Matematik EXTRAUPPGIFTER FÖR SKOLÅR 7-9
|
|
- Sofia Nyberg
- för 8 år sedan
- Visningar:
Transkript
1 Matematik EXTRAUPPGIFTER FÖR SKOLÅR 7-9
2 Matematik Extrauppgifter för skolår 7-9 Pärm med kopieringsunderlag. Fri kopieringsrätt inom utbildningsenheten! Författare: Mikael Sandell Copyright 00 Sandell Utbildning Första upplagan, första tryckningen Senast reviderad Detta verk är skyddat av upphovsrättslagen! Alla sidor får dock kopieras fritt inom utbildningsenheten. Sandell Utbildning Hertig Carls väg SÖDERTÄLJE E-post WWW info@sandellutbildning.se COPYRIGHT, SANDELL UTBILDNING 1
3 Innehållsförteckning INNEHÅLLSFÖRTECKNING... FÖRORD... 1 DE FYRA RÄKNESÄTTEN... 6 TIOSYSTEMET UTTRYCK MED FLERA RÄKNESÄTT... 1 NEGATIVA TAL BRÅKFORM, DECIMALFORM, PROCENTFORM "Det hela" är 100 procent RÄKNA MED BRÅK... 7 KLOCKAN... 8 TIDSZONER GEOMETRISKA BEGREPP VÄG, TID, FART POTENSER... Stora och små tal i potensform... 8 Grundpotensform PREFIX STORA OCH SMÅ TAL ALGEBRA OCH EKVATIONER... Hur löser man en ekvation? FUNKTIONER... 1 SANNOLIKHET TRIGONOMETRI Sinusvärden Enkel tabell för sinus... 6 Cosinusvärden... 6 Enkel tabell för cosinusvärden... 6 Räkna med sinus och cosinus... 6 FACIT DE FYRA RÄKNESÄTTEN FACIT TIOSYSTEMET FACIT UTTRYCK MED FLERA RÄKNESÄTT FACIT NEGATIVA TAL COPYRIGHT, SANDELL UTBILDNING
4 FACIT BRÅKFORM, DECIMALFORM, PROCENTFORM 7 FACIT RÄKNA MED BRÅK... 7 FACIT KLOCKAN FACIT TIDSZONER FACIT GEOMETRISKA BEGREPP FACIT VÄG, TID, FART... 8 FACIT POTENSER FACIT PREFIX, STORA OCH SMÅ TAL FACIT ALGEBRA OCH EKVATIONER... 9 FACIT FUNKTIONER FACIT SANNOLIKHET FACIT TRIGONOMETRI LÄNKAR TILL MATERIAL PÅ INTERNET COPYRIGHT, SANDELL UTBILDNING
5 0 a) a) a) 1 1 b) 7 b) 1 8 b) 19 EXTRAUPPGIFTER FÖR SKOLÅR 7 9 c) c) c) 16 a) a) 11 b) b) c) 8 00 c) 60 Vad är kvoten av 1 och 7? 6 Om kvoten ska bli 60 och täljaren är 10. Vad är då nämnaren? 7 Om kvoten ska bli och nämnaren är. Vad är då täljaren? 8 Vad blir summan av och 8? 9 Om summan är 10 och ena termen är 7. Vad är då den andra termen? 0 Ena faktorn är 1 och den andra faktorn är. Vad blir resultatet? 1 Om produkten är 10 och ena faktorn är. Vad är då den andra faktorn? Talet 6 subtraheras med 7. Vad blir resultatet? Vad blir differensen av 6 och 18? Använd uppställningar för att lösa uppgifterna. a) 6, + 1, b), +, a) 76,9 + 1,0 b) 17,009 +,8 6 a) 1,7 + 1,86 b) 10,0 + 98, 7 a) 1076,16 + 1,01 b) 96, ,81 8 a) 97,0,10 b) 10,79 1,6 COPYRIGHT, SANDELL UTBILDNING 7
6 1 MB RAM till datorn kostade 9 kronor. Helena köpte 08 MB. Vad fick hon betala? 6 David fick löneförhöjning, från 90,0 kr/timme till 9 kr/timme. a) Hur mycket mer tjänade han per dag? b) Hur mycket mer per vecka? (8 timmar per dag och arbetsdagar per vecka) Addition och subtraktion med fler termer än två. 7 a) b) a) b) a) b) a) b) a) b) a) b) Multiplikation med flera faktorer. 6 a) 6 b) 8 c) 7 6 a) 8 b) 10 c) a) b) c) a) 6 b) 6 8 c) Avrunda till hela centimeter. 67 a),6 cm b) 7, cm c) 1,8 cm 68 a) 0,8 cm b) 8,1 cm c) 10,1 cm 69 a), cm b) 100,90 cm c) 0,1 cm 70 a) 16,1 cm b) 11,9 cm c) 19,0 cm COPYRIGHT, SANDELL UTBILDNING 9
7 Uttryck med flera räknesätt Om ett uttryck innehåller flera olika räknesätt så utförs alltid multiplikation och division före addition och subtraktion. 11 a) + b) c) a) b) + c) + 11 a) b) 8 c) + 11 a) 10 b) + 7 c) a) b) c) 6 / a) + 18 / b) / c) / a) 8 / + 1 b) 0 / 10 c) / Hur skriver man om man faktiskt vill att plus eller minus ska gå före multiplikation eller division, t.ex. om man först vill slå ihop + och sedan multiplicera resultatet med, dvs. man vill få fram som det totala resultatet. Om man skulle skriva + så skulle man inte få utan 17, eller hur? Det är nu som parenteser kommer in i matematiken. Låt oss skriva så här istället: ( + ) Med parenteserna markerar vi att :an ska adderas med :an innan man multiplicerar med. När det gäller division så är det i vanliga fall ganska klart vad som ska räknas ut först. Det är bara när divisionstecknet ser ut så här / som parenteser måste användas. Till exempel ger ( + 18) / och + 18 / två olika resultat, eller hur? Men om divisionen skrivs +18 istället, så behövs inga parenteser. 119 a) (1 + 1) b) ( ) 10 a) (6 + ) b) ( 1) 11 a) ( + ) b) (10 ) COPYRIGHT, SANDELL UTBILDNING 1
8 Negativa tal Mycket tidigt i matematikens historia upptäckte man ett behov av negativa tal. Man var helt enkelt tvungna att införa negativa tal, tal som är mindre än noll. Beräkna. 18 a) 7 b) 8 c) a) 8 b) 0 1 c) a) 10 0 b) c) Låt oss nu titta på följande tabeller: 8 + = = = = = ( 1) =? Vi förstår att 8 + ( 1) = 7 8 = 8 = 8 = = = 8 8 ( 1) =? På samma sätt förstår vi att 8 ( 1) = 9 Kom-ihåg-regeln är "lika tecken ger plus, olika tecken ger minus" Beräkna. 11 a) 7 + ( ) b) + ( ) c) ( 6) 1 a) ( ) b) ( ) + c) + ( ) 1 a) ( 9) b) ( ) + + ( ) c) ( 6) ( ) 1 a) 1 ( ) b) ( 1) + c) ( ) COPYRIGHT, SANDELL UTBILDNING 16
9 a) 8? = 6 b) 1? = 1 c)? 8 = 6 a)? = b)? = 1 c)? = 10 Nu går vi vidare till det som i matematiken brukar kallas potensregler. Egentligen är de faktiskt inga matematikregler utan istället bra komihåg-regler. Det går jättebra att räkna utan potensregler, men det går betydligt fortare om man kan dem. Potensregel 1 = eller snabbare med en regel, = = = + = Vid multiplikation av två potenser med samma bas så kan man addera potensernas exponenter. Potensregel / / = = = / / 1 = eller snabbare med en regel, = = 1 = Vid division av två potenser med samma bas så kan man ta differensen mellan exponenten i täljaren och exponenten i nämnaren. Potensregel = = 0 1 = 1 Detta hade gällt oavsett vilken bas vi hade använt, eller hur? En potens med exponenten 0 är alltid 1, oavsett vilken bas potensen har. Här är ett exempel där exponenten i nämnaren är större än exponenten i täljaren. Ett perfekt läge för potensregel, eller hur? 1 = = Skriv följande potenser så enkelt som möjligt. 6 a) b) COPYRIGHT, SANDELL UTBILDNING 6
10 och vi vet ju ännu inte vad x är! Men, så fort vi vet vad x är så går det förstås. Vilket tal måste x vara, för att likheten ska stämma? 9 a) 8 = + x b) x + = 0 c) x = 9 96 a) x = 7 b) 16 = x + x + c) = x + x 97 a) 0 0 = x b) 1 + = x c) = x 98 a) = x b) + = 6 x c) = 6 8 Titta lite extra på t.ex. a i sista uppgiften. Går det att kontrollera att du gjort rätt? (Tips, använd multiplikation) Den typen av uppgifter som du nyss löst brukar kallas för ekvationer. Ordet ekvation kommer ifrån det latinska aequo som betyder "göra lika", och det är ju precis vad du har gjort. Du har sett till att ersätta x med ett tal som gör så att båda sidor om likhetstecknet är lika. Eller som de gamla grekerna skulle ha sagt: "Du har gjort lika". Detta kallas också för att lösa ekvationen. Innan vi går vidare med ekvationslösning måste vi lära oss lite mer om hur man räknar med bokstäver, och nästa steg är att använda flera bokstäver i samma uttryck. Förenkla så långt som möjligt. 99 a) 7x x + y b) x x + y + y 00 a) 9x + x y b) y + x y x 01 a) 8y + x y + x b) 0y 10x y + 1x 0 a) z + x + 8y + z b) x + 7z y + z y Nästa steg är att börja använda parenteser i uttrycken också. Du kommer väl ihåg att om det står ett minustecken framför en parentes COPYRIGHT, SANDELL UTBILDNING
11 Så en vinkel v har både ett sinusvärde och ett cosinusvärde. 8 Rita nu en rätvinklig triangel där vinkeln v är º. a) Vad har den vinkeln för sinusvärde? b) Stämmer det på värdet i tabellen? c) Vad har den vinkeln för cosinusvärde? d) Stämmer det på värdet i tabellen? Använd nu en miniräknare som har inbyggda funktioner för att beräkna sinus och cosinus. Avrunda till decimaler. 8 a) cos b) sin c) cos 60 8 a) sin 1 b) sin 90 c) cos a) sin 0 b) cos 0 c) sin 0 Beräkna med hjälp av rätvinkliga trianglar. Avrunda till decimaler. 87 a) sin b) cos 0 c) sin 0 88 a) cos 1 b) sin 70 c) cos 89 a) cos 7 b) cos 60 c) sin 6 90 Vad är cos 0 om du vet att sin 60 0,87? 91 Vad är sin om du vet att cos 0,71? Räkna med sinus och cosinus Låt oss nu gå ett steg vidare. Antag att sin v = motstående katet hypotenusa = 0, och antag också att triangelns hypotenusa är 6 cm. Hur lång är då motstående katet? Ovanstående sinusekvation kan ju skrivas som: hypotenusa sin v = motstående katet, eller hur? Alltså är det bara att multiplicera 6 med 0,. Svar: Motstående katet är cm lång Likadant är det med cosinusekvationen: COPYRIGHT, SANDELL UTBILDNING 6
12 a) a) x + x 1 x = b) 6x 1 = 6x = + 1 6x = 16 6x 16 = x = 6 (dividera med uppe och nere) x = , x = 1, x = 1, x = = 1, 8 = 1, x 1,8 = 1,,x +, x 6 = 1, b) 1, x 1,8 + 1,8 = 1, + 1,8 6 Antag att Maja har M kr. x 0 = x = EXTRAUPPGIFTER FÖR SKOLÅR 7 9 x = x + = + x = x = x = 0 x 1 = + 9 x 1 9 = x = x = (två steg på en gång) 1 = x x = Vilken bokstav vi använder spelar ingen roll. Det måste inte vara x, utan det kan vara t.ex. M som i Maja. Om Maja har M kr så har Stina (M + ) kr Tillsammans ska de ha 111 kr: M + (M + ) = 111 M + = 111 M = 86 M = Stina = M + = + = 68 Svar: Maja har kr och Stina har 68 kr. (Kontrollera svaret genom att summera! Blir det 111?) 7 Antag att Lena har L kr. Om Lena har L kr så har Anders (L + ) kr Tillsammans ska de ha kr: L + (L + ) = L + = L = 0 L = Anders = L + = + = 0 Svar: Lena har kr och Anders har 0 kr. (Glöm inte att kontrollera svaret!) COPYRIGHT, SANDELL UTBILDNING 96
Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013
Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter
Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning
Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:
Lokala mål i matematik
Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal
Sammanfattningar Matematikboken Y
Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller
DOP-matematik Copyright Tord Persson Potenser. Matematik 1A. Uppgift nr 10 Multiplicera
Potenser Uppgift nr Skriv 7 7 7 i potensform Uppgift nr 2 Vilket tal är exponent och vilket är bas i potensen 9 6? Uppgift nr 3 Beräkna värdet av potensen (-3) 2 Uppgift nr 4 Skriv talet 4 i potensform
Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass
Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik
Dra streck. Vilka är talen? Dra pil till tallinjen. Skriv på vanligt sätt. Sätt ut <, > eller =
n se ta l l ta al u at sen nt al rat l r l d d n iotu se hun tiot a ent a hu t tu + + 7 tiotusental tusental 7 tiotal 7 7 7 7 Ju längre till höger, desto större är talet. 7 > 7 Siffran betyder tiotusental
Övning log, algebra, potenser med mera
Övning log, algebra, potenser med mera Uppgift nr 1 Förenkla uttrycket x 3 + x 3 + x 3 + x 3 + x 3 Uppgift nr 2 Förenkla x x x+x x x Uppgift nr 3 Skriv på enklaste sätt x 2 x x x 8 x x x Uppgift nr 4 Förenkla
Blandade uppgifter om tal
Blandade uppgifter om tal Uppgift nr A/ Beräkna värdet av (-3) 2 B/ Beräkna värdet av - 3 2 Uppgift nr 2 Skriv (3x) 2 utan parentes Uppgift nr 3 Multiplicera de de två talen 2 0 4 och 4 0 med varandra.
TAL OCH RÄKNING HELTAL
1 TAL OCH RÄKNING HELTAL Avsnitt Heltal... 6 Beräkningar med heltal...16 Test Kan du?... 1, 27 Kapiteltest... 28 Begrepp addition avrundning bas differens division exponent faktor kvadratroten ur kvot
DOP-matematik Copyright Tord Persson. Potensform. Uppgift nr 10. Uppgift nr 11 Visa varför kan skrivas = 4 7
Potensform Uppgift nr Vad menas i matematiken med skrivsättet 3 6? (Skall inte räknas ut.) Uppgift nr 2 värdet av potensen 3 2 Uppgift nr 3 Skriv 8 8 8 i potensform Uppgift nr 4 Skriv 4 3 som upprepad
Matematik EXTRAUPPGIFTER FÖR SKOLÅR 7-9
Matematik EXTRAUPPGIFTER FÖR SKOLÅR -9 Matematik Etrauppgifter för skolår -9 Pärm med kopieringsunderlag. Fri kopieringsrätt inom utbildningsenheten! Författare: Mikael Sandell Copyright 00 Sandell Utbildning
Sammanfattningar Matematikboken Z
Sammanfattningar Matematikboken Z KAPitel procent och statistik Procent Ordet procent betyder hundradel och anger hur stor del av det hela som något är. Procentform och 45 % = 0,45 6,5 % = 0,065 decimalform
Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014
Repetitionsuppgifter inför Matematik - 7G0 Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 4 Facit Repetitionsuppgifter inför
Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg
Tema: Pythagoras sats Linnéa Utterström & Malin Öberg Innehåll: Introduktion till Pythagoras sats! 3 Pythagoras sats! 4 Variabler! 5 Potenser! 5 Att komma tillbaka till ursprunget! 7 Vi bevisar Pythagoras
Sammanfattningar Matematikboken X
Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet
Övningsblad 1.1 A. Tallinjer med positiva tal. 1 Skriv det tal som motsvaras av bokstaven på tallinjen.
Övningsblad 1.1 A Tallinjer med positiva tal 1 Skriv det tal som motsvaras av bokstaven på tallinjen. A B C D E F 0 5 10 0 10 20 A = B = C = D = E = F = G H I J K L 30 40 50 100 G = H = I = J = K = L =
Tal Räknelagar. Sammanfattning Ma1
Tal Räknelagar Prioriteringsregler I uttryck med flera räknesätt beräknas uttrycket i följande ordning: 1. Parenteser 2. Potenser. Multiplikation och division. Addition och subtraktion Exempel: 5 22 1.
Algebra, exponentialekvationer och logaritmer
Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen
Tal Räknelagar Prioriteringsregler
Tal Räknelagar Prioriteringsregler Uttryck med flera räknesätt beräknas i följande ordning: 1. Parenteser 2. Exponenter. Multiplikation och division. Addition och subtraktion Exempel: Beräkna 10 5 7. 1.
Ma C - Tek Exponentialekvationer, potensekvationer, logaritmlagar. Uppgift nr 10 Skriv lg4 + lg8 som en logaritm
Exponentialekvationer, potensekvationer, logaritmlagar Uppgift nr 1 10 z Uppgift nr 2 10 z = 0,0001 Uppgift nr 3 10 5y 000 Uppgift nr 4 10-4z Uppgift nr 5 Skriv talet 6,29 i potensform med 10 som bas.
Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer
Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8
PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR
Kap 1: Aritmetik - Positiva tal - " - " - " - " - - " - " - " - " -
År Startvecka Antal veckor 2013 34 18 Planering för ma 1b/c - ma 5000- boken OBS: För de i distansgruppen, meddela lärare innan prov. (justeringar för 1c ännu ej genomförda) Vecka Lektio n (2h) Datum Kapitel
Kunskapsmål och betygskriterier för matematik
1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under
Mina videos Jag har satt samman en snabbkurs för er som behöver repetera grundskolans matematik:
Behov av förkunskaper i matematik För att du ska kunna följa med i undervisningen i rörelselära (IB4) krävs förkunskaper i grundskolans matematik, samt lite trigonometri. Jag medsänder därför ett förkunskapstest
Ordlista 5A:1. term. faktor. täljare. nämnare. Dessa ord ska du träna. Öva orden
Ordlista 5A:1 Öva orden Dessa ord ska du träna term Talen som du räknar med i en addition eller subtraktion kallas termer. faktor Talen som du räknar med i en multiplikation kallas faktorer. täljare Talet
Södervångskolans mål i matematik
Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal
Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014
Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter
Kap1 1.1 Tal i olika former Mål Mål Mål Mål Mål Mål Rek. uppgifter 1101, 1106, 1107, 1113, 1118, 1120 Talmängder
Kap1 1.1 Tal i olika former Mål Mål Mål Mål Mål Mål Rek. uppgifter Känna till de vanligaste talmängderna och de Veta hur talmängderna betecknas Ha kunskap om hur de olika talmängderna är 1101, 1106, 1107,
PASS 2. POTENSRÄKNING. 2.1 Definition av en potens
PASS. POTENSRÄKNING.1 Definition av en potens Typiskt för matematik är ett kort, lätt och vackert framställningssätt. Den upprepade additionen går att skriva kortare i formen där anger antalet upprepade
1Mer om tal. Mål. Grunddel K 1
Mer om tal Mål När eleverna har studerat det här kapitlet ska de: kunna multiplicera och dividera med positiva tal mi ndre än veta vad ett negativt tal är kunna addera och subtrahera negativa tal kunna
PLANERING MATEMATIK - ÅK 8. Bok: Y (fjärde upplagan) Kapitel : 5 Ekvationer Kapitel : 6 Sannolikhet och statistik. Elevens namn: Datum för prov
PLANERING MATEMATIK - ÅK 8 Bok: Y (fjärde upplagan) Kapitel : 5 Ekvationer Kapitel : 6 Sannolikhet och statistik Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ
Matematik Uppnående mål för år 6
Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och
Algebra och rationella uttryck
Algebra och rationella uttryck - 20 Uppgift nr Förenkla x0 y 6 z 5 25 y 2 Uppgift nr 2 Uppgift nr 3 ab b 5a - a² 9a där a 0. där b 0. Uppgift nr 4 Multiplicera in i parentesen 2x(4 + 2x 3 ) Uppgift nr
Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping
Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att
Uppfriskande Sommarmatematik
Uppfriskande Sommarmatematik Matematiklärarna på Bäckängsgymnasiet genom Johan Espenberg juni 206 Välkommen till Naturvetenskapsprogrammet GRATTIS till din plats på Naturvetenskapsprogrammet på Bäckängsgymnasiet!
Intromatte för optikerstudenter
Intromatte för optikerstudenter Av Robert Rosén (2012). Ändringar av Daniel Larsson (2013). Ändringar av Jakob Larsson och Emelie Fogelqvist (2014). Kursmål Efter intromatten vill vi att du inom matematik
Matematik 3000 kurs A
Studieanvisning till läroboken Matematik 3000 kurs A Innehåll Kursöversikt...4 Vad skall du kunna efter Matematik kurs A?...5 Så här jobbar du med boken...6 Studieenhet Arbeta med tal...7 Studieenhet Procent...12
a) A = 3 B = 4 C = 9 D = b) A = 250 B = 500 C = a) Tvåhundrasjuttiotre b) Ettusenfemhundranittio
Övningsblad 2.1 A Heltal 1 Skriv det tal som motsvaras av bokstaven på tallinjen. A B C D E F 0 10 0 50 A = B = C = D = E = F = G H I J K L 10 20 50 100 G = H = I = J = K = L = 2 Placera ut talen från
Intromatte för optikerstudenter
Intromatte för optikerstudenter Av Robert Rosén (2012). Ändringar av Daniel Larsson, Jakob Larsson, Emelie Fogelqvist och Simon Winter (2013 2016). Kursmål Efter intromatten vill vi att du inom matematik
Repetitionsuppgifter i matematik
Repetitionsuppgifter i matematik De fyra enkla räknesätten Här övar vi på de fyra räknesätten för hela tal (positiva och negativa), tal i bråkform och tal i decimalform Bestäm de tal på tallinjen, som
Lokala betygskriterier Matematik åk 8
Lokala betygskriterier Matematik åk 8 Mer om tal För Godkänt ska du: Kunna dividera och multiplicera med 10, 100 och 1000. Kunna räkna ut kilopriset för en vara. Kunna multiplicera och dividera med positiva
Intromatte för optikerstudenter 2018
Intromatte för optikerstudenter 018 Rabia Akan rabiaa@kth.se Av Robert Rosén (01). Ändringar av Daniel Larsson, Jakob Larsson, Emelie Fogelqvist, Simon Winter och Rabia Akan (01-017). Kursmål Efter intromatten
Mattestegens matematik
höst Decimaltal pengar kr 0 öre,0 kr Rita 0,0 kr på olika sätt. räkna,0,0 storleksordna decimaltal Sub för lite av två talsorter 7 00 0 tallinjer heltal 0 0 Add med tiotalsövergångar 0 7 00 0 Sub för lite
PLANERING MATEMATIK - ÅK 7. Bok: X (fjärde upplagan) Kapitel : 5 Geometri Kapitel : 6 Bråk och procent. Elevens namn: Datum för prov HÄLLEBERGSSKOLAN
PLANERING MATEMATIK - ÅK 7 Bok: X (fjärde upplagan) Kapitel : 5 Geometri Kapitel : 6 Bråk och procent Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA
Övningar i ekvationer
i ekvationer Innehåll A. Addition och subtraktion B. Multiplikation och division C. Blandade räknesätt - prioritet D. Enkla förenklingar E. Parenteser F. Tillämpningar Detta häfte är till dig som läser
MATEMATIK - grunderna och lite till - Hans Elvesjö
MATEMATIK - grunderna och lite till - Hans Elvesjö 1 Största delen av boken ligger på höstadienivå med en mindre del på gymnasienivå Den har ej för avsikt att följa läroplanen men kan med fördel användas
ARBETSPLAN MATEMATIK
ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera
Utvidgad aritmetik. AU
Utvidgad aritmetik. AU Delområdet omfattar följande tio diagnoser som är grupperade i tre delar, negativa tal, potenser och närmevärden: AUn1 Negativa tal, taluppfattning AUn Negativa tal, addition och
Extramaterial till Matematik Y
LIBER PROGRAMMERING OCH DIGITAL KOMPETENS Extramaterial till Matematik Y NIVÅ TVÅ Taluppfattning och tals användning ELEV Det finns många olika programmeringsspråk. I den här uppgiften ska du få bekanta
Ma1 NA18: Info inför prov 1
Ma1 NA18: Info inför prov 1 Vad ingår till prov 1? Allt i häftet, v.31-33: de fyra räknesätten, tallinjen, negativa tal räkneregler för negativa tal olikhetstecken och andra tecken tiopotenser decimalform
Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 4. b) = 3 1 = 2
Kapitel.1 101, 102 Exempel som löses i boken 10 a) x= 1 11+ x= 11+ 1 = 2 c) x= 11 7 x= 7 11 = 77 b) x= 5 x 29 = 5 29 = 6 d) x= 2 26 x= 26 2= 1 10 a) x= 6 5+ 9 x= 5+ 9 6= 5+ 5= 59 b) a = 8a 6= 8 6= 2 6=
Matematik klass 4. Vårterminen FACIT. Namn:
Matematik klass 4 Vårterminen FACIT Namn: Använd ditt facit ofta för att se om du är på rätt väg och förstår. Om det är något som är konstigt, diskutera med din lärare eller en kompis. Du måste förstå
Lathund, bråk och procent åk 7
Lathund, bråk och procent åk 7 Är samma som / som är samma som en tredjedel och samma som en av tre. är täljaren (den säger hur många delar vi har), tänk täljare = taket = uppåt är nämnaren (den säger
Matematik klass 4. Vårterminen. Namn: Anneli Weiland Matematik åk 4 VT 1
Matematik klass 4 Vårterminen Namn: Anneli Weiland Matematik åk 4 VT 1 Först 12 sidor repetition från höstterminen. Addition 7+5= 8+8= 7+8= 7+7= 8+3= 7+6= 6+6= 8+5= 6+5= 9+3= 9+5= 6+9= Subtraktion 11-2=
Manual matematiska strategier. Freja. Ettan
Manual matematiska strategier Freja Ordningstalen t.ex första, andra, tredje Ramsräkna framlänges och baklänges till 20 Mattebegrepp addition: svaret i en addition heter summa, subtraktion: svaret i en
Broskolans röda tråd i Matematik
Broskolans röda tråd i Matematik Regering och riksdag har faställt vilka mål som svenska skolor ska arbeta mot. Dessa mål uttrycks i Läroplanen Lpo 94 och i kursplaner och betygskriterier från Skolverket.
2-4: Bråktal addition-subtraktion. Namn:.
-: Bråktal addition-subtraktion. Namn:. Inledning I det här kapitlet skall du räkna med bråk. Det blir inte så stökigt som du tror, eftersom vi talar om bråk i matematisk mening. Du skall lära dig hur
Att förstå bråk och decimaltal
Att förstå bråk och decimaltal Flera undersökningar som är gjorda visar att elever har svårt att förstå bråk. I undervisningen är det också vanligt att eleverna lär sig olika regler för bråk, men få förstår
DE FYRA RÄKNESÄTTEN (SID. 11) MA1C: AVRUNDNING
DE FYRA RÄKNESÄTTEN (SID. 11) 1. Benämn med korrekt terminologi talen som: adderas. subtraheras. multipliceras. divideras.. Addera 10 och. Dividera sedan med. Subtrahera 10 och. Multiplicera sedan med..
Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar
Matematikplanering 7B Läsår 15/16 Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar på att bli upptäckt. Mönster, statistik, överlevnad, evolution, mopeder
1 Julias bil har gått km. Hur långt har den gått när den har körts tio (3) kilometer till? Rita en ring runt det största bråket.
Test 9, lärarversion Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona ordet
Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.
M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per
FACIT. Kapitel 1. Version
FACIT Kapitel Vi repeterar talen 0 till 0 000. Titta på bilden. Skriv de tal som fattas. Räkna. är ett fyrsiffrigt tal a. 000 + 00 + 0 + T H T E 0 0 000 Tal skrivs med siffror. Siffrorna är 0,,,,,,,,,
FACIT. Kapitel 1. Version
FACIT Kapitel Version -0- Version -0- Vi repeterar talen 0 till 0 000 Öva begreppen.. Titta på bilden. Skriv de tal som fattas. Räkn är ett fyrsiffrigt tal 000 + 00 + 0 + 0 0 000 Tal skrivs med siffror.
M0038M Differentialkalkyl, Lekt 8, H15
M0038M Differentialkalkyl, Lekt 8, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 29 Läsövning Summan av två tal Differensen mellan två tal a + b a b Produkten av två tal
8-3 Kvadreringsreglerna och konjugatregeln. Namn:
8-3 Kvadreringsreglerna och konjugatregeln. Namn: Inledning I kapitlet med matematiska uttryck lärde du dig hur man förenklade ett uttryck med en faktor framför en parentes genom att multiplicera varje
Grunder i Matematik 1
Grunder i Matematik 1 version 017-07-31 Simon Fall 1 Tal 1.1 De fyra räknesätten När vi använder räknesätten har delarna och svaren speciella namn som är mycket viktiga att kunna: addition: subtraktion:
KW ht-17. Övningsuppgifter
Övningsuppgifter Ht-2017 1 Innehållsförteckning: Taluppfattning, positionssystem s. 3 4 Räkning, prioriteringsregler s. 4 6 Tvåbassystemet s. 6-7 Avrundning och noggrannhet s. 8-11 Bråk s. 12-17 Decimaltal
PROBLEMLÖSNINGSUPPGIFTER
PROBLEMLÖSNINGSUPPGIFTER ADDERA RÄTT 1. Bestäm vilka siffror bokstäverna A, B, C, och D bör bytas ut mot i additionen nedan för att additionen ska vara riktig. A 6 3 7 B 2 + 5 8 C D 0 4 2 2. Gör ett eget
Taluppfattning och problemlösning
Taluppfattning och problemlösning. Ett talsystem där siffrans värde beror på vilken position, plats, siffran har.. Olika sätt eller strategier att arbeta med problemlösning.. Problemlösningsmetod där man
Arbetsblad 1:1. Tiondelar på tallinjen 0,1 0,5 0,9 0,2 0,8 0,3 0,8 1,1 1,5 1,6 2,1 2,4 1,1 1,4 2,6 3,2 3,8
Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,1 0,5 0,9 1,2 0 1 2 0,3 0,8 1,1 1,5 0 1 3 1,1 1,6 2,1 2,4 1 2 4 5 0,2 0,8 1,4 2,6 0 1 2 3 1,4 2,6 3,2 3,8 1 2 3 4 6 Sätt ut pilar som
Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4
Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,9 0 1 2 0 1 3 1,1 1 2 4 0,8 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar
Arbetsblad 1:1. Tiondelar på tallinjen. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4
Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0 1 2 0 1 3 1 2 4 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar på talen:
Mattekollen. Mattekollen 1. Mattekollen 3. Mattekollen 2. 6 Mål för kapitlet. 156 mattekollen. För att avsluta kapitlet
Mattekollen Eleven har redan under sin tidigare skolgång utvecklat vissa kunskaper kring olika matematiska förmågor genom det centrala innehållet. I Mattekollen 1 sätter eleven ord på det han/hon redan
Matematik Åk 9 Provet omfattar stickprov av det centrala innehållet i Lgr-11. 1. b) c) d)
1. b) c) d) a) Multiplikation med 100 kan förenklas med att flytta decimalerna lika många stg som antlet nollor. 00> svar 306 b) Använd kort division. Resultatet ger igen rest. Svar 108 c) Att multiplicera
matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall
Koll på 2B matematik FACIT Läxbok Hanna Almström Pernilla Tengvall Sanoma Utbildning 7 7Addition, subtraktion Dubbelt. Skriv. 2 + 2 = 5 + 5 = + = + = 6 8 9 + 9 = 7 + 7 = 8 + 8 = 6 + 6 = 8 6 2 Tiokamrater.
Ordlista 1A:1. siffra. tal. antal. räkneord. Dessa tio ord ska du träna. Öva orden
Ordlista 1A:1 Öva orden Dessa tio ord ska du träna siffra En siffra är ett tecken. Dessa är siffrorna: 0, 1, 2, 3, 4, 5, 6, 7, 8 och 9 tal antal räkneord Ett tal skrivs med en eller flera siffror. Talet
Formula 9 facit. 1 Beräkningar med positiva tal 1
Beräkningar med positiva tal Formula 9 facit a) 5,5 (5,50) b) 5,59 c) 5,99 d) 5,54 2 a) 3 (3,00) b) 3,09 c) 3,49 d) 3,04 3 a) 6, (6,0) b) 6,0 c) 5,6 d) 6,06 4 a) 9,04 b) 8,95 c) 8,55 d) 9 (9,00) 5 a) 25
Extra-bok nummer 3. i matematik
Extra-bok nummer 3 i matematik Anneli Weiland 1 Skriv vart femte tal i ordning. Börja från vänster och skriv alla siffror uppifrån så blir de fina. -70-65 -35-25 -20 0 25 75 Sätt ut < = eller > i rutan.
Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.
Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.
Ur kursplanen för ämnet matematik I detta arbetsområde ska eleven utveckla sin förmåga att:
PALMBLADSSKOLAN Matematik PP för arbetsområde: Tal åk 8 Ur kursplanen för ämnet matematik I detta arbetsområde ska eleven utveckla sin förmåga att: formulera och lösa problem med hjälp av matematik samt
Centralt innehåll i matematik Namn:
Centralt innehåll i matematik Namn: T - Taluppfattning T1 Tiosystemet 5,23 1000 = 523/0,01= T2 Positionerna 2,39-0,4 = T3 Primtal Vilka är de fem första primtalen. Vad är ett primtal? T4 Primtalsfaktorering.
2. 1 L ä n g d, o m k r e t s o c h a r e a
2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda
skalas bort först och sedan 4. Då har man kvar kärnan som är x.
Ge inte upp om inte ditt svar stämmer med facit. Du kan ha tänkt helt rätt, men bara räknat fel. Prova en gång till. Om ditt svar ändå inte stämmer med facit, klicka på Hjälp?, eller be din lärare om hjälp
FÖRBEREDANDE KURS I MATEMATIK 1
FÖRBEREDANDE KURS I MATEMATIK 1 Till detta kursmaterial finns prov och lärare på Internet Ger studiepoäng Kostnadsfritt Fortlöpande anmälan på wwwmathse Eftertryck förbjudet utan tillåtelse 2007 MATHSE
Extra-bok nummer 3B. i matematik
Extra-bok nummer 3B i matematik Anneli Weiland 1 Skriv vart femtonde tal i ordning. Börja från vänster och skriv alla siffror uppifrån så blir de fina. 0 15 30 90 240 390 540 Större än, mindre än eller
1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk.
täljare bråkstreck ett bråk nämnare Vilket bråk är störst? Ett bråk kan betyda mer än en hel. Olika bråk kan betyda lika mycket. _ 0 två sjundedelar en hel och två femtedelar > 0 > 0 < > > < > Storlek
Extramaterial till Start Matematik
EXTRAMATERIAL Extramaterial till Start Matematik Detta material innehåller diagnoser och facit till alla kapitel. Extramaterial till Start matematik 47-11601-0 Liber AB Får kopieras 1 70 Innehållsförteckning
Lärandemål E-nivå årskurs 9
Lärandemål E-nivå årskurs 9 Detta är vad ni behöver kunna för att nå E för kunskapskraven om begrepp och rutinuppgifter i matematik när ni slutar nian. Ni behöver klara av alla dessa moment. För att nå
Matematik klass 4. Höstterminen. Facit. Namn:
Matematik klass 4 Höstterminen Facit Namn: Använd ditt facit ofta för att se om du är på rätt väg och förstår. Om det är något som är konstigt, diskutera med din lärare eller en kompis. Du måste förstå
Matematik F- 6 Checklista för matematik K L A R A T Begreppsbildning år år år år år år år Kunna ord om: F 1 2 3 4 5 6 storlek ex störst, minst antal ex flera, färre volym ex mest, minst vikt ex tyngst,
Potenser och logaritmer på en tallinje
strävorna 2A 7B Potenser och logaritmer på en tallinje begrepp matematikens utveckling taluppfattning algebra Avsikt och matematikinnehåll I läroböcker är det standard att presentera potenslagarna som
Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning
Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som
Volym liter och deciliter
Volym liter och deciliter Måla så volymen stämmer. Skriv så volymen stämmer. : l och dl l dl l och 8 dl 0 l 9 dl dl l dl Hur många dl ska du hälla i för att få l? 7 9 dl dl dl dl dl Hur mycket? Skriv.
Eva Björklund Heléne Dalsmyr. matematik. Koll på. Skriva Facit
Eva Björklund Heléne Dalsmyr 5B matematik Koll på Skriva Facit 6Ekvationer, uttryck och mönster 1 a) b) = c) d) 2 a) = b) c) = d) 3 a) < b) < c) < d) > 4 a) < b) < c) > d) < 5 a) < b) > c) < d) > Talet
Uppföljning av diagnostiskt prov HT-2016
Uppföljning av diagnostiskt prov HT-0 Avsnitt Ungefärligen motsvarande uppgifter på diagnosen. Räknefärdighet. Algebra, ekvationer, 8 0. Koordinatsystem, räta linjer 8 0. Funktionerna ln och e.. Trigonometri
jämföra/storleksordna talen jämföra/storleksordna talen Jag kan jämföra/storleksordna talen
Utveckling A Taluppfattning 0-100 Jag kan ramsräkna 0-100. Jag kan jämföra/storleksordna talen 0-100. Jag kan markera ut tal 0-100 på en tallinje. Jag förstår tiotal och ental för talen 0-100. B Taluppfattning