Funktionsteori Datorlaboration 1

Storlek: px
Starta visningen från sidan:

Download "Funktionsteori Datorlaboration 1"

Transkript

1 Funktionsteori Funktionsteori Datorlaboration 1 Rekursionsekvationer och komplex analys Syftet med datorövningen Övningens ändamål är att ge ett smakprov på hur ett datoralgebrasystem kan användas för att att lösa problem med summation, rekursionsekvationer samt med komplex räkning. Programmet för övningen innehåller många moment, och det kan vara svårt att hinna med allt. Gör du inte det, så försök att slutföra övningen på egen hand vid annat tillfälle. Det kan vara till hjälp bl a då du löser inlämningsuppgifterna. Det är viktigt att du tar dig tid och begrundar vad du ser. För att få en viss kontroll av att du uppfattat rätt saker finns på många ställen tomma rader, där du förväntas skriva ner dina resultat eller svar. Under laborationens gång kommer handledaren - i mån av tid - att kontrollera dina svar. Handledningen till Maple från flerdim Introduktion till Maple finns på kursens hemsida om du skulle behöva friska upp dina Maplefärdigheter. Summation Maple kan användas för att beräkna summor. Syntaxen för summation är naturlig, a k fås genom Maplekommandot sum(a(k),k=m..n). k=m 1.1 Beräkna potenssummorna k och k=0 med hjälp av kommandona sum(k,k=0..n), sum(kˆ2,k=0..n). Förenkla med simplify eller factor och jämför med läroboken. Svar: k=0 1.2 Lös uppgift 1.19 med Maple. Glöm inte att förenkla. Maple är också ganska bra på teleskopsummor. 1.3 Försök att lösa uppgifterna 1.15, 16, 17 med Maple. Dubbelsummor är inte heller omöjliga. Dubbelsumman i uppgift 1.23, fås i Maple med kommandot sum(sum(j,k=j..n),j=1..n). 1.4 Lös uppgift 1.24 med Maple. Snygga till svaret med simplify(%). k 2 j, j=1 k=j 1

2 Funktioner Maple kan hantera inte bara uttryck som ovan utan även funktioner. Dessa kan definieras på flera olika sätt. Det för våra ändamål enklaste påminner om beteckningen x f(x), vilken ju används i matematiken som synonym till y = f(x). 1.5 Ge kommandot f:= x-> exp(x)-sin(x); Beräkna först f(0), f(1) och f(2) genom att ge kommandona f(0);,f(1); och f(2);. Försök sedan med f(a); och f(y+z);. 1.6 Lägg här märke till en viktig skillnad. Om vi ger ett värde till f genom tilldelningen f:=exp(x)-sin(x); så är värdet av f ett uttryck med variabeln x inbyggt. Gör detta och beräkna diff(f,x); respektive diff(f,y);. Om vi i stället ger f ett värde genom f:=x->exp(x)- sin(x); så är värdet en funktion. Försök nu med diff(f(x),x); och diff(f(y),y); samt diff(f,x);. Se även vad diff(f,y) nu ger för resultat. Funktioner är mycket mer flexibla, men ibland något mer svårhanterliga än enkla uttryck. Det finns lyckligtvis ett enkelt sätt att göra om ett uttryck till en funktion, nämligen genom att använda unapply. 1.7 Antag till exempel att vi vill ha en funktion som beräknar potenssumman S (3) k 3. Det kan vi få genom k=1 potsum3 := sum(kˆ3,k=1..n); potsum3 := simplify(potsum3); potsum3 := unapply(potsum3,n); n = (Blir det protester, så beror det förmodligen på att variabeln k fått ett värde vid någon tidigare operation. Ge i så fall kommandot k:= k ; för att ta bort detta värde.) Det går nu att skriva potsum3(7), men vi kan även sätta in symboliska variabler, potsum3(j) eller potsum3(n+m). Vad blir factor(potsum3(n))? Svar: Jämför med svaret till övning 1.39 b. Lägg märke till att potsum3 byter typ från uttryck till funktion utan några som helst protester. Rekursionsekvationer Maple har en inbyggd lösare för rekursionsekvationer, nämligen proceduren rsolve. Den klarar nästan alla de ekvationer vi sett i kursen och kan också lösa begynnelsevärdesproblem. Dock kommer inte alltid de explicita svaren ut på en form som vi direkt förstår. 1.8 Fibonaccitalen (med F 0 = 1, F 1 = 1) får man genom kommandot rsolve({f(n)=f(n-1)+f(n-2),f(0)=1,f(1)=1},f(n)); Tillverka en funktion Fibonacci med hjälp av ovanstående och unapply. Skriv t ex Fibonacci:=unapply(%,n);. Beräkna och förenkla Fibonacci(15). Svar:. 2

3 Maple kan klara många rekursionsekvationer, men inte alla. 1.9 Försök att lösa några av problemen 2.5, 2.7, 2.11, 2.14, 2.15cde med Maple. Den som försöker med 2.11 får ett svar som innehåller en funktion Γ (i Maple GAMMA) som för våra behov är en variant av fakultetsfunktionen, k! = Γ(k + 1). Vad är det för väsentlig skillnad mellan högerleden i 2.15 d och e? Svar: 1.10 (I mån av tid.) Lös 2.13 och Förvandla i 2.13 lösningen till en funktion binkoeff av variablerna n och k. Vad blir binkoeff(10,2)? Svar:. Gör ett nytt försök att lösa 2.13 men skriv först assume(n>0,n,integer);. Vad blir nu binkoeff(10,2)? Svar:. Jämför med svaret i övningssamlingen. Likvärdiga? Maple klarar också lätt andra ordningens lineära ekvationer med konstanta koefficienter (I mån av tid.) Lös problemen 2.26bdfg, 2.32abe med Maple. Bilder av den komplexa exponential-, sinus- och logaritmfunktionen 1.12 (I mån av tid.) Definiera funktionen genom f := t -> exp(s*t); s := sigma + I*omega; evalc(f(t)); Re(f(t)); assume(sigma, real); assume(omega, real); assume(t,real); Re(f(t)); Im(f(t)); Här är I den imaginära enheten, dvs Iˆ2 = -1. Funktionen evalc (evaluate complex) försöker dela upp sitt argument i real- och imaginärdel, varvid den antar att alla variabler som inte har ett värde är reella. Det framgår hur man tar fram realdel och imaginärdel. Andra operationer kan inte veta om t ex σ, ω och t är reella eller ej, men man kan tala om det med assume. (Notera ovan att ingen beräkning av realdelen Re(f(t)) ägde rum innan assume.) Variabler om vilka man gjort en förutsättning med assume visas av Maple upp med ett tilde. Studera också additionally genom kommandot?additionally. Om man glömt vilka antaganden man gjort för en viss variabel går det att bli uppdaterad via about, t ex about(sigma);. För att kunna rita måste vi ge σ och ω numeriska värden. Med kommandot plot kan man rita såväl parameterkurvor som funktionskurvor (I mån av tid.) Slå in kommandona sigma := -0.3; omega := 5; plot([re(f(t)),im(f(t)),t=0..10],scaling=constrained); plot(re(f(t)),t=0..10,scaling=constrained); plot(im(f(t)),t=0..10,scaling=constrained); 3

4 (scaling=constrained medför att Maple använder samma skala på horisontell och vertikal axel. Utelämnar man det kan kurvan bli felskalad. Man kan också ändra detta i menyn i bildfönstret under Projection.) För att kunna rita vissa tredimensionella figurer måste man ladda in en grafikmodul i Maple (I mån av tid.) Rita en rymdkurva med kommandona with(plots); spacecurve([t,re(f(t)),im(f(t)),t=0..10],scaling=constrained); spacecurve([t,re(f(t)),im(f(t)),t=0..10],scaling=constrained, orientation=[0,90],axes=normal); Lägg märke till att man kan vrida de tredimensionella figurerna i bildfönstret. Håll vänsterknappen nedtryckt i bildfönstret och flytta musen. Bilden ritas om då man trycker på mittknappen. Vill ni ha en mindre kantig kurva så lägg till numpoints=100, innan scaling. Jämför den sist ritade kurvan med den först ritade i förra övningen. Vad skiljer? Svar: Vi ska nu studera real- och imaginärdelen samt absolutbeloppet av sinusfunktionen. Notera att sinusfunktionen inte längre är uppåt begränsad av 1. Är den begränsad av någon annan konstant? Svar: Knappa in kommandona assume(x,real,y,real); z:=x+i*y; plot3d(re(sin(z)),x=0..13,y=0..2,orientation=[-112,68],axes=normal); plot3d(im(sin(z)),x=0..13,y=0..2,orientation=[-112,68],axes=normal); plot3d(abs(sin(z)),x=0..13,y=0..2,orientation=[-112,68],axes=normal, grid=[30,30]); Verkar sin z begränsad? Peka gärna på bilderna med musen. Håll vänster musknapp nedtryckt och rör på musen. Med höger musknapp nedtryckt kommer du åt flera inställningar. Vi ska nu studera logaritmfunktionen och försöka se vilken gren som Maple använder Skriv följande kommandon assume(r,real,t,real); x:=r*cos(t);y:=r*sin(t); z:=x+i*y; plot3d([x,y,re(log(z))],r=0..1,t=-pi..pi,axes=normal); plot3d([x,y,im(log(z))],r=0..1,t=-pi pi-0.001,axes=normal, orientation=[-52,55],shading=zhue); plot3d([x,y,argument(z)],r=0..1,t=-pi pi-0.001,axes=normal, orientation=[-52,55],shading=zhue); Vilken gren använder Maple? Svar:. Rita Im(log(z)) om log betyder naturliga grenen (0 < arg z < 2π). Använd funktionen argument. Maplekommando: 4

5 Komplexa funktioner Vi skall låta Maple kontrollera om ett antal funktioner är analytiska. Metoden är att använda Cauchy-Riemanns differentialekvationer. Vi skall nu definiera funktioner av z = x+iy, där x och y är reella, och kontrollera Cauchy-Riemann Sätt f(z) = z 3 2z och beräkna u = Re f och v = Im f. Vi kan nu upprepa proceduren med ett antal funktioner av z Kontrollera om f(z) = sin(z), f(z) = 1/(z 2 2z + 3), f(z) = z (med conjugate) och f(z) = z 3 är analytiska. Se efter vilka u och v blir. Funktionerna visade sig vara analytiska medan funktionerna inte var analytiska. Två slumpvis valda funktioner u(x, y) och v(x, y) ger praktiskt taget aldrig en analytisk funktion u + iv (I mån av tid.) Välj några funktionspar u(x, y), v(x, y) och låt Maple testa om de uppfyller Cauchy-Riemanns ekvationer. Enligt teorin är en funktion u(x, y) på ett enkelt sammanhängande område realdel (eller imaginärdel) till en analytisk funktion precis då den är en harmonisk funktion. I så fall kan man genom att lösa Cauchy-Riemanns ekvationer för v bestämma motsvarande analytiska funktion Låt u(x, y) = x 3 3xy 2. Kontrollera med Maple att u xx + u yy = 0. Bestäm sedan v genom att lösa { vx = u y v y = u x genom att integrera den första ekvationen med avseende på x och sätta in i den andra. Vid denna integration skall man få en integrationskonstant (här kallad h(y)) som beror på y Sätt sedan f = u + iv och bestäm f som funktion av z Antag att en oändligt lång laddad ledare ligger längs z-axeln. Laddningen antas vara likadan överallt. Det elektrostatiska fältet runt ledaren är då detsamma i varje plan vinkelrät mot z-axeln. Vi kan därför studera kraftfältet i xy-planet. Från 1 Coulombs lag fås via en generaliserad enkelintegral att kraftfältet ges av x 2 (x, y). + y2 Här saknas en proportionalitetsfaktor, som vi avsiktligt utelämnar i detta fall. Om en likadan men motsatt laddad ledare skär xy-planet i (2, 0) så ges det sammanlagda fältet av Som potential duger (P, Q) = 1 x 2 + y 2 (x, y) 1 (x 2) 2 (x 2, y) + y2 U = 1 2 ln(x2 + y 2 ) 1 2 ln((x 2)2 + y 2 ) 5

6 Kontrollera att U x = P och U y = Q. Rita med hjälp av Maple 20 nivåkurvor till U då 1 x 3, 3 y 3. Lämpligt kommando kan vara contourplot med optionerna contours, grid, color och scaling=constrained. I en punkt på en ekvipotentialkurva till U, dvs i en punkt på en nivåkurva till U, är grad U vinkelrät mot nivåkurvan. Men grad U = (P, Q). Därför skär kraftlinjerna nivåkurvorna under rät vinkel. Rita ut 20 kraftlinjer i den figur du redan ritat. Via with(plots) och display kan två separata bilder ritas samtidigt. 6

Datorlaboration 1. 1 Komplexa funktioner som avbildningar (kan göras i slutet av läsvecka 1)

Datorlaboration 1. 1 Komplexa funktioner som avbildningar (kan göras i slutet av läsvecka 1) Funktionsteori, vt 207 Syftet med datorövningen Datorlaboration Övningens syftar till att ge fördjupad förståelse för några viktiga begrepp och att ge ett smakprov på hur ett datoralgebrasystem kan användas

Läs mer

Komplex Analys. Datorlaboration 1. av Sven Spanne. Reviderad ht av Anders Holst

Komplex Analys. Datorlaboration 1. av Sven Spanne. Reviderad ht av Anders Holst Komplex Analys Datorlaboration 1 av Sven Spanne Reviderad ht 2005 av Anders Holst Inledning Syftet med datorövningen Övningens ändamål är att ge ett smakprov på hur ett datoralgebrasystem kan användas

Läs mer

Funktionsteori Datorlaboration 1

Funktionsteori Datorlaboration 1 Fuktiosteori Datorlaboratio 1 Fuktiosteori vt1 2013 Rekursiosekvatioer och komplex aalys Syftet med datorövige Öviges ädamål är att ge ett smakprov på hur ett datoralgebrasystem ka avädas för att att lösa

Läs mer

Tillämpad matematik. Lineära system. LAB1

Tillämpad matematik. Lineära system. LAB1 Tillämpad matematik. Lineära system. LAB1 20.02, 10.00-12.00 MH:230, 231 21.02, 10.00-12.00 MH:230 21.02, 13.15-15.15 MH:230 22.02, 10.00-12.00 MH:230 1 Tillämpad matematik. Lineära system. LAB1 Datörövning

Läs mer

Extra datorövning med Maple, vt2 2014

Extra datorövning med Maple, vt2 2014 Extra datorövning med Maple, vt2 2014 FMA430 Flerdimensionell analys Denna datorövning är avsett för självstudie där vi skall lösa uppgifter i övningshäftet med hjälp av Maple. Vi skall beräkna partiella

Läs mer

Datorövning 2 med Maple

Datorövning 2 med Maple Datorövning 2 med Maple Flerdimensionell analys, ht 2008, Lp1 15 september 2008 Under denna datorövning skall vi lösa uppgifter i övningshäftet med hjälp av Maple. Vi skall beräkna partiella derivator,

Läs mer

Instuderingsfrågor i Funktionsteori

Instuderingsfrågor i Funktionsteori Instuderingsfrågor i Funktionsteori Anvisningar. Avsikten med dessa instuderingsfrågor är att ge Dig möjlighet att fortlöpande kontrollera att Du någorlunda behärskar kursens teori. Om Du märker att Du

Läs mer

Introduktion till Maple

Introduktion till Maple Introduktion till Maple Allmänt Maple är ett mycket mångsidigt program, och man kan ägna mycket tid åt att utforska dess användningsmöjligheter. Dess mångsidighet gör det samtidigt svårare att använda

Läs mer

Användarmanual till Maple

Användarmanual till Maple Användarmanual till Maple Oktober, 006. Ulf Nyman, Hållfasthetslära, LTH. Introduktion Maple är ett mycket användbart program för symboliska och i viss mån numeriska beräkningar. I Maple finns ett stort

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera

Läs mer

MAPLE MIKAEL STENLUND

MAPLE MIKAEL STENLUND MAPLE MIKAEL STENLUND. Introduktion I dina inlämningsuppgifter skall ett program som heter Maple användas för att lösa ett antal matematiska problem. Maple är ett symbolhanterande program som har ett antal

Läs mer

Mathematica. Utdata är Mathematicas svar på dina kommandon. Här ser vi svaret på kommandot från. , x

Mathematica. Utdata är Mathematicas svar på dina kommandon. Här ser vi svaret på kommandot från. , x Mathematica Första kapitlet kommer att handla om Mathematica det matematiska verktyg, som vi ska lära oss hantera under denna kurs. Indata När du arbetar med Mathematica ger du indata i form av kommandon

Läs mer

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015 SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt

Läs mer

k=0 kzk? (0.2) 2. Bestäm alla holomorfa funktioner f(z) = f(x + iy) = u(x, y) + iv(x, y) sådana att u(x, y) = x 2 2xy y 2. 1 t, 0 t 1, f(t) =

k=0 kzk? (0.2) 2. Bestäm alla holomorfa funktioner f(z) = f(x + iy) = u(x, y) + iv(x, y) sådana att u(x, y) = x 2 2xy y 2. 1 t, 0 t 1, f(t) = LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Funktionsteori 5 9 kl 4 9 Hjälpmedel: Bifogat formelblad. Lösningarna skall vara försedda med ordentliga motiveringar. Skriv fullständiga meningar och

Läs mer

Laboration: Grunderna i Matlab

Laboration: Grunderna i Matlab Laboration: Grunderna i Matlab Att arbeta i kommandofönstret och enkel grafik Den här delen av laborationen handlar om hur man arbetar med kommandon direkt i Matlabs kommandofönster. Det kan liknas vid

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de

Läs mer

Matematik 1. Maplelaboration 1.

Matematik 1. Maplelaboration 1. Matematiska Institutionen, K T H. B. Krakus Matematik. Maplelaboration. Före laborationen: Bekanta Dig med innehållet på sid 3. Ögna igenom de genomräknade exemplen 8 på sid 4 7. Använd PoP (papper och

Läs mer

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Måndagen den 16 mars 2015 SF1626 Flervariabelanalys Bedömningskriterier till tentamen Måndagen den 16 mars 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det

Läs mer

Inociell Lösningsmanual Endimensionell analys. E. Oscar A. Nilsson

Inociell Lösningsmanual Endimensionell analys. E. Oscar A. Nilsson Inociell Lösningsmanual Endimensionell analys E. Oscar A. Nilsson January 31, 018 Dan Brown "The path of light is laid, a secret test..." Tillägnas Mina vänner i Förord Detta är en inociell lösningsmanual

Läs mer

Datorövning 2 med Maple, vt

Datorövning 2 med Maple, vt Flerdimensionell analys, vt 1 2009 Datorövning 2 med Maple, vt 1 2009 Under denna datorövning skall vi lösa uppgifter i övningshäftet med hjälp av Maple. Vi skall beräkna partiella derivator, transformera

Läs mer

LABORATION I MAPLE MIKAEL STENLUND

LABORATION I MAPLE MIKAEL STENLUND LABORATION I MAPLE MIKAEL STENLUND. Introduktion I laborationen skall ett program som heter Maple användas för att lösa ett antal matematiska problem. Maple är ett symbolhanterande program som har ett

Läs mer

Kontrollskrivning KS1T

Kontrollskrivning KS1T Kontrollskrivning KS1T Matematik 2 Kurskod HF100 Skrivtid 8:15-11:15 måndagen 9 februari 2009 Tentamen består av 4 sidor Hjälpmedel: Utdelat formelblad. Räknedosa. Formelsamling Korrekt löst uppgift ger

Läs mer

Matematiska Institutionen, K T H. B. Krakus. Matematik 1. Maplelaboration 2.

Matematiska Institutionen, K T H. B. Krakus. Matematik 1. Maplelaboration 2. Matematiska Institutionen, K T H. B. Krakus Matematik. Maplelaboration. . Kommandon, funktioner och konstanter i denna laboration: expand(uttryck) simplify(uttryck) utvecklar uttrycket. T.ex. expand((x+)*(x-)^);

Läs mer

Technology Management Mapleövning 3

Technology Management Mapleövning 3 Technology Management Mapleövning 3 Namn: Personnummer: Allmänt Denna andra övning kommer huvudsakligen att handla om funktioner av mer än en variabel. Inledningen av dagens pass att ägnas dock åt resonans

Läs mer

Complex numbers. William Sandqvist

Complex numbers. William Sandqvist Complex numbers Hur många lösningar har en andragradsekvation? y = x 2 1 = 0 Två lösningar! Kommer Du ihåg konjugatregeln? Svaret kan ju lika gärna skrivas: x 1 = 1 x2 = + 1 Hur många lösningar har den

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

Lösningsmetodik för FMAF01: Funktionsteori

Lösningsmetodik för FMAF01: Funktionsteori Lösningsmetodik för FMAF0: Funktionsteori Johannes Larsson, I2 0 mars 204 Allmänt Detta är lösningsmetoder för de vanligaste tentauppgifterna, grupperade efter hur ofta de kommer på tentan och därmed också

Läs mer

Datorövning 1 med Maple

Datorövning 1 med Maple Flerdimensionell analys, ht 2011, Lp1 22 augusti 2011 Datorövning 1 med Maple Under denna datorövning skall vi lösa uppgifter från övningshäftet med hjälp av Maple. Vi skall rita kurvor och ytor. Syftet

Läs mer

Blixtkurs i komplex integration

Blixtkurs i komplex integration Blixtkurs i komplex integration Sven Spanne 8 oktober 996 Komplex integration Vad är en komplex kurvintegral? Antag att f z är en komplex funktion och att är en kurva i det komplexa talplanet. Man kan

Läs mer

23 Konservativa fält i R 3 och rotation

23 Konservativa fält i R 3 och rotation Nr 23, 7 maj -5, Amelia 2 23 Konservativa fält i R 3 och rotation 23. Potential 23.. Två dimensioner (2D) I två dimensioner definierade vi ett vektorfält som konservativt om kurvintegralen av fältet endast

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

Läsanvisningar till kapitel 3

Läsanvisningar till kapitel 3 Kapitel 3 Läsanvisningar till kapitel 3 Den moderna vägen till holomorficitet dess konsekvenser Vi ska i detta kapitel definiera ett begrepp som kallas holomoficitet, det kommer visa sig att vara precis

Läs mer

Laboration: Grunderna i MATLAB

Laboration: Grunderna i MATLAB Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar

Läs mer

Tentamen i Komplex analys, SF1628, den 21 oktober 2016

Tentamen i Komplex analys, SF1628, den 21 oktober 2016 Institutionen för matematik KTH Håkan Hedenmalm Tentamen i Komplex analys, SF68, den oktober 06 Skrivtid 4.00-9.00. Inga hjälpmedel är tillåtna. Skriv tydliga lösningar med utförliga motiveringar. För

Läs mer

Kursstart. Kursen startar tisdagen den 10 oktober kl i sal MA236 i MIT-huset. Schemat kan erhållas från matematiska institutionens hemsida.

Kursstart. Kursen startar tisdagen den 10 oktober kl i sal MA236 i MIT-huset. Schemat kan erhållas från matematiska institutionens hemsida. Kursinformation för Komplex analys, 3p, ht 2006. Civ.ing. (Teknisk Fysik) Ingår som ett moment i kursen Fysikens matematiska metoder, 10p. Ulf Backlund Kursstart Kursen startar tisdagen den 10 oktober

Läs mer

de uppgifter i) Under m-filerna iv) Efter samlade i en mapp. Uppgift clear clc Sida 1 av 6

de uppgifter i) Under m-filerna iv) Efter samlade i en mapp. Uppgift clear clc Sida 1 av 6 Inlämningsuppgift 2, HF1006.. (MATLAB) INLÄMNINGSUPPGIFT 2 (MATLAB) Kurs: Linjär algebra och analys Del2, analys Kurskod: HF1006 Skolår: 2018/19 Redovisas under en av de tre schemalaggs gda redovisningstillfällen

Läs mer

Matlab har en enkel syntax. Inga deklarationer behövs och det finns i princip en enda 1 datatyp, nämligen matriser.

Matlab har en enkel syntax. Inga deklarationer behövs och det finns i princip en enda 1 datatyp, nämligen matriser. Innehåll Inledning Denna datorövning ger en introduktion till Matlab ystemet används här som en avancerad räknedosa med inbyggda matrisoperationer och grafik Ha Matlab Primer tillgänglig Förbered dig genom

Läs mer

Uppgift 1. (SUBPLOT) (Läs gärna help, subplot innan du börjar med uppgiften.) 1 A) Testa och förklara hur nedanstående kommandon fungerar.

Uppgift 1. (SUBPLOT) (Läs gärna help, subplot innan du börjar med uppgiften.) 1 A) Testa och förklara hur nedanstående kommandon fungerar. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Kurskod: HF1006, HF1008 Skolår: 2016/17 armin@kth.se www.sth.kth.se/armin Redovisas under sista två (av totalt fem) labbövningar i Analys-delen. Preliminärt:

Läs mer

Datorövning 2. - Tag med lärobok och övningshäfte till övningen. - Fyll före övningenen i svaren på frågorna på sidan 5 i denna handledning.

Datorövning 2. - Tag med lärobok och övningshäfte till övningen. - Fyll före övningenen i svaren på frågorna på sidan 5 i denna handledning. Kontinuerliga system vt 2015 Datorövning 2 Inledning Syftet med denna datorövning är att du med hjälp av Maple skall få ökad förståelse av vissa begrepp presenterade i kapitel H. Exempelvis behandlas skalärprodukt,

Läs mer

Introduktion till Matlab

Introduktion till Matlab Introduktion till Matlab Analys och Linjär Algebra, del A, K1/Kf1/Bt1, ht10 1 Inledning Ni kommer använda Matlab i nästan alla kurser i utbildningen. I matematikkurserna kommer vi ha studio-övningar nästan

Läs mer

Laborationer i kursmomentet Datoranvändning E1. Laboration nr 3: Matematikverktyget Maple

Laborationer i kursmomentet Datoranvändning E1. Laboration nr 3: Matematikverktyget Maple Sid 1 Laborationer i kursmomentet Datoranvändning E1 http://www.etek.chalmers.se/~hallgren/eda/ : Matematikverktyget Maple 1 Introduktion 1992-1997 Magnus Bondesson 1998 och 99-09-16 Thomas Hallgren Syftet

Läs mer

Tentamen Matematisk grundkurs, MAGA60

Tentamen Matematisk grundkurs, MAGA60 MATEMATIK Karlstads universitet 2010-11-02, kl 8.15-13.15 Hjälpmedel: Inga Ansvarig lärare: Håkan Granath Tel: 2181, alt. 0735-37 37 34 Tentamen Matematisk grundkurs, MAGA60 För uppgift 1 skall endast

Läs mer

Gamla tentemensuppgifter

Gamla tentemensuppgifter Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi

Läs mer

Texten är en omarbetning av en text skriven av Rikard Bögvad för kursen Matematik I (30 hp).

Texten är en omarbetning av en text skriven av Rikard Bögvad för kursen Matematik I (30 hp). Introduktion Med hjälp av dator kan man utföra omfattande matematiska beräkningar, men också få datorn att producera lösningar på icke-triviala uppgifter. I det här momentet av kursen ska vi bekanta oss

Läs mer

TATM79: Föreläsning 3 Komplexa tal

TATM79: Föreläsning 3 Komplexa tal TATM79: Föreläsning 3 Komplexa tal Johan Thim 22 augusti 2018 1 Komplexa tal Definition. Det imaginära talet i uppfyller att i 2 = 1. Detta är alltså ett tal vars kvadrat är negativ. Det kan således aldrig

Läs mer

3.3. Symboliska matematikprogram

3.3. Symboliska matematikprogram 3.3. Symboliska matematikprogram Vi skall nu övergå till att behandla de vanligaste matematikprogrammen, och börja med de symboliska. Av dessa kan både Mathematica och Maple användas på flere UNIX-datorer.

Läs mer

Moment Viktiga exempel Övningsuppgifter Ö , Ö1.25, Ö1.55, Ö1.59

Moment Viktiga exempel Övningsuppgifter Ö , Ö1.25, Ö1.55, Ö1.59 Moment.0-. Viktiga exempel Övningsuppgifter Ö.9-., Ö.5, Ö.55, Ö.59 Funktioner Definition. En funktion y = f(x) är ett samband mellan variablerna x och y, sådant att ett x-värde motsvaras av högst ett värde

Läs mer

Explorativ övning 7 KOMPLEXA TAL

Explorativ övning 7 KOMPLEXA TAL Explorativ övning 7 KOMPLEXA TAL Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet då man försökte lösa kvadratiska

Läs mer

LMA515 Matematik, del B Sammanställning av lärmål

LMA515 Matematik, del B Sammanställning av lärmål LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)

Läs mer

Introduktion till MATLAB

Introduktion till MATLAB 29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna

Läs mer

e x x + lnx 5x 3 4e x (0.4) x 0 e 2x 1 a) lim (0.3) b) lim ( 1 ) k. (0.3) c) lim 2. a) Lös ekvationen e x = 0.

e x x + lnx 5x 3 4e x (0.4) x 0 e 2x 1 a) lim (0.3) b) lim ( 1 ) k. (0.3) c) lim 2. a) Lös ekvationen e x = 0. LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B 00 0 kl 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. Lämna tydliga svar om så är

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.

Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I. Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4

Läs mer

6 Derivata och grafer

6 Derivata och grafer 6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000

Läs mer

Introduktion till Maple

Introduktion till Maple Introduktion till Maple Allmänt Ett modernt datoralgebrasystem har som huvudfunktion att göra symboliska beräkningar, i motsats till numeriska. Det kan utföra algebraiska manipulationer och förenklingar,

Läs mer

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5.

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den 3 november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1 a) Lös den diofantiska ekvationen 9x + 11y 00 b) Ange alla lösningar x, y) sådana

Läs mer

Introduktion till Komplexa tal

Introduktion till Komplexa tal October 8, 2014 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim 9 september 05 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa

Läs mer

x sin(x 2 )dx I 1 = x arctan xdx I 2 = x (x + 1)(x 2 2x + 1) dx

x sin(x 2 )dx I 1 = x arctan xdx I 2 = x (x + 1)(x 2 2x + 1) dx TM-Matematik Mikael Forsberg XXX-XXX DistansAnalys Envariabelanalys Distans ma034a ot-nummer 3 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

Referens :: Komplexa tal

Referens :: Komplexa tal Referens :: Komplexa tal Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. Definition av komplexa tal Definition 1. Ett komplext tal z är ett tal på formen

Läs mer

Lektionsblad 9, tis 16/2 2010

Lektionsblad 9, tis 16/2 2010 Lektionsblad 9, tis 16/2 2010 Först en gång till optimering med bivillkor. Lös uppgifterna 4.25 (om du har problem med denna väldigt typiska uppgift, så studera även lösningen till 4.24), 4.26 (nästan

Läs mer

Datorövning 1 med Maple, vt

Datorövning 1 med Maple, vt Flerdimensionell analys, vt 1 2010 Datorövning 1 med Maple, vt 1 2010 Under denna datorövning skall vi lösa uppgifter från övningshäftet med hjälp av Maple. Vi skall rita kurvor och ytor. Syftet är att

Läs mer

Tekniska Högskolan i Linköping Institutionen för Datavetenskap (IDA) Torbjörn Jonsson Plot och rekursion

Tekniska Högskolan i Linköping Institutionen för Datavetenskap (IDA) Torbjörn Jonsson Plot och rekursion Tekniska Högskolan i Linköping Institutionen för Datavetenskap (IDA) Torbjörn Jonsson 2010-11-19 Plot och rekursion I denna laboration skall du lära dig lite om hur plot i MatLab fungerar samt använda

Läs mer

Blandade A-uppgifter Matematisk analys

Blandade A-uppgifter Matematisk analys TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x

Läs mer

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk

Läs mer

Harmoniska funktioner

Harmoniska funktioner Harmoniska funktioner Lars Hörmander vt 98 Definitioner och grundläggande egenskaper Enligt definitionen är en analytisk funktion f i Ω C en C lösning till Cauchy-Riemanns differentialekvation f z =. Enligt

Läs mer

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1 Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall

Läs mer

Att undervisa och studera matematik med datoralgebraprogrammet Maxima. Per Jönsson och Thomas Lingefjärd

Att undervisa och studera matematik med datoralgebraprogrammet Maxima. Per Jönsson och Thomas Lingefjärd Att undervisa och studera matematik med datoralgebraprogrammet Maxima Per Jönsson och Thomas Lingefjärd Malmö och Göteborg 2009 1 Kort om Maxima Begreppet CAS (computer algebra system) eller på svenska

Läs mer

Komplexa tal: Begrepp och definitioner

Komplexa tal: Begrepp och definitioner UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är

Läs mer

Technology Management Mapleövning 1 och 2

Technology Management Mapleövning 1 och 2 Technology Management Mapleövning 1 och 2 Namn: Personnummer: Allmänt Maple är ett kraftfullt program för både symboliska och numeriska beräkningar Att det kan räkna symboliskt betyder i korthet att det

Läs mer

Planering för Matematik kurs E

Planering för Matematik kurs E Planering för Matematik kurs E Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs E Antal timmar: 60 (0 + 0) I nedanstående planeringsförslag tänker vi oss att E-kursen studeras på 60 klocktimmar.

Läs mer

Kursens mål är, förutom faktakunskaper om kursinnehållet, att ge:

Kursens mål är, förutom faktakunskaper om kursinnehållet, att ge: Inlämningsuppgifter i Funtionsteori För att man sa bli godänd på ursen rävs att såväl tentamen som inlämningsuppgifter och laborationer är godända. Inlämningsuppgifterna är alltså obligatorisa. Enligt

Läs mer

Sidor i boken KB 6, 66

Sidor i boken KB 6, 66 Sidor i boken KB 6, 66 Funktioner Ordet funktion syftar inom matematiken på en regel som innebär att till varje invärde associeras ett utvärde. Ofta beskrivs sambandet mellan invärde och utvärde med en

Läs mer

Laboration 2, M0043M, HT14 Python

Laboration 2, M0043M, HT14 Python Laboration 2, M0043M, HT14 Python Laborationsuppgifter skall lämnas in senast 19 december 2014. Förberedelseuppgifter Läs igenom teoridelen. Kör teoridelens exempel. Teoridel 1 Att arbeta med symboliska

Läs mer

KRAMERS-KRONIGS DISPERSIONSRELATIONER

KRAMERS-KRONIGS DISPERSIONSRELATIONER Bo E. Sernelius Kramers-Kronigs Dispersionsrelationer 33 KRAMERS-KRONIGS DISPERSIONSRELATIONER I detta kapitel diskuterar vi vad som händer om en pol finns på integrationskonturen och vi härleder Kramers-Kronigs

Läs mer

TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson. Introduktion till MATLAB

TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson. Introduktion till MATLAB TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson Introduktion till MATLAB Introduktion till MATLAB sid. 2 av 12 Innehåll 1 Vad är MATLAB? 3 1.1 Textens syfte..................................... 3 2 Grundläggande

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

Flervariabelanalys, inriktning bildbehandling, datorövning 1

Flervariabelanalys, inriktning bildbehandling, datorövning 1 Matematiska institutionen, LTH, 20 november 2003 Flervariabelanalys, inriktning bildbehandling, datorövning 1 Laborationen består av två delar. I den första använder vi det numeriska beräkningsprogrammet

Läs mer

Fri programvara i skolan datoralgebraprogrammet Maxima

Fri programvara i skolan datoralgebraprogrammet Maxima Per Jönsson & Thomas Lingefjärd Fri programvara i skolan datoralgebraprogrammet Maxima I takt med att priserna sjunker utrustar allt fler skolor sina elever med små bärbara datorer. Detta innebär nya och

Läs mer

Vektorgeometri och funktionslära

Vektorgeometri och funktionslära Vektorgeometri och funktionslära Xantcha 009 Del A: Beräkningsdel Räkningar behöver inte redovisas. Samtliga uppgifter måste vara korrekta om tentamen skall godkännas (möjligen kan något slarvfel tolereras),

Läs mer

SF1626 Flervariabelanalys

SF1626 Flervariabelanalys Föreläsning 3 Institutionen för matematik KTH VT 2018 Previously on Flervariabel 1 Analytisk geometri i R n, kap 10 1. Topologiska begrepp a. Omgivning b. Randpunkter, Inre punkter c. Öppen mängd, Sluten

Läs mer

Introduktion till Matlab

Introduktion till Matlab Introduktion till Matlab Inledande matematik, I1, ht10 1 Inledning Detta är en koncis beskrivning av de viktigaste delarna av Matlab. Till en början är det enkla beräkningar och grafik som intresserar

Läs mer

Laboration 3. Funktioner, vektorer, integraler och felskattning

Laboration 3. Funktioner, vektorer, integraler och felskattning 1 SF1520 K2 HT2014 NA 21 december 2015 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,

Läs mer

För ett andra ordningens system utan nollställen, där överföringsfunktionen är. ω 2 0 s 2 + 2ζω 0 s + ω0

För ett andra ordningens system utan nollställen, där överföringsfunktionen är. ω 2 0 s 2 + 2ζω 0 s + ω0 Övning 5 Introduktion Varmt välkomna till femte övningen i glerteknik AK! Håkan Terelius hakante@kth.se petition lativ dämpning För ett andra ordningens system utan nollställen, där överföringsfunktionen

Läs mer

Läsanvisningar till kapitel Komplexa tals algebraiska struktur

Läsanvisningar till kapitel Komplexa tals algebraiska struktur Läsanvisningar till kapitel 1.1. Jag tänkte bara kort berätta hur strukturen hos dessa läsanvisningar kommer vara innan vi kör gång på allvar. Jag kommer i dessa läsanvisningar säga vad jag anser är viktigt

Läs mer

Laboration 3. Funktioner, vektorer, integraler och felskattning

Laboration 3. Funktioner, vektorer, integraler och felskattning 1 SF1520 VT2017 NA, KTH 16 januari 2017 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,

Läs mer

Lösningsförslag för omtentamen i Komplex analys, SF1628, 21/

Lösningsförslag för omtentamen i Komplex analys, SF1628, 21/ Institutionen för matematik KTH Håkan Hedenmalm Lösningsförslag för omtentamen i Komplex analys, SF1628, 21/12 2016 Skrivtid 08.00-13.00. Inga hjälpmedel är tillåtna. Skriv tydliga lösningar med utförliga

Läs mer

TMV036 Analys och Linjär Algebra K Kf Bt, del C

TMV036 Analys och Linjär Algebra K Kf Bt, del C MATEMATIK Hjälpmedel: Inga Chalmers tekniska högskola Datum: -- kl 4 8 Tentamen Telefonvakt: Richard Lärkäng tel 3-8834 TMV36 Analys och Linjär Algebra K Kf Bt, del C Tentan rättas och bedöms anonymt Skriv

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.

Läs mer

6. Räkna ut integralen. z dx dy dz,

6. Räkna ut integralen. z dx dy dz, Institutionen för Matematik, TH Flervariabelanalys SF626. Tentamen den 23 november 29 kl. 8-3 Tillåtet hjälpmedel är Beta Mathematics Handbook. Tydliga lösningar med fullständiga meningar och utförliga

Läs mer

Mer om funktioner och grafik i Matlab

Mer om funktioner och grafik i Matlab CTH/GU 2/22 Matematiska vetenskaper Inledning Mer om funktioner och grafik i Matlab Först skall vi se lite på funktioner som redan finns i Matlab, (elementära) matematiska funktioner som sinus och cosinus

Läs mer

Allmänt om Mathematica

Allmänt om Mathematica Allmänt om Mathematica Utvecklades av Wolfram Research (Stephen Wolfram) på 80-talet Programmet finns bl.a. till Windows, Mac OS X, Linux. Finns (åtminstone) installerat i ASA B121 (Stansen), i matematik

Läs mer

SAMMANFATTNING TATA41 ENVARIABELANALYS 1

SAMMANFATTNING TATA41 ENVARIABELANALYS 1 SAMMANFATTNING TATA4 ENVARIABELANALYS LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 04 Senast reviderad: 05-06-0 Författare: Viktor Cheng INNEHÅLLSFÖRTECKNING Diverse knep...3

Läs mer

Funktioner. Räta linjen

Funktioner. Räta linjen Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer