Referens :: Komplexa tal version

Storlek: px
Starta visningen från sidan:

Download "Referens :: Komplexa tal version"

Transkript

1 Referens :: Komplexa tal version 0.8 Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. De komplexa talen uppstår som ett behov av av att kunna lösa polynomekvationer av typen x = 0 x 2 = 1 (1) Denna ekvation är olöslig om man bara känner till de reella talen. Vi ser ju att ekvationen leder till att vi måste hitta tal sådana att dess kvadrat blir negativ. Om x är reellt tal så gäller ju att x 2 0 vilket betyder att vi måste hitta en ny typ av tal för att kunna lösa (1). Man använder sin fantasi (Eng: imagination) och definierar därför den imaginära 1 enheten i som det tal som uppfyller i = 1 vilket ska tolkas som att i 2 = 1 (2) och därigenom har man fått en lösning till (1). Mha denna imaginära enhet så kan man sedan vidga vårt talsystem enligt vad vi säger i följande Definition av komplexa tal. Definition 1. Ett komplext tal z är ett tal på formen z = x + iy, där x, y R och i 2 = 1. x kallas för realdelen till z, Re z = x och y kallas för imaginärdelen till z och betecknas Im z = y. Notera att den imaginära enheten inte är en del av imaginärdelen. Imaginärdelen är det som står tillsammans med i men inte i själv. Mängden av alla komplexa tal skriver vi som C = {z : z = x + iy, x, y R} Notera att denna definition är utvidgning av de reella talen eftersom de reella talen är de komplexa tal vars imaginärdel y är noll. Exempel 1. Låt z = 5 + 3i då har vi att Re z = 5, och Im z = 3 Notera alltså att imaginär delen inte är 3i, vilket man lätt leds att tro när man stöter på komplexa tal för första gången. Komplexa tal i Elkretsteknik Komplexa tal har som vi såg ett ursprung i matematikens önskan att kunna lösa alla typer av polynomekvationer, något som möjligen endast tilltalar matematiker. Man kan därför lätt få uppfattningen att komplexa tal ska vara något abstrakt och oandvändbart. Men faktum är att komplexat tal dyker upp i en mängd tillämpningar. Inte minst inom Elektricitetsläran och speciellt inom elkretsteknik så används komplexa tal flitigt. 1 I den matematiska traditionen så är det naturligt att beteckna den imaginära enheten med i. I Elektrisk Kretsteori däremot, där man i följer traditionerna i Elektromagnetisk teori och betecknar elektrisk ström med i så betecknar man den imaginära enheten istället med j för att slippa risken för förväxling. 1

2 Ohms lag, impedans och admittans Ohmś lag uttrycker sambandet mellan spänning och ström genom en ren resistans: u(t) = i(t) R, där u(t) är spänningen, i(t) är strömmen och R resistansen. För en spole med ren induktans L och en kondensator med kapacistans C har vi i stället de respektive sambanden u L (t) = L i (t) i(t) = Cu C(t). Sambanden involverar alltså ett beroende av spänningen eller strömmens derivator när det gäller spolar och kondensatorer. Men, genom att introducera komplexa tal och använda dem för att modellera spänningar och strömmar kan man beskriva alla tre fallen i ovan på ett gemensamt sätt som direkt påminner oss om Ohmś lag u(t) = i(t) Z, där Z är kretskomponentens impedans. Impedansen är ett komplext tal som beror av spänning och strömsignalernas vinkelfrekvens dω och vi har Byt R mot Z i Ohm s lag så får vi denna. Z = R(ω) +j X(ω), resistans reaktans Impedansen för våra tre kretskomponenter modelleras enligt De fyra räknesätten Z = R + j 0 = R när vi har en ren resistans Z = 0 + j ωl = jωl ren induktans Z = 0 j 1 ωc = j 1 när vi har en ren kapacitans ωc För komplexa tal gäller samma räkneregler som för reella tal. Det är i princip att räkna precis som vanligt men man samlar ihop realdelar och imaginärdelar för sig och så ska man komma ihåg att göra bytet i 2 = 1 varje gång i 2 dyker upp. Addition, subtraktion: Låt z = x + iy och w = u + iv vara två komplexa tal. Då adderas/subtraheras de på följande sätt: z + w = (x + iy) + (u + iv) = x + u + i(y + v), z w = (x + iy) (u + iv) = x u + i(y v) dvs realdel och imaginärdel adderas/subtraheras för sig. Multiplikation: Två komplexa tal multipliceras: z w = (x + iy)(u + iv) = xu + xiv + iyu + i 2 yv = xu yv + i(xv + yu). Observera att vi använde i 2 = 1 i den sista likheten! Division: Vid division handlar det ofta att skriva om ett bråk så att bråket har ett reellt tal i nämnaren i stället för ett komplext. Låt oss se hur vi gör i fallet z/w: z w = x + iy (x + iy)(u iv) xu + yv + i(yu xv) = = u + iv (u + iv)(u iv) u 2 + v 2, m.a.o. vi förlänger med vad vi kommer kalla för konjugatet till w = u+iv, dvs med w = u iv. Konjugatet är viktigt och vi behandlar detta i nästa avsnitt. 2

3 z c Mikael Forsberg version februari 2013 Exempel 2. Förenkla följande uttryck: 3 + 2i (1 i)(2 + i): 3 + 2i [2 + i 2i }{{} i 2 ] = 3 + 2i [3 i] = 3i = i = 1 Exempel 3. Förenkla kvoten 3+i 2 i : 3 + i 2 i = =5+5i { }} { (3 + i)(2 + i) (2 i)(2 + i) =4+1 = 1 + i Exempel 4. I den elektriska kretsteorin arbetar man även med den så kallade admittansen Y som definieras som Y = 1 Z = 1 R + jx = R jx (R + jx)(r jx) = R R 2 + X 2 j =G X R 2 + X 2 = B = G + jb, där vi använt oss av konjugattricket vi använde vid division. G kallas komponentens konduktans och B dess suseptans Konjugatet och absolutbeloppet till ett komplext tal Vi definierade konjugatet z till ett komplext tal z = x + iy genom z = x iy. Geometriskt är detta en spegling av z i den reella axeln, dvs x-axeln. Se figur 1. y z = x + iy x _ z = x - iy Figur 1: Komplexa konjugatet och absolutbeloppet till ett komplext tal Absolutbeloppet eller bara beloppet z av ett komplext tal är längden av sträckan mellan origo och vårt tal. I figur ser vi att vi kan använda Pythagoras sats och få följande uttryck för beloppet: z 2 = x 2 + y 2. 3

4 Vi noterar också att x 2 + y 2 = (x + iy)(x iy) = z z, och detta blir utgångspunkten för definitionen: Beloppet till det komplexa talet z = x+iy definieras som z = z z, Räkneregler för konjugat och belopp Räkneregler för konjugat: 1. (z + w) = z + w 2. zw = zw 3. z w = z w 4. z = z Räkneregler för absolutbelopp: 1. z 2 = zz 2. zw = z w 3. z w = z w 4. z = z Rektangulära och polära koordinater Det finns framförallt två olika sätt att beskriva komplexa tal; på rektangulär form och på polär form. Den rektangulära formen är den beskrivning vi hittills använt. Den polära formen går ut på att beskriva ett komplext tal mha avståndet till origo samt med den vinkel som linjen mellan origo och det komplexa talet bildar till den reella axeln. Detta illustreras i följande figur z = x + iy= r ( cos φ + isin φ ) r = z y = r sin φ φ x = r cos φ Figur 2: Rektangulär och polär beskrivning av komplexa tal I figur två ser vi att vi kan gå mellan de två olika representationerna: 4

5 Från rektangulär till polär beskrivning: Utgångspunkten är här ett komplext tal på formen z = x + iy och vi vill beskriva z mha beloppet och vinkeln ϕ. Vi kan utnyttja vår triangeltrigonometri och få z = x 2 + y 2 ϕ = arctan( y x ) Exempel 5. Skriv det komplexa talet z = 3 + i på polär form. Vi har att beloppet blir z = ( 3 ) = = 4 = 2 För argumentet så har vi att tan ϕ = 1 3 = ϕ = arctan 1 3 = π/6 = 30 På miniräknaren står arctan som tan 1 Från polär beskrivning till rektangulär beskrivning: Här ges ett komplext tal mha absolutbelopp z och en vinkel ϕ och vi vill återfå vår rektangulära beskrivining. Vi har att x och y kan uttryckas mha z och ϕ på följande sätt: x = r cos ϕ y = r sin ϕ Då gäller att z = r(cos ϕ + i sin ϕ), som är vår polära form. Men detta ska ses som en formel för att överföra från polär till rektangulär form: sätter vi in den aktuella radien r och det aktuella argumentet ϕ och utför räkningarna så har vi ett tal på rektangulär form Exempel 6. Ett komplext tal z har absolutbelopp r = z = 3 och argument ϕ = 30 = π/6rad. Beräkna talets rektangulära uttryck. Vi har att z = r(cos ϕ + i sin ϕ) = 3(cos π/6 +i sin π/6) = 3 2 ( 3 + i) =1/2 = 3 /2 Det finns många gångbara argument Om vi tittar på graferna till sin x och cos x så ser vi att de upprepar sig 1 4 Π 3 Π 2 Π Π Π 2 Π 3 Π 4 Π 1 Figur 3: sin x (blått) och cos x (rött) är periodiska vilket man ser från att funktionernas värden upprepas. Det är inte svårt att se att grafsnutten över intervallet [0, 2π] (markerad med fetare linje) upprepas. I figur 3 illustreras att sinus och cosinus är periodiska funktioner. Detta kan man skriva som sin x + 2nπ = sin x, cos x + 2nπ = cos x, (3) 5

6 där n är ett godtyckligt positivt eller negativt heltal. När vi ska välja argument till den polära beskrivningen till z = x + iy så såg vi att vi söker vinkel ϕ så att x = r cos φ och y = r sin φ. Har vi väl hittat en sådan vinkel (t.ex. genom att beräkna arctan y/x) så får vi andra godtagbara vinklar genom att addera en heltalsmultippel av 2π, vilket är vad ekvationerna (3) säger. Om vi väljer argumentet i intervallet ( π, π] så säger vi att vi valt det komplexa talets principalargument. Det finns alltså många gångbara argument som vi kan använda för ett givet komplext tal. Detta blir viktigt när vi ska lösa binomekvationer längre fram. Exempel 7. Ange principalargumentet till z = 1 i och ett annat godtagbart argument för detta komplexa tal. Lösning : Vi har att 1 i ligger i fjärde kvadranten med vinkeln π/4 nedanför den reella axeln. Denna vinkel är negativ eftersom vi rör oss medurs från reella axeln för att komma till vårt komplexa tal. Vårt argument arg z = pi/4 ligger i intervallet ( π, π] och är därför principalargumentet för z = 1 i. principalargumentet -π/4+4π -π/4 1-i Figur 4: Principalargumentet för 1 i är π/4. Ett annat argument får vi genom att addera en multippel av 2π till principalargumentet. I figuren har vi adderat 2 2π = 4π och då får vi det nya argumentet π/4 + 4π, som är det argument som är angiven med spiralen. Ett annat godtagbart argument får vi genom att addera en heltasmultippel av 2π till vårt argument. Alla sådana argument har därför formen arg z = π/4 + 2πn, n Z Vi behövde ju bara ange ett av dem så vi kan välja t.ex. n = dvs n är en googolplex, men vi hade kunnat ta någon av 2, 1, 1 eller 2 också. Det enda vi inte kan välja är n = 0 eftersom vi då inte får ett annat tal än principalargumentet. Polär form och exponentialfunktionen I komplex analys visar man att exponentialfunktionen kan vidgas så att den gäller för komplexa tal, dvs så att e z har betydelse för z C och att de vanliga räknereglerna för exponentialfunktionen fortsätter att gälla. Detta innebär att för z = x + iy så ger potensräknereglerna att e z = e x+iy = e x e iy. Den sista faktorn e iy är speciellt intressant eftersom man också kan visa likheten 2 e iϕ = cos ϕ + i sin ϕ (4) 2 Likheten (4) kan t.ex. visas genom att båda led löser samma differentialekvation och utnyttjar att differentialekvationer kan bevisas ha entydig lösning. Se t.ex Saff och Snider : Fundamentals of Complex Analysis. Men detta ligger en ganska bra bit utanför denna kurs. 6

7 Vi kan nu skriva ett komplext tal z = x + iy som z = z (cos ϕ + i sin ϕ) = z e iϕ, som är mycket trevligt att räkna med tack vare exponentialfunktionens många räkneregler. En viktig observation är också att beloppet av e iϕ är lika med ett, tack vare den s.k. trigonometriska ettan : e iϕ 2 = (cos ϕ + i sin ϕ)(cos ϕ i sin ϕ) = = cos 2 ϕ + sin 2 ϕ + i(sin ϕ cos ϕ cos ϕ sin ϕ) = =sin ϕ cos ϕ =0 = cos 2 ϕ + sin 2 Trigonometriska ϕ = 1 ettan Geometrisk tolkning av multiplikation av komplexa tal Låt oss betrakta två komplexa tal a och b och låt dem vara givna på polär form: a = re α b = Re β Multiplicerar vi dessa tal så får vi ett nytt komplext tal, c säg, och för detta gäller c = ab = re iα r 2 e iβ = r 1 r 2 e i(α+β) Eftersom vi har den trigonometriska ettan så har vi att c = rr γ = α + β, dvs produktens vinkel är summan av faktorernas vinklar och produktens belopp är produkten av faktorernas belopp! Vi illustrerar detta i figur 3. Exempel 8. För reella tal har vi att roten ur x, x, där x > 0 är det positiva tal a som har egenskapen att a 2 = x. Vi ska nu använda den geometriska tolkningen av multiplikation med komplexa tal för att ge en idé om vad roten ur ett komplext tal ska vara. För roten z av ett komplext tal z så måste gälla att ( z ) 2 = z Om vi sätter z = Re i(ϕ+2πn) och z = re iα så har vi alltså att ( z ) 2 = r 2 e i2α = Re i(ϕ+2πn) = z Eftersom e iφ = 1 så har vi att de två sidornas belopp måste överensstämma r 2 = R r = R = z Sedan måste även de båda sidornas argument överensstämma vilket ger oss 2α = ϕ + 2πn α = ϕ/2 + πn, n Z, där n = 0 och n = 1 ger två unika argument, som genererar två olika lösningar. Argumentet för n = 0 och n = 2 skiljer sig åt med en multippel av 2π och kommer därför att ge samma punkt i det komplexa talplanet. Vi har alltså att z = z e i(ϕ/2+nπ = z e iϕ e inπ = ± z e iϕ, 7

8 c rr b γ=α+β R r α a β Figur 5: Geometrisk tolkning av komplex multiplikation: När de två komplexa talen a = re iα och b = Re iβ multipliceras som får man ett nytt komplext tal, betecknat med c = r Re i(α+β). c s belopp är produkten av a s och b s belopp. Argumentet för c är summan av a s och b s argument. vilket följer eftersom { e inπ 1 om n jämn = 1 om n udda. Sammanfattar vi detta så har vi att roten ur ett komplext tal är ett tal vars argument är hälften av talets argument och har ett belopp som är roten ur talets belopp. a 2 = z = z = a = z e (i arg z)/2 Exempel 9. Ett exempel på föregående exempel: Beräkna i. Vi har att i = 1 och arg i = π/2. Föregående exempel ger oss därför att i = ± e (i arg 2 i)/2 = ±e iπ/4 = ±(cos π/4 + i sin π/4) = ± (1 + i) 2 = 2 /2 = 2 /2 De Moivres formel De Moivres formel säger (cos ϕ + i sin ϕ) n = cos nϕ + i sin ϕ (5) Om man tänker på binomialsatsen så förstår man att denna formell inte är självklar. Däremot när vi nu vet att det som står i parantesen till vänster är e iϕ så följer (5) lätt av räknereglerna för exponentialfunktionen: ( cos ϕ + i sin ϕ ) n = (e iϕ ) n = e iϕn = cos nϕ + i sin nϕ e iϕ 8

9 Exempel 10. Om vi tar n = 2 i de Moivres formel (5) så får vi, där vänster led utvecklats cos 2 ϕ sin 2 ϕ + 2i cos ϕ sin ϕ = cos 2ϕ + i sin 2ϕ. Eftersom två komplexa tal är lika precis om deras real och imaginärdelar är lika så ger denna likhet oss två väl bekanta trigonometriska formler cos 2ϕ = cos 2 ϕ sin 2 ϕ realdelen sin 2ϕ = 2 cos ϕ sin ϕ imaginärdelen DeMoivres formel kommer alltså från en egentligen en ganska enkel egenskap för exponentialfunktionen. I nästa exempel ska vi utnyttja en annan egenskap e i(α+β) = e iα e iβ (6) Exempel 11. Vi ska visa de trigonometriska additionsreglerna som man kan hitta i vilketn matematisk formelsamling som helst. Vi har nu alla verktyg vi behöver för att visa att Vi använder oss av ekvation (6): sin(α ± β) = sin α cos β ± cos α sin β (7) cos(α ± β) = cos α cos β sin α sin β (8) cos(α ± β) + i sin(α ± β) = e i(α±β) = e iα e ±iβ = (cos α + i sin α)(cos β ± i sin β) =cos α cos β sin α sin β+i(sin α cos β±cos α sin β) Från detta får vi att de två sidornas realdelar är lika ger oss ekvation (8) och (7) följer av att imaginärdelarna ska vara lika Den binomiska ekvationen Ett binom är ett polynom med två termer: b(z) = a 1 z m + a 2 z n, Antag (WLOG) 3 m > n. När man ska hitta nollställen till detta binom så börjar man med att faktorisera binomet: z n (a 1 z m n + a 2 ) Den första faktorn ger nollstället 0, medan den andra faktorn ger andra nollställen. När vi i fortsättningen talar om ett binom menar vi ett polynom av typen p(z) = az n b, (9) ty de intressanta nollställena till ett allmänt binom kommer alltid från ett sådant binom, vilket var vad vi visade i ovan. Exempel 12. Den binomiska ekvationen (9) kan skrivas på formen och denna ska vi nu lösa! z n = a, 3 WLOG står för Without Loss Of Generality som betyder utan förlust av allmängiltighet och används för att ange att ett antagande inte ger ett svagare resultat, bara enklare räkningar. I detta fall gäller att vi har två hela tal m n och då kan vi alltid låta m beteckna det större heltalet. 9

10 Tricket här är att utrycka allt på polär form. När vi skriver a på polär form har vi uppräkneligt många val av argument. Om vi väljer en vinkel α 0 i principalområdet (α 0 ( π, π]) så kan vi skriva alla andra möjliga vinklar som Med a = r så får vi Skriver vi z = Re iφ, så får vi ekvationen α = α 0 + 2πN, N = 0, ±1, ±2,.... a = re i(α+2πn), N = 0, ±1, ±2,.... R n e inφ = re i(α+2πn) Detta leder till ett system av två ekvationer, en för beloppet och en för argumentet: R n = r (beloppen lika) nφ = α 0 + 2πN, N = 0, ±1, ±2,.... Den första ekvationen leder till att R = r 1 n. Den andra leder till att φ = α 0 n + 2π N, N = 0, ±1, ±2,.... n Notera att eftersom e iθ+2mπ = e iθ, m Z (e iθ är 2π periodisk eftersom cosinus och sinus är det) så gäller att endast n stycken av ovanstående vinklar är olika. Därför får vi n stycken olika lösningar till vår binomekvation: z = r 1 n e i( α 0 n + 2π n N), N = 0, 1,..., n 1. Exempel 13. Lös ekvationen z = 0 Lösning:: Ekvationen, som kan skrivas som z 4 = 1, blir på polär form z 4 e 4iθ = e i(π+2πk), k godtyckligt heltal Ekvation för beloppet:: z = 1 Ekvation för argumentet:: 4θ = π + 2πk θ = π/4 + kπ/2 Fyra på varandra följande värden på k ger våra fyra lösningar för argumentet. Lösningen sammanställs nu som z = e i(π/4+kπ/2), där k = 0, 1, 2, 3. k=1, 5, 9,... k=0, 4, 8, k=2, 6, 10,... k=3, 7, 11,... Figur 6: För varje heltasvärde på k så får vi en av de fyra svarta punkterna. Notera att de är jämnt utspridda på cirkeln och att den första (k = 0) har argument som är en fjärdedel av argumentet för vårt högerled 1. 10

11 -1+i 3 k=0, 2, 4, k=1, 3, 5,... Figur 7: Den yttre röda cirkeln har radien 2 som är beloppet 1 + i 3 = 2. Den inre svarta cirkeln har radien 2. Lösningarna till vår binomekvation ligger på denna inre cirkel. Notera att de svarta punkterna kan tolkas som ± 1 + i 3 i enlighet med exemplen 8 och 9 Exempel 14. Lös ekvationen z 2 = 1 + i 3. Lösning:: Börja med att ställa upp ekvationen på polär form, där vi noterar att i = ( 1) 2 + ( 3 ) 2 e 2π/3+2πk = 2e 2π/3+2πk Vi får Detta ger oss en ekvation för beloppet: och en ekvation för argumentet ( z e iθ ) 2 = z 2 e 2iθ = 2e 2π/3+2πk z 2 = 2 z = 2 e 2iθ = e (2π/3+2πk)i θ = π/3 + πk, k = 0, 1 Vi får alltså argumenten π/3 och 4π/3 och lösningarna blir därför z = 2 e iπ/3 = ( 1 + i ) = i 2 och z = 2 e i4π/3 = z = 2 e iπ/3 }{{} e iπ = ( ) e iπ/3 = 2 + i 2 = 1 Exempel 15. Lös ekvationen z 5 = 3 + i Lösning:: Skriv ekvationen på polär form: r 5 e 5θ = 2e i5π/6+2πk Detta ger oss att beloppet för z blir z = r = = 2. Argumentet blir. θ = π 6 + k 2π 5 = 30 + k 72, k = 0, 1, 2, 3, 4 11

12 150 3-i k=2, 7, k=1, 6, 11,... k=0, 5,10, k=-2, 3, 8,... k=-1, 4, 9,... Figur 8: Här ligger rötterna på den inre cirkeln som har radien Punkterna är jämnt utspridda med vinkeln 72 = 360/5 mellan sig. Den första punkten, dvs för k = 0 har ett argument som är en femtedel av argumentet för 3 i (som är 150 ) och blir därför 30. Nollställen till andragradspolynom Nu ska vi lära oss hitta nollställena till ett polynom som har komplexa koefficienter. Låt oss titta på ett exempel: Exempel 16. Vi låter p(z) = z 2 +(1+i)z (6+2i). För att hitta nollställena kan vi inte använda den gamla formeln eftersom vi inte vet vad roten ur ett komplext tal innebär. (se Komplex Analys) Däremot kan vi kvadratkomplettera i ekvationen p(z) = 0: (z (1 + i))2 1 4 (1 + i)2 = (6 + 2i), som blir (z (1 + i))2 = i. Genom att göra substitutionen w = z (1 + i) så får vi den enkla ekvationen w 2 = i. Sätt nu w = x + iy så ger ekvationen att x 2 y 2 = 6, och 2xy = 5 2. Det finns också en tredje ekvation som är väldigt användbar här; Att två komplexa tal är lika 12

13 betyder att deras belopp också är lika. Vi får: w 2 = w 2 = ww = x 2 + y 2, i = = = Följande ekvationssystem ger lätt lösningar för x 2 och y 2 : x 2 + y 2 = 13 2 x 2 y 2 = 6. Man får alltså x 2 = 25 4 och y2 = 1 4 Den tredje ekvationen visar att x och y har samma tecken vilket ger att w = ±( i 1 2 ). Nu var det ju z vi sökte och vi har att z = w 1 2 (1 + i) så vi får att { z = 1 2 (1 + i) ± (5 2 + i1 2 ) = 2 3 i. 13

Referens :: Komplexa tal version

Referens :: Komplexa tal version Referens :: Komplexa tal version 0.5 Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. De komplexa talen uppstår som ett behov av av att kunna lösa polynomekvationer

Läs mer

Referens :: Komplexa tal version

Referens :: Komplexa tal version Referens :: Komplexa tal version 0.6 Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. De komplexa talen uppstår som ett behov av av att kunna lösa polynomekvationer

Läs mer

Referens :: Komplexa tal

Referens :: Komplexa tal Referens :: Komplexa tal Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. Definition av komplexa tal Definition 1. Ett komplext tal z är ett tal på formen

Läs mer

Introduktion till Komplexa tal

Introduktion till Komplexa tal October 26, 2015 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5

Läs mer

Komplexa Tal och Polynom

Komplexa Tal och Polynom V1.02:: 11 september 2014 @ 07:48 Komplexa Tal och Polynom En Introduktion Mikael Forsberg 2 Innehåll 1 Komplexa tal 1 1.1 Introduktion till komplexa tal och deras egenskaper................... 1 1.1.1

Läs mer

OM KOMPLEXA TAL. 1 Om a är ett positivt reellt tal så betecknar a det positiva reella tal vars kvadrat är a men det är

OM KOMPLEXA TAL. 1 Om a är ett positivt reellt tal så betecknar a det positiva reella tal vars kvadrat är a men det är OM KOMPLEXA TAL Inledning. Vilka olika talområden finns det? Jag gör en snabb genomgång av vad ni tidigare stött på, bl.a. för att repetera standardbeteckningarna för de olika talmängderna. Positiva heltal,

Läs mer

SF1620 Matematik och modeller

SF1620 Matematik och modeller KTH Teknikvetenskap, Institutionen för matematik 1 SF160 Matematik och modeller 007-09-10 Andra veckan Trigonometri De trigonometriska funktionerna och enhetscirkeln Redan vid förra veckans avsnitt var

Läs mer

konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b 2 a b

konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b 2 a b Tentamen i Inledande matematik för V och AT, (TMV25), 20-0-26. Till denna uppgift skulle endast lämnas svar, men här ges kortfattade lösningar. a) Bestäm { konstanterna a och b så att ekvationssystemet

Läs mer

Komplexa tal: Begrepp och definitioner

Komplexa tal: Begrepp och definitioner UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,

Läs mer

Lathund, procent med bråk, åk 8

Lathund, procent med bråk, åk 8 Lathund, procent med bråk, åk 8 Procent betyder hundradel, men man kan också säga en av hundra. Ni ska kunna omvandla mellan bråkform, decimalform och procentform. Nedan kan ni se några omvandlingar. Bråkform

Läs mer

Kapitel 6. f(x) = sin x. Figur 6.1: Funktionen sin x. 1 Oinas-Kukkonen m.fl. Kurs 6 kapitel 1

Kapitel 6. f(x) = sin x. Figur 6.1: Funktionen sin x. 1 Oinas-Kukkonen m.fl. Kurs 6 kapitel 1 Kapitel 6 Gränsvärde 6. Definition av gränsvärde När vi undersöker gränsvärdet av en funktion undersöker vi vad som händer med funktionsvärdet då variabeln, x, går mot ett visst värde. Frågeställningen

Läs mer

1.1 Den komplexa exponentialfunktionen

1.1 Den komplexa exponentialfunktionen TATM79: Föreläsning 8 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim augusti 07 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa

Läs mer

Snabbslumpade uppgifter från flera moment.

Snabbslumpade uppgifter från flera moment. Snabbslumpade uppgifter från flera moment. Uppgift nr Ställ upp och dividera utan hjälp av miniräknare talet 48 med 2 Uppgift nr 2 Skriv talet 3 8 00 med hjälp av decimalkomma. Uppgift nr 3 Uppgift nr

Läs mer

Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument

Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument Distributiva lagen a(b + c) = ab + ac 3(x + 4) = 3 x + 3 4 = 3x + 12 3(2x + 4) = 3 2x + 3 4 = 6x + 12

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om komplexa tal Mikael Hindgren 17 oktober 2018 Den imaginära enheten i Det finns inga reella tal som uppfyller ekvationen x 2 + 1 = 0. Vi inför den imaginära

Läs mer

Repetition av cosinus och sinus

Repetition av cosinus och sinus Repetition av cosinus och sinus Av Eric Borgqvist, 00-08-6, Lund Syftet med detta dokument är att få en kort och snabb repetition av vissa egenskaper hos de trigonometriska funktionerna sin och cos. Det

Läs mer

3.1 Linjens ekvation med riktningskoefficient. y = kx + l.

3.1 Linjens ekvation med riktningskoefficient. y = kx + l. Kapitel Analytisk geometri Målet med detta kapitel är att göra läsaren bekant med ekvationerna för linjen, cirkeln samt ellipsen..1 Linjens ekvation med riktningskoefficient Vi utgår från ekvationen 1

Läs mer

Möbiustransformationer.

Möbiustransformationer. 224 Om Möbiustransformationer Torbjörn Kolsrud KTH En Möbiustransformation är en komplexvärd funktion f av en komplex variabel z på formen f(z) = az + b cz + d. Här är a b c och d komplexa tal. Ofta skriver

Läs mer

Matematik för sjöingenjörsprogrammet

Matematik för sjöingenjörsprogrammet Matematik för sjöingenjörsprogrammet Matematiska Vetenskaper 9 augusti 01 Innehåll 5 komplexa tal 150 5.1 Inledning................................ 150 5. Geometrisk definition av de komplexa talen..............

Läs mer

SEPARABLA DIFFERENTIALEKVATIONER

SEPARABLA DIFFERENTIALEKVATIONER SEPARABLA DIFFERENTIALEKVATIONER En differentialekvation (DE) av första ordningen sägs vara separabel om den kan skrivas på formen P ( y) Q( ) () Den allmänna lösningen till () erhålles genom att integrera

Läs mer

Introduktion till Komplexa tal

Introduktion till Komplexa tal October 8, 2014 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5

Läs mer

Volymer av n dimensionella klot

Volymer av n dimensionella klot 252 Volymer av n dimensionella klot Mikael Passare Stockholms universitet Ett klot med radien r är mängden av punkter vars avstånd till en given punkt (medelpunkten) är högst r. Låt oss skriva B 3 (r)

Läs mer

Träning i bevisföring

Träning i bevisföring KTHs Matematiska Cirkel Träning i bevisföring Andreas Enblom Institutionen för matematik, 2005 Finansierat av Marianne och Marcus Wallenbergs Stiftelse 1 Mängdlära Här kommer fyra tips på hur man visar

Läs mer

DOP-matematik Copyright Tord Persson. Bråktal -3-2 -1 0 1 2 3. Läs av vilka tal på tallinjen, som pilarna pekar på. Uppgift nr 10 -3-2 -1 0 1 2 3

DOP-matematik Copyright Tord Persson. Bråktal -3-2 -1 0 1 2 3. Läs av vilka tal på tallinjen, som pilarna pekar på. Uppgift nr 10 -3-2 -1 0 1 2 3 Bråktal Uppgift nr En limpa delas i 4 lika stora delar. Hur stor del av limpan blir varje del? Uppgift nr 2 Hur många tiondelar behövs för att det skall räcka till en hel? Uppgift nr Hur läser man ut bråket

Läs mer

TATM79: Föreläsning 3 Komplexa tal

TATM79: Föreläsning 3 Komplexa tal TATM79: Föreläsning 3 Komplexa tal Johan Thim 22 augusti 2018 1 Komplexa tal Definition. Det imaginära talet i uppfyller att i 2 = 1. Detta är alltså ett tal vars kvadrat är negativ. Det kan således aldrig

Läs mer

Ekvationssystem, Matriser och Eliminationsmetoden

Ekvationssystem, Matriser och Eliminationsmetoden Matematiska institutionen Göteborgs universitet och Chalmers tekniska högskola Version 359 Ekvationssystem, Matriser och Eliminationsmetoden - En inledning Ekvationssystem - matrisformulering Vi såg att

Läs mer

Explorativ övning 7 KOMPLEXA TAL

Explorativ övning 7 KOMPLEXA TAL Explorativ övning 7 KOMPLEXA TAL Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet då man försökte lösa kvadratiska

Läs mer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim 9 september 05 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa

Läs mer

Avsikt På ett lekfullt sätt färdighetsträna, utveckla elevers känsla för hur vårt talsystem är uppbyggt samt hitta mönster som uppkommer.

Avsikt På ett lekfullt sätt färdighetsträna, utveckla elevers känsla för hur vårt talsystem är uppbyggt samt hitta mönster som uppkommer. Strävorna 4A 100-rutan... förmåga att förstå, föra och använda logiska resonemang, dra slutsatser och generalisera samt muntligt och skriftligt förklara och argumentera för sitt tänkande.... grundläggande

Läs mer

Modul 6: Integraler och tillämpningar

Modul 6: Integraler och tillämpningar Institutionen för Matematik SF65 Envariabelanalys Läsåret 5/6 Modul 6: Integraler och tillämpningar Denna modul omfattar kapitel 6. och 6.5 samt kapitel 7 i kursboken Calculus av Adams och Essex och undervisas

Läs mer

a n = A2 n + B4 n. { 2 = A + B 6 = 2A + 4B, S(5, 2) = S(4, 1) + 2S(4, 2) = 1 + 2(S(3, 1) + 2S(3, 2)) = 3 + 4(S(2, 1) + 2S(2, 2)) = 7 + 8 = 15.

a n = A2 n + B4 n. { 2 = A + B 6 = 2A + 4B, S(5, 2) = S(4, 1) + 2S(4, 2) = 1 + 2(S(3, 1) + 2S(3, 2)) = 3 + 4(S(2, 1) + 2S(2, 2)) = 7 + 8 = 15. 1 Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment A, för D och F, SF161 och SF160, den juni 008 kl 08.00-1.00. DEL I 1. (p) Lös rekursionsekvationen

Läs mer

Övningshäfte Algebra, ekvationssystem och geometri

Övningshäfte Algebra, ekvationssystem och geometri Stockholms Tekniska Gmnasium --9 Övningshäfte Algebra, ekvationssstem och geometri Nivå: rätt svårt Fråga : f är ett polnom. Beräkna värdet av f, f och fπ Fråga : Ingångslönen på företaget Börjes Gurkinläggning

Läs mer

Institutionen för matematik Envariabelanalys 1. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej miniräknare)

Institutionen för matematik Envariabelanalys 1. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej miniräknare) Umeå universitet Dugga i matematik Institutionen för matematik Envariabelanalys 1 och matematisk statistik IE, ÖI, Stat. och Frist. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej

Läs mer

ATT KUNNA TILL. MA1050 Matte Grund. 2011-06-14 Vuxenutbildningen Dennis Jonsson

ATT KUNNA TILL. MA1050 Matte Grund. 2011-06-14 Vuxenutbildningen Dennis Jonsson ATT KUNNA TILL MA1050 Matte Grund 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov G1 Kunna ställa upp och beräkna additions-, subtraktions-, multiplikations- och divisuionsuppgifter

Läs mer

Övningshäfte i matematik för. Kemistuderande BL 05

Övningshäfte i matematik för. Kemistuderande BL 05 Övningshäfte i matematik för Kemistuderande BL 05 Detta häfte innehåller några grundläggande övningar i de delar av matematiken som man har användning för i de tidiga kemistudierna. Nivån är gymnasiematematik,

Läs mer

4-3 Vinklar Namn: Inledning. Vad är en vinkel?

4-3 Vinklar Namn: Inledning. Vad är en vinkel? 4-3 Vinklar Namn: Inledning I det här kapitlet skall du lära dig allt om vinklar: spetsiga, trubbiga och räta vinklar. Och inte minst hur man mäter vinklar. Att mäta vinklar och sträckor är grundläggande

Läs mer

Förberedelser inför lektion 1 (första övningen läsvecka 1) Lektion 1 (första övningen läsvecka 1)

Förberedelser inför lektion 1 (första övningen läsvecka 1) Lektion 1 (första övningen läsvecka 1) Förberedelser inför lektion 1 (första övningen läsvecka 1) Läs kapitel 0.1 0.3. Mycket av detta är nog känt sedan tidigare. Om du känner dig osäker på något, läs detta nogrannare. Kapitel 0.6 behöver inte

Läs mer

Complex numbers. William Sandqvist

Complex numbers. William Sandqvist Complex numbers Hur många lösningar har en andragradsekvation? y = x 2 1 = 0 Två lösningar! Kommer Du ihåg konjugatregeln? Svaret kan ju lika gärna skrivas: x 1 = 1 x2 = + 1 Hur många lösningar har den

Läs mer

Övningshäfte 2: Komplexa tal

Övningshäfte 2: Komplexa tal LMA100 VT007 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet

Läs mer

Föreläsning 1. Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida

Föreläsning 1. Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida Föreläsning 1 Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida http://www2.math.uu.se/ rikardo/ baskursen/index.html Mängdlära * En "samling" av tal kallas för en mängd.

Läs mer

x 2 + px = ( x + p 2 x 2 2x = ( x + 2

x 2 + px = ( x + p 2 x 2 2x = ( x + 2 Inledande kurs i matematik, avsnitt P.3 P.3. Bestäm en ekvation för cirkeln med mittpunkt i (0, 0) och radie 4. Med hjälp av kvadratkompletteringsformeln + p = ( + p ) ( p ) En cirkel med mittpunkt i (

Läs mer

Finns det någon som kan förklara varför man inte kan använda formeln P=U I rotenur3 cosfi på en pump som sitter i en borrad brunn?

Finns det någon som kan förklara varför man inte kan använda formeln P=U I rotenur3 cosfi på en pump som sitter i en borrad brunn? Räkna ut strömmen på en pump i en borra Postad av Tommy - 15 apr 2015 20:48 Finns det någon som kan förklara varför man inte kan använda formeln P=U I rotenur3 cosfi på en pump som sitter i en borrad brunn?

Läs mer

Komplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,...

Komplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,... Komplexa tal Vi inleder med att repetera hur man räknar med komplexa tal, till att börja med utan att bekymra oss om frågor som vad ett komplext tal är och hur vi kan veta att komplexa tal finns. Dessa

Läs mer

Sommarmatte. del 2. Matematiska Vetenskaper

Sommarmatte. del 2. Matematiska Vetenskaper Sommarmatte del 2 Matematiska Vetenskaper 7 april 2009 Innehåll 5 Ekvationer och olikheter 1 5.1 Komplea tal.............................. 1 5.1.1 Algebraisk definition, imaginära rötter............. 1

Läs mer

Facit med lösningsförslag kommer att anslås på vår hemsida www.ebersteinska.norrkoping.se. Du kan dessutom få dem via e-post, se nedan.

Facit med lösningsförslag kommer att anslås på vår hemsida www.ebersteinska.norrkoping.se. Du kan dessutom få dem via e-post, se nedan. Detta häfte innehåller uppgifter från fyra olika områden inom matematiken. Meningen är att de ska tjäna som en självtest inför gymnasiet. Klarar du dessa uppgifter så är du väl förberedd inför gymnasiestudier

Läs mer

Övningshäfte 2: Komplexa tal (och negativa tal)

Övningshäfte 2: Komplexa tal (och negativa tal) LMA110 VT008 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal (och negativa tal) Övningens syfte är att bekanta sig med komplexa tal och att fundera på några begreppsliga svårigheter som negativa

Läs mer

Geometri och Trigonometri

Geometri och Trigonometri Kapitel 5 Geometri och Trigonometri I detta kapitel kommer vi att koncentrera oss på de trigonometriska funktionerna sin x, cos x och tan x. 5. Repetition Här repeteras några viktiga trigonometriska definitioner

Läs mer

Föreläsning 9: Komplexa tal, del 2

Föreläsning 9: Komplexa tal, del 2 ht016 Föreläsning 9: Komplexa tal, del Den komplexa exponentialfunktionen För att definiera den komplexa exponentialfunktionen utgår vi ifrån att den ska följa samma regler som för reella tal. Vi minns

Läs mer

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2.

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2. KTH Matematik Lars Filipsson Facit till Några extra uppgifter inför tentan Matematik Baskurs 1. Låt f(x) = ln 2x + 4x 2 + 9 + ln 2x 4x 2 + 9. Bestäm definitionsmängd och värdemängd till f och rita kurvan

Läs mer

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +

Läs mer

Block 4 - Funktioner. Funktionsbegreppet Definitionsmängd

Block 4 - Funktioner. Funktionsbegreppet Definitionsmängd Block 4 - Funktioner Funktionsbegreppet Definitionsmängd Värdemängd Grafen för en funktion Polynom Konstanta polynom Linjära polynom Andragradspolynom Potenser, exponential- och logaritmfunktioner Potensfunktioner

Läs mer

Föreläsning 8 och 9. insignal. utsignal. Tvåport. Hambley avsnitt 5.5-6.1

Föreläsning 8 och 9. insignal. utsignal. Tvåport. Hambley avsnitt 5.5-6.1 1 Föreläsning 8 och 9 Hambley avsnitt 5.56.1 Tvåport En tvåport är en krets med en ingångsport och en gångsport. Dess symbol är en rektangel med ingångsporten till vänster och gångsporten till höger. Tvåporten

Läs mer

4-6 Trianglar Namn:..

4-6 Trianglar Namn:.. 4-6 Trianglar Namn:.. Inledning Hittills har du arbetat med parallellogrammer. En sådan har fyra hörn och motstående sidor är parallella. Vad händer om vi har en geometrisk figur som bara har tre hörn?

Läs mer

Kryssproblem (redovisningsuppgifter).

Kryssproblem (redovisningsuppgifter). Uppsala Universitet Matematiska Institutionen Bo Styf Flervariabelanalys, 5 hp STS, X 2010-03-19 Kryssproblem (redovisningsuppgifter). Till var och en av de åtta lektionerna hör ett par problem, som kallas

Läs mer

2005-01-31. Hävarmen. Peter Kock

2005-01-31. Hävarmen. Peter Kock 2005-01-31 Hävarmen Kurs: WT0010 Peter Kock Handledare: Jan Sandberg Sammanfattning Om man slår upp ordet hävarm i ett lexikon så kan man läsa att hävarm är avståndet mellan kraften och vridningspunkten.

Läs mer

Från min. klass INGER BJÖRNELOO

Från min. klass INGER BJÖRNELOO Från min klass INGER BJÖRNELOO Vi har nu följt Inger Björneloos klass under två år. Klassen börjar i höst på sitt sista lågstadieår, åk 3. Denna årgång av NÄMNAREN kommer att följa upp vad de gör och hur

Läs mer

Vi skall skriva uppsats

Vi skall skriva uppsats Vi skall skriva uppsats E n vacker dag får du höra att du skall skriva uppsats. I den här texten får du veta vad en uppsats är, vad den skall innehålla och hur den bör se ut. En uppsats är en text som

Läs mer

Mål Blå kurs Röd kurs

Mål Blå kurs Röd kurs Bråk Mål När eleverna har arbetat med det här kapitlet ska de kunna läsa och skriva bråk veta vad som menas med täljare och nämnare känna till och kunna använda begreppen bråkform och blandad form kunna

Läs mer

Mätning av effekter. Vad är elektrisk effekt? Vad är aktiv-, skenbar- reaktiv- medel- och direkteffekt samt effektfaktor?

Mätning av effekter. Vad är elektrisk effekt? Vad är aktiv-, skenbar- reaktiv- medel- och direkteffekt samt effektfaktor? Mätning av effekter Vad är elektrisk effekt? Vad är aktiv-, skenbar- reaktiv- medel- och direkteffekt samt effektfaktor? Denna studie ger vägledning om de grundläggande parametrarna för 3-fas effektmätning.

Läs mer

Antal grodor i varje familj Antal hopp tills alla bytt plats Ökning 1 3 5 2 8 7 3 15 9 4 24

Antal grodor i varje familj Antal hopp tills alla bytt plats Ökning 1 3 5 2 8 7 3 15 9 4 24 strävorna 1AB Grodhopp problemlösning taluppfattning algebra Avsikt och matematikinnehåll Elever behöver få möta många aktiviteter där de kan se att algebra bland annat är generaliserad aritmetik. För

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

Mätningar på op-förstärkare. Del 3, växelspänningsförstärkning med balanserad ingång.

Mätningar på op-förstärkare. Del 3, växelspänningsförstärkning med balanserad ingång. Mätningar på op-förstärkare. Del 3, växelspänningsförstärkning med balanserad ingång. Denna gång skall vi titta närmare på en förstärkare med balanserad ingång och obalanserad utgång. Normalt använder

Läs mer

Observera att alla funktioner kan ritas, men endast linjära funktioner blir räta linjer.

Observera att alla funktioner kan ritas, men endast linjära funktioner blir räta linjer. 1 Matematik som verktyg Antag att vi har en funktion som är en rät linje, y = 1 3x. Eftersom relationen mellan x och y är linjär räcker det med att vi hittar två punkter (två talpar) på linjen för att

Läs mer

Matematik 4 Kap 4 Komplexa tal

Matematik 4 Kap 4 Komplexa tal Matematik 4 Kap 4 Komplexa tal Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_ämnesp lan_matematik/struktur_ämnesplan_matematik.html Inledande aktivitet

Läs mer

Kängurutävlingen Matematikens hopp 2009 Cadet för gymnasiet för elever på kurs A

Kängurutävlingen Matematikens hopp 2009 Cadet för gymnasiet för elever på kurs A Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2009 Cadet för gymnasiet för elever på kurs A Kängurutävlingen genomförs 9 mars. Om den dagen inte passar kan hela veckan 20 27 mars användas,

Läs mer

Kurvlängd och geometri på en sfärisk yta

Kurvlängd och geometri på en sfärisk yta 325 Kurvlängd och geometri på en sfärisk yta Peter Sjögren Göteborgs Universitet 1. Inledning. Geometrin på en sfärisk yta liknar planets geometri, med flera intressanta skillnader. Som vi skall se nedan,

Läs mer

Sammanfattning på lättläst svenska

Sammanfattning på lättläst svenska Sammanfattning på lättläst svenska Utredningen skulle utreda och lämna förslag i vissa frågor som handlar om svenskt medborgarskap. Svenskt medborgarskap i dag Vissa personer blir svenska medborgare när

Läs mer

SKOGLIGA TILLÄMPNINGAR

SKOGLIGA TILLÄMPNINGAR STUDIEAVSNITT 3 SKOGLIGA TILLÄMPNINGAR I detta avsnitt ska vi titta på några av de skogliga tillämpningar på geometri som finns. SKOGSKARTAN EN MODELL AV VERKLIGHETEN Arbetar man i skogen klarar man sig

Läs mer

SF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att

SF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att SF11 Perspektiv på matematik Tentamen 4 oktober 013 kl 14.00 19.00 Svar och lösningsförslag (1) Låt z = (cos π + i sin π ) och låt w = 1(cos π 3 + i sin π 3 ). Beräkna och markera talet z11 w 3 z 11 w

Läs mer

Omvandla Vinklar. 1 Mattematiskt Tankesätt

Omvandla Vinklar. 1 Mattematiskt Tankesätt Omvandla Vinklar 1 Mattematiskt Tankesätt (Kan användas till mer än bara vinklar) 2 Omvandla med hjälp av Huvudräkning (Snabbmetod i slutet av punkt 2) 3 Omvandla med Miniräknare (Casio) Läs denna Först

Läs mer

Något om permutationer

Något om permutationer 105 Något om permutationer Lars Holst KTH, Stockholm 1. Inledning. I många matematiska resonemang måste man räkna antalet fall av olika slag. Den del av matematiken som systematiskt studerar dylikt brukar

Läs mer

Föreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik

Föreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik Föreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik Summaregeln Om och B är disjunkta mängder så B = + B, ty innehåller inga upprepningar Produktregeln Om och B är disjunkta mängder så är B = B Exempel:

Läs mer

Lösningar och kommentarer till uppgifter i 3.2

Lösningar och kommentarer till uppgifter i 3.2 Lösningar och kommentarer till uppgifter i 3.2 Så har vi då nått fram till sista avsnittet före tentamen. Uppgifterna i detta avsnitt är ganska trevliga, därför att de ofta har en, åtminstone påhittad,

Läs mer

1. Frekvensfunktionen nedan är given. (3p)

1. Frekvensfunktionen nedan är given. (3p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF14 TEN 11 kl 1.15-.15 Hjälpmedel: Formler och tabeller i statistik, räknedosa Fullständiga lösningar erfordras till samtliga uppgifter. Lösningarna skall

Läs mer

Kängurutävlingen Matematikens hopp 2009 Cadet för elever i åk 8 och 9

Kängurutävlingen Matematikens hopp 2009 Cadet för elever i åk 8 och 9 Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2009 Cadet för elever i åk 8 och 9 Kängurutävlingen genomförs 9 mars. Om den dagen inte passar kan hela veckan 20 27 mars användas, däremot

Läs mer

Föreläsning 1 i Elektronik ESS010

Föreläsning 1 i Elektronik ESS010 Elektro och informationsteknik Föreläsning 1 i Elektronik ESS010 Hambley Kap 1 Potential Den elektriska potentialen betecknas 1 v eller V och talar om hur stor potentiell energi en laddning har. Energin

Läs mer

Elektronen och laddning

Elektronen och laddning Detta är en något omarbetad version av Studiehandledningen som användes i tryckta kursen på SSVN. Sidhänvisningar hänför sig till Quanta A 2000, ISBN 91-27-60500-0 Där det har varit möjligt har motsvarande

Läs mer

Har du förstått? I De här talen är primtal a) 29,49 och 61 b) 97, 83 och 89 c) 0, 2 och 3.

Har du förstått? I De här talen är primtal a) 29,49 och 61 b) 97, 83 och 89 c) 0, 2 och 3. PASS 5. FAKTORISERING AV POLYNOM 5. Nyttan av faktorisering och faktorisering av heltal Har vi nytta av att kunna faktorisera polynom? Ja det har vi. Bra kunskaper i faktorisering av polynom möjliggör

Läs mer

L(9/G)MA10 Kombinatorik och geometri Gruppövning 1

L(9/G)MA10 Kombinatorik och geometri Gruppövning 1 L(9/G)MA10 Kombinatorik och geometri Gruppövning 1 Lisa och Pelle leker med svarta och vita byggklossar. Deras pedagogiska föräldrar vill att de lär sig matematik samtidigt som de håller på och leker.

Läs mer

Individuellt Mjukvaruutvecklingsprojekt

Individuellt Mjukvaruutvecklingsprojekt Individuellt Mjukvaruutvecklingsprojekt RPG-spel med JavaScript Författare Robin Bertram Datum 2013 06 10 1 Abstrakt Den här rapporten är en post mortem -rapport som handlar om utvecklandet av ett RPG-spel

Läs mer

Erfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare

Erfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare Erfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare I boken får vi följa hur barn tillsammans med sina lärare gör spännande matematikupptäckter - i rutinsituationer - i leken

Läs mer

Om komplexa tal och funktioner

Om komplexa tal och funktioner Analys 360 En webbaserad analyskurs Grundbok Om komplexa tal och funktioner Anders Källén MatematikCentrum LTH anderskallen@gmail.com Om komplexa tal och funktioner 1 (11) Introduktion De komplexa talen

Läs mer

Kriterium Kvalitet 1 Kvalitet 2 Kvalitet 3 Kvalitet 4 Använda, Utveckla och uttrycka

Kriterium Kvalitet 1 Kvalitet 2 Kvalitet 3 Kvalitet 4 Använda, Utveckla och uttrycka Matematik Enheter - Tid Utveckla och Känner till några enheter och enstaka mätinstrument. Utför enkla mätningar. Avläser analoga och digitala tider.använder både muntliga och skriftliga metoder samt tekniska

Läs mer

Lokal kursplan för Ängkärrskolan år 9 Rev. 2009-09-22. -Positionssystemet. -Multiplikation och division. (utan miniräknare).

Lokal kursplan för Ängkärrskolan år 9 Rev. 2009-09-22. -Positionssystemet. -Multiplikation och division. (utan miniräknare). Lokal kursplan för Ängkärrskolan år 9 Rev. 009-09- Matematik år 9 MOMENT MÅL KRITERIER/EXEMPELl Taluppfattning, aritmetik Repetition av: Skriv med siffror tolv -Positionssystemet. hundradelar. 0,, 0,7

Läs mer

Facit åk 6 Prima Formula

Facit åk 6 Prima Formula Facit åk 6 Prima Formula Kapitel 3 Algebra och samband Sidan 95 1 a 12 cm (3 4 cm) b Han vet inte att uttrycket 3s betyder 3 s eller s + s + s 2 a 5x b 6y c 12z 3 a 30 cm (5 6 cm) b 30 cm (6 5 cm) Sidan

Läs mer

Svar och arbeta vidare med Student 2008

Svar och arbeta vidare med Student 2008 Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att

Läs mer

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2016-01-28

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2016-01-28 Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth 2016-01-28 Kul matematik utan lärobok Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

Analys o Linjär algebra. Lektion 7.. p.1/65

Analys o Linjär algebra. Lektion 7.. p.1/65 Analys o Lektion 7 p1/65 Har redan (i matlab bla) stött på tal-listor eller vektorer av typen etc Vad kan sådana tänkas representera/modellera? Hur kan man räkna med sådana? Skall närmast fokusera på ordnade

Läs mer

SANNOLIKHET. Sannolikhet är: Hur stor chans (eller risk) att något inträffar.

SANNOLIKHET. Sannolikhet är: Hur stor chans (eller risk) att något inträffar. SANNOLIKHET Sannolikhet är: Hur stor chans (eller risk) att något inträffar. tomas.persson@edu.uu.se SANNOLIKHET Grundpremisser: Ju fler möjliga händelser, desto mindre sannolikhet att en viss händelse

Läs mer

Gaussiska primtal. Christer Kiselman. Institut Mittag-Leffler & Uppsala universitet

Gaussiska primtal. Christer Kiselman. Institut Mittag-Leffler & Uppsala universitet 195 Gaussiska primtal Christer Kiselman Institut Mittag-Leffler & Uppsala universitet 1. Beskrivning av uppgiften. De förslag som presenteras här kan behandlas på flera olika sätt. Ett första syfte är

Läs mer

Kursplan i Matematik för Alsalamskolan

Kursplan i Matematik för Alsalamskolan Kursplan i Matematik för Alsalamskolan Vi kommer att använda oss av följande nyanserade ord, Känna till, Kunna och Förstå. Att känna till är att ha hört talas om, att kunna är att kunna använda och förstå

Läs mer

Svenska Du kan med flyt läsa texter som handlar om saker du känner till. Du använder metoder som fungerar. Du kan förstå vad du läser.

Svenska Du kan med flyt läsa texter som handlar om saker du känner till. Du använder metoder som fungerar. Du kan förstå vad du läser. Svenska Du kan med flyt läsa texter som handlar om saker du känner till. Du använder metoder som fungerar. Du kan förstå vad du läser. Du berättar på ett enkelt sätt om det du tycker är viktigt i texten.

Läs mer

Procent - procentenheter

Procent - procentenheter Procent - procentenheter Uppgift nr 1 Hur skriver man i matematiken tecknet för procent och vad betyder ordet procent? Uppgift nr 2 Av 100 mopeder på en parkering är 16 vita. Hur många procent av mopederna

Läs mer

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5.

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den 3 november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1 a) Lös den diofantiska ekvationen 9x + 11y 00 b) Ange alla lösningar x, y) sådana

Läs mer

Varför är det så viktigt hur vi bedömer?! Christian Lundahl!

Varför är det så viktigt hur vi bedömer?! Christian Lundahl! Varför är det så viktigt hur vi bedömer?! Christian Lundahl! Fyra olika aspekter! Rättvisa! Reflektion och utvärdering av vår egen undervisning! Motivation för lärande! Metalärande (kunskapssyn)! 1. Rättvisa!

Läs mer

Tankar om elevtankar. HÖJMA-projektet

Tankar om elevtankar. HÖJMA-projektet Tankar om elevtankar HÖJMA-projektet JAN UNENGE I förra numret av NÄMNAREN påbörjades en redogörelse från ett intressant forsknings- och utvecklingsarbete vid Lärarhögskolan i Jönköping. Den artikeln behandlade

Läs mer

Konsten att multiplicera (stora) heltal

Konsten att multiplicera (stora) heltal Konsten att multiplicera (stora) heltal 18 november 2006 Stora heltal Mental bild: Handmultiplikation av tal med hundratals siffor. Datormultiplikation av tal med miljontals siffror. Mina exempel är mycket

Läs mer

För dig som är valutaväxlare. Så här följer du reglerna om penningtvätt i din dagliga verksamhet INFORMATION FRÅN FINANSINSPEKTIONEN

För dig som är valutaväxlare. Så här följer du reglerna om penningtvätt i din dagliga verksamhet INFORMATION FRÅN FINANSINSPEKTIONEN För dig som är valutaväxlare Så här följer du reglerna om penningtvätt i din dagliga verksamhet INFORMATION FRÅN FINANSINSPEKTIONEN MARS 2016 DU MÅSTE FÖLJA LAGAR OCH REGLER Som valutaväxlare ska du följa

Läs mer

Kängurun Matematikens hopp Benjamin 2006 A: B: C: D: E:

Kängurun Matematikens hopp Benjamin 2006 A: B: C: D: E: 3-poängsproblem : = + + Vilket tal ska frågetecknet ersättas med A: B: C: D: E: : Sex tal står skrivna på korten här intill. Vilket är det minsta tal man kan bilda genom att lägga korten efter varandra

Läs mer