skriv (3x) 2 utan parentes Uppgift nr 3 Multiplicera de de två talen 2 0 4 och 4 0 med varandra.
Matematik klass 4. Höstterminen. Facit. Namn:
Matematik klass 4 Höstterminen Facit Namn: Använd ditt facit ofta för att se om du är på rätt väg och förstår. Om det är något som är konstigt, diskutera med din lärare eller en kompis. Du måste förstå
Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik.
Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl
Lokala mål i matematik
Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal
Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013
Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter
Sammanfattningar Matematikboken X
Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för
Bråk. Introduktion. Omvandlingar
Bråk Introduktion Figuren till höger föreställer en tårta som är delad i sex lika stora bitar Varje tårtbit utgör därmed en sjättedel av hela tårtan I nästa figur är två av sjättedelarna markerade Det
Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning
Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:
5 b) b) 4 2. och och är det största bråket. 5 Två femtedelar är mer än två åttondelar. 7 b) b) c) 2.
Facit Träningshäfte : Bråk a) d) e) f) a) a) d) a) a) ( = ) ( = ) ( = ) d) ( = ) a) och och Dilan har rätt. Halva figuren är blå. a) = 9 = 9 a) 9 9 a) d) a) a) a) 9 a) och a) och är det största bråket.
Språkstart Matematik Facit. Matematik för nyanlända. Jöran Petersson
Språkstart Matematik Facit Matematik för nyanlända Jöran Petersson Positionssystem hela tal s. 4-5 3. Skriv med siffror. 52 502 5002 65 665 6665 31 131 3131 4. Skriv hur mycket siffran är värd. 300 4 1000
2-7: Bråk-förlängning Namn:.. Inledning
2-7: Bråk-förlängning Namn:.. Inledning I kapitlet om addition och subtraktion av bråk fick du lite problem när du stötte på bråk som hade olika nämnare. Då kunde man inte förenkla uttrycket, eftersom
c) a) b) c) tre och en halv miljon
REPETITION 1 A 1 Hur många procent av figurerna är gula a) b) c) 2 Hur mycket är a) 10 % av 7 kr b) 30 % av 600 kr c) 7 % av 20 000 kr 3 Skriv bråken i enklaste form. a) 4 28 b) 1 2 c) 16 40 4 Skriv i
a) trettiotvåtusen femhundrasju b) femhundratusen åttiotre a) ett udda tal b) det största jämna tal som är möjligt A B C A B C 3,1 3,2
Alternativdiagnos 1 1 Skriv med siffror a) trettiotvåtusen femhundrasju b) femhundratusen åttiotre 2 Använd siffrorna 2, 3, 4 och 5 och skriv a) ett udda tal b) det största jämna tal som är möjligt 3 Vilka
2-8: Bråk, förkortning. Namn:.. Inledning
-8: Bråk, förkortning. Namn:.. Inledning I kapitlet om förlängning arbetade du med att ändra bråks värde genom att förändra ett bråks täljare och nämnare så den passade ett annat bråks nämnare. Därmed
Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar
Matematikplanering 7B Läsår 15/16 Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar på att bli upptäckt. Mönster, statistik, överlevnad, evolution, mopeder
REPETITION 3 A. a) b) a) 1 4 av 200 kr b) 10 % av 750 kr c) 2 3. av 60 kg. a) b) c) b) a) 6 8. a) b) b) 0,075 c) d) 0,9.
DEL I 1 Mät vinklarna. Gradtalen ska sluta på 0 eller 5. 2 Hur mycket är a) 1 4 av 200 kr b) 10 % av 750 kr c) 2 3 av 60 kg 3 Mät sidorna i hela och halva centimeter. Beräkna sedan omkrets och area av
Arbetsblad 5:1. Tal och tallinjer. 1 Skriv rätt tal på tallinjen. 2 Ordna talen i storleksordning med det minsta först. 3 Vilka tal kommer sen?
Arbetsblad 5:1 sid 143 Tal och tallinjer 1 Skriv rätt tal på tallinjen. a) 0 0,5 1 b) 0 0,5 1 c) 0 1 2 2 Ordna talen i storleksordning med det minsta först. 0,4 0,404 0,44 0,04 0,45 3 Vilka tal kommer
Lokala betygskriterier Matematik åk 8
Lokala betygskriterier Matematik åk 8 Mer om tal För Godkänt ska du: Kunna dividera och multiplicera med 10, 100 och 1000. Kunna räkna ut kilopriset för en vara. Kunna multiplicera och dividera med positiva
Kunskapsmål och betygskriterier för matematik
1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under
Övningsblad 1.1 A. Bråkbegreppet. 1 Skugga. 2 Hur stor andel av figuren är skuggad? 3 Ringa in 2 av stjärnorna.
Övningsblad 1.1 A Bråkbegreppet 1 Skugga 1 6 av figuren b) 2 3 av figuren 3 av figuren 4 2 Hur stor andel av figuren är skuggad? b) 3 Ringa in 2 av stjärnorna. 4 Skriv 20 valfria bokstäver och låt 1 av
1 Josefs bil har gått kilometer. Hur långt har den gått när han har kört (3) tio kilometer till? km
Test, version, lärarversion Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona
1 Julias bil har har gått kilometer. Hur långt har den gått när den har (3) körts tio kilometer till? km
Test 8, version, lärarversion Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad.
Addition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning 1 3 5 = 2 2 2 + 5 = 3 3 7 + 3 = 4 4 1 4 = 5 7 2 + 7 5
OH 1 Addition och subtraktion Vilka uträkningar visas på tallinjerna nedan? 1 = 7 6 1 0 1 + = 7 6 1 0 1 7 + = 7 6 1 0 1 1 = 7 6 1 0 1 Beräkna med huvudräkning 8 6 6 8 7 + 7 8 9 7 9 1 8 10 1 + 0 Kopiering
5Genrepet. Mål. Arbetssätt K 5
Genrepet Mål I det här kapitlet får eleverna möjlighet att repetera och reparera grunderna i grundskolans matematik. apitlet är indelat i se avsnitt: Tal Bråk och procent Geometri Algebra Statistik och
Arbetsblad 1:10. Avrundning. 1 a) 17,8 b) 156,3 c) 19,09 2 a) 30,49 b) 6,85 c) 49,64
Arbetsblad 1:10 Avrundning Avrunda till heltal 1 a) 17,8 b) 156,3 c) 19,09 2 a) 30,49 b) 6,85 c) 49,64 Avrunda till tiotal 3 a) 88 b) 19 c) 164 4 a) 144,8 b) 347,5 c) 29,39 5 a) 43,5 b) 163,99 c) 496,1
2-4: Bråktal addition-subtraktion. Namn:.
-: Bråktal addition-subtraktion. Namn:. Inledning I det här kapitlet skall du räkna med bråk. Det blir inte så stökigt som du tror, eftersom vi talar om bråk i matematisk mening. Du skall lära dig hur
Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass
Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik
Arbetsblad 1:1. Tiondelar på tallinjen 0,1 0,5 0,9 0,2 0,8 0,3 0,8 1,1 1,5 1,6 2,1 2,4 1,1 1,4 2,6 3,2 3,8
Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,1 0,5 0,9 1,2 0 1 2 0,3 0,8 1,1 1,5 0 1 3 1,1 1,6 2,1 2,4 1 2 4 5 0,2 0,8 1,4 2,6 0 1 2 3 1,4 2,6 3,2 3,8 1 2 3 4 6 Sätt ut pilar som
Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4
Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,9 0 1 2 0 1 3 1,1 1 2 4 0,8 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar
Arbetsblad 1:1. Tiondelar på tallinjen. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4
Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0 1 2 0 1 3 1 2 4 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar på talen:
Matematik. Ämnesprov, läsår 2014/2015. Bedömningsanvisningar Delprov B, C, D, E. Årskurs
Ämnesprov, läsår 2014/2015 Matematik Bedömningsanvisningar Delprov B, C, D, E Årskurs 6 Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta
8 a) 670. b) a) 0,11. b) 0, a) 0,45. b) 0, a) 0,5. b) 0,2. 12 a) 0,004. b) 0, a) 0,95. b) 1,2. 14 a) 9,95. b) 0,5.
Arbetsblad a) 8 a) 0 a), a) 0 00 a) 0 00 00 000 a) 0,8 0,0 a) 0,0, a), 0,, d), Störst: 0, Minst: 0, Störst: 8, Minst: 8,0 8 Störst:, Minst:,0 Störst: 0,8 Minst: 0,0 0 a) 0 0 80 d) 0 a) 0 0, 0 d), a) 00
FACIT. Kapitel 1. Version
FACIT Kapitel Vi repeterar tal i bråkform Du känner igen ett bråk på bråkstrecket. täljare bråkstreck nämnare Du säger: tre fjärdedelar. + Addera täljarn Nämnaren förblir densamm Subtrahera täljarn Nämnaren
DOP-matematik Copyright Tord Persson. Potensform. Uppgift nr 10. Uppgift nr 11 Visa varför kan skrivas = 4 7
Potensform Uppgift nr Vad menas i matematiken med skrivsättet 3 6? (Skall inte räknas ut.) Uppgift nr 2 värdet av potensen 3 2 Uppgift nr 3 Skriv 8 8 8 i potensform Uppgift nr 4 Skriv 4 3 som upprepad
Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10
Namn: Hela och halva tusental till 00 000 Addera och subtrahera. 000+ 000= 000 000+ 00 = 00 000-000= 000 000-00 = 00 Skriv talen i fallande ordningsföljd. 000 0 00 0 00 0 00 00 0 000 0 00 0 00 0 00 0 00
Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014
Repetitionsuppgifter inför Matematik - 7G0 Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 4 Facit Repetitionsuppgifter inför
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet
Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 1
Här presenteras förslag på lösningar och tips till många uppgifter i läroboken Matematik 3000 kurs A som vi hoppas kommer att vara till hjälp när du arbetar dig framåt i kursen. Vi har valt att inte göra
Ma7-Åsa: Procent och bråk
Ma7-Åsa: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
Arbetsblad 1:1. Decimaltal på tallinjen 1 0,8 1,1 0,05. Skriv rätt tal på linjen. 0 0,1 0,2 0,3 0,5 0,6 0,9 1 1,9 2. Grundboken sid 8, 22
Arbetsblad 1:1 sid 8, 22 Decimaltal på tallinjen 1 1 Skriv rätt tal på linjen. 0,8 0 1 2 0 1 3 1,1 1 2 4 0,05 0 0,1 5 0,2 0,3 6 0,5 0,6 7 0,9 1 8 1,9 2 Arbetsblad 1:2 sid 8, 22 Decimaltal på tallinjen
Facit Träningshäfte 9:2
Kapitel 1 1 a) 4 800 000 b) 300 200 c) 25 085 d) 0,8 e) 0,25 f) 0,785 2 a) 2 miljoner 35 tusen: 2 035 000 235 tusen: 235 000 tjugotretusen femhundra: 23 500 b) 12 tiondelar: 1,2 12 hundradelar: 0,12 12
Manipulationer av algebraiska uttryck
Manipulationer av algebraiska uttryck Valentina Chapovalova SMaL-kursen i Mullsjö 19 juni 2018 Kluring 1 Bestäm produkten (x a) (x b) (x c)... (x z) Lösning kluring 1 Bestäm produkten (x a) (x b) (x c)..
Matematik EXTRAUPPGIFTER FÖR SKOLÅR 7-9
Matematik EXTRAUPPGIFTER FÖR SKOLÅR 7-9 Matematik Extrauppgifter för skolår 7-9 Pärm med kopieringsunderlag. Fri kopieringsrätt inom utbildningsenheten! Författare: Mikael Sandell Copyright 00 Sandell
Facit Arbetsblad. 1 Tal. 8 a) 0,04 0,3 3,2 b) 0,008 0,018 5,034 9 a) 0,05 3,7 2,15 b) 90,4 18,64 21,21
1 Tal Arbetsblad 1:1 1 0,1 0,5 0,8 1, 0,3 0,8 1,1 1,5 3 1,1 1,6,1,4 4 0,01 0,05 0,11 0,14 5 0,1 0,5 0,31 0,34 6 0,5 0,56 0,61 0,65 7 0,94 0,98 1,01 1,05 8 1,91 1,95 1,99,0 Arbetsblad 1: 1 0,3 0,6 0,9 1,1
REPETITION 3 A. en femma eller en sexa?
REPETITION 3 A 1 Du kastar en vanlig tärning en gång. Hur stor är sannolikheten att du får en femma eller en sexa? 2 Eleverna i klass 8C fick ge betyg på en bok som de hade läst. Diagrammet visar resultatet.
a) 4a + a b) 4a 3a c) 4(a + 1)
REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin
REPETITION 2 A. a) 4a + a b) 4a 3a c) 4(a + 1)
REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin
1 Julias bil har gått km. Hur långt har den gått när den har körts tio (3) kilometer till? Rita en ring runt det största bråket.
Test 9, lärarversion Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona ordet
Ma Åk7-Conor: Aritmetik och bråkbegreppet
Under veckorna 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Ma Åk7-Conor: Aritmetik och bråkbegreppet Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera
Algebra och rationella uttryck
Algebra och rationella uttryck - 20 Uppgift nr Förenkla x0 y 6 z 5 25 y 2 Uppgift nr 2 Uppgift nr 3 ab b 5a - a² 9a där a 0. där b 0. Uppgift nr 4 Multiplicera in i parentesen 2x(4 + 2x 3 ) Uppgift nr
Uppfriskande Sommarmatematik
Uppfriskande Sommarmatematik Matematiklärarna på Bäckängsgymnasiet genom Johan Espenberg juni 206 Välkommen till Naturvetenskapsprogrammet GRATTIS till din plats på Naturvetenskapsprogrammet på Bäckängsgymnasiet!
Övningsuppgifter i matematik. Del 1 Grunderna i matematik Del 2 Uppgifter i läkemedelsberäkning
Övningsuppgifter i matematik. Del Grunderna i matematik Del Uppgifter i läkemedelsberäkning Del Grunderna i matematik. Hur många centimeter är en meter?. Vilken enhet saknas? a) Bilen är bred. b) Kastrullen
Matematik A Testa dina kunskaper!
Testa dina kunskaper! Försök i största möjliga mån att räkna utan hjälp av boken, skriv små noteringar i kanten om ni tycker att ni kan uppgifterna, att ni löste dem med hjälp av boken etc. Facit kommer
Arbetsblad 3:1. Tolka uttryck. 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck.
Arbetsblad :1 sid 78, 92 Tolka uttryck 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck. a) Karin är tre gånger så gammal: b) Katta är år yngre: a + a c) Kristina är en tredjedel så gammal:
sex miljoner tre miljarder femton miljoner trehundratusen 6 000 000 520 000 > 50 200 40 000 500 > 40 000 050 5 505 050 < 5 505 500
Namn: Förstå och använda stora tal som miljoner och miljarder Skriv talen med siffror. sex miljoner tre miljarder femton miljoner trehundratusen Läs talen först. Använd sedan > eller > < Vilket tal
matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall
Koll på 2A matematik FACIT Läxbok Hanna Almström Pernilla Tengvall Sanoma Utbildning 1Volym Vad rymmer mest? Ringa in. Vad rymmer minst? Ringa in. Ta fram tre olika föremål som rymmer olika mycket. Rita
markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA FYRA klart
PLANERING MATEMATIK - ÅK 8 Bok: Y (fjärde upplagan) Kapitel : 1 Bråk och procent Kapitel : 2 Bråk och potenser Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE
PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form.
Steg 9 10 Bråk och procent Godkänd 9 10 1 Skriv 0,03 i procentform. 16 2 Skriv i blandad form. 5 3 Vilket eller vilka av talen är lika med en åttondel? 0,8 2 8 2 16 0,12 1,8 4 Skriv 7 % i decimalform.
Facit Arbetsblad. 5 Genrepet. 11 a) 0,74 b) 0,842 c) 9,05 12 a) 4,92 b) 0,49 c) 3,07
Genrepet Arbetsblad :1 0, 0,6 1,1 b) 0, 0,6 1,0 c) 0,1 0,9 1,8 0,0 0, 0,0 0, 0, a),, b) 0,9 1,1 1, 1, c) 0,9 1, 1, 1,8 d),6,, 6 a) b) 0,6 c) 0,0 a) 0,001 b) 0, c) 0,06 6 a) 0,0 b) 0, c) 1, 7 a) 0,008 b)
Södervångskolans mål i matematik
Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal
Volym liter och deciliter
Volym liter och deciliter Måla så volymen stämmer. Skriv så volymen stämmer. : l och dl l dl l och 8 dl 0 l 9 dl dl l dl Hur många dl ska du hälla i för att få l? 7 9 dl dl dl dl dl Hur mycket? Skriv.
Eva Björklund Heléne Dalsmyr. matematik. Koll på. Skriva Facit
Eva Björklund Heléne Dalsmyr 5B matematik Koll på Skriva Facit 6Ekvationer, uttryck och mönster 1 a) b) = c) d) 2 a) = b) c) = d) 3 a) < b) < c) < d) > 4 a) < b) < c) > d) < 5 a) < b) > c) < d) > Talet
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 1. Procent och statistik Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
18 a) 36 b) 900 c) 25 d) 1 REPETITIONSUPPGIFTER 2. 1 a) 20 m 2 b) 16 m 2 c) 10 m 2 d) 48 m 2 (50, 24 m 2 )
epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver
8F Ma: Aritmetik och bråkbegreppet
8F Ma: Aritmetik och bråkbegreppet Under vecka 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Läsårsplanering Höstterminen v34-43 Aritmetik v45-51 Algebra Vårterminen v2-7 Geometri
brak skrivna med variabler Förändringsfaktor a) En cykel kostar kr. Priset höjs med 18%. Det nya priset blir dä 118% av^
Röd kurs Mål: l den här kursen far du lära dig:,. att räkna med forandringsfaktorer >. att använda ekvationer för att lösa procentproblem». att dividera med bråk " att multiplicera, dividera och förkorta
Volym. ARBETSBLAD kopiering tillåten sanoma utbildning Mönster i talföljder. ARBETSBLAD kopiering tillåten sanoma utbildning. Fortsätt talföljden.
Volym Välj olika kärl. Uppskatta hur mycket du tror att varje kärl rymmer. Mät sedan kärlets volym. 1 :1 Mönster i talföljder Fortsätt talföljden. 1 -hopp. : Kärl Jag uppskattar kärlets volym Kärlets volym
9D Ma VT Syftet med undervisningen är att du ska utveckla din förmåga att:
9D Ma VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska
där och väntar på att bli upptäckt. Mönster, statistik, överlevnad, evolution, mopeder innehåller alla
Matematikplanering åk 7 Läsår 16/17 Hösttermin Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar på att bli upptäckt. Mönster, statistik, överlevnad,
= a) 12 b) -1 c) 1 d) -12 [attachment:1]räkneoperation lektion 1.odt[/attachment] = a) 0 b) 2 c) 2 d) 1
Lektion. + 8= 0 0. := 0 0. : = 8. : ( )= 8. 0/0 = 8. +(+ ) = 8. + = 0 8. ( )+0= 0 8. 8/ = - 0 8 0 0. = - - [attachment:]räkneoperation lektion.odt[/attachment]. = 0. /( )= - -. ( )= 0. 0 (0 0: )+ = 0.
Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.
M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8
PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR
Lokal pedagogisk planering för årskurs 7 i ämnet Matematik
Annerstaskolan Lokal pedagogisk planering för årskurs 7 i ämnet Matematik Centralt innehåll Lärområde Tid Delområde Undervisning/ arbetssätt Taluppfattning och tals Tal Vecka Förstå hur vårt Genomgång
1 Boris stegmätare visar att han har gått steg. Vad visar den när Boris har gått tio steg till? Fortsätt talmönstret.
Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona ordet ungefär i uppgift
Repetitionsuppgifter 1
Repetitionsuppgifter 1 1 Vilka tal pekar pilarna på? a) b) Skriv talen med siffror 2 a) trehundra sju b) femtontusen fyrtiofem c) tvåhundrafemtusen tre 3 a) fyra tiondelar b) 65 hundradelar c) 15 tiondelar
BRÅK & PROCENT. matterummet.se Idris Akkus 2018
BRÅK & PROCENT matterummet.se Idris Akkus 0 Bråk & Procent * Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska situationer. * Centrala metoder för beräkningar med tal i
1Mer om tal. Mål. Grundkursen K 1
Mer om tal Mål När eleverna har studerat det här kapitlet ska de: förstå vad som menas med kvadratrot och kunna räkna ut kvadratro ten av ett tal kunna skriva, använda och räkna med tal i tiopotensform
ARBETSBLAD FACIT. 1 Skriv med siffror Träna huvudräkning. 10 Multiplikation med uppställning De fyra räknesätten 1.
FACIT Skriv med siffror 0 0 0 0 0 8 0 8 0 0 0 008 0 00 8 0 00 0 000 00 000 08 000 00 00 8 0 000 0 000 000 0 00 000 00 8 Addition med uppställning 08 88 8 8 0 0 80 0 8 88 0 0 0 Subtraktion med uppställning
Formula 9 facit. 1 Beräkningar med positiva tal 1
Beräkningar med positiva tal Formula 9 facit a) 5,5 (5,50) b) 5,59 c) 5,99 d) 5,54 2 a) 3 (3,00) b) 3,09 c) 3,49 d) 3,04 3 a) 6, (6,0) b) 6,0 c) 5,6 d) 6,06 4 a) 9,04 b) 8,95 c) 8,55 d) 9 (9,00) 5 a) 25
Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer
Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna
0,22 m. 45 cm. 56 cm. 153 cm 115 cm. 204 cm. 52 cm. 38 cm. 93 cm 22 cm. 140 cm 93 cm. 325 cm
Förstå tal i bråkform
Förstå tal i bråkform Förstå tal i bråkform Erfarenheter i förskoleålder och sedan? Kursplan 2008 Skolan ska i sin undervisning sträva efter att eleven inser värdet av och använder matematikens uttrycksformer