Introduktion till Maple
|
|
- Agneta Bergman
- för 6 år sedan
- Visningar:
Transkript
1 Introduktion till Maple Allmänt Ett modernt datoralgebrasystem har som huvudfunktion att göra symboliska beräkningar, i motsats till numeriska. Det kan utföra algebraiska manipulationer och förenklingar, lösa ekvationssystem, integrera och derivera symboliskt och lösa dierentialekvationer. Dessutom kan de esta sådana system också utföra numeriska beräkningar och har kraftfulla graska funktioner. Behöver man mer omfattande numeriska beräkningar använder man sig dock hellre av Matlab eller specialskrivna numeriska program. Maple är ett av de ledande datoralgebrasystemen. Några av de starkaste konkurrenterna är Maxima, Mathematica, Macsyma och Reduce. Maxima är tillgängligt under GNU-licens. LTH har en generell licens för Maple och systemet bör därför nnas tillgängligt på studentdatorer. Det kan köras från de esta vanliga operativsystem. Maple är ett mycket mångsidigt program, och man kan ägna mycket tid åt att utforska dess användningsmöjligheter. Dess mångsidighet gör det samtidigt svårare att använda än t. ex. Matlab. Liksom de esta programpaket uppgraderas Maple relativt ofta. Versionerna skiljer sig något åt, och anvisningarna nedan fungerar bra för Maple 13 Worksheet Mode. Mer information om Maple än vad som ryms i denna korta introduktion kan man nna i det inbyggda hjälpsystemet samt i en stort antal skrifter och böcker. Komma igång Starta Maple genom att skriva xmaple i en konsol. Det går även att starta Maple genom någon meny. När Maple har startat, välj File, New, Worksheet Mode. Man går ur Maple genom att välja Exit i File-menyn. Behöver man avbryta någon process kan man använda stoppknappen på menyraden. Hjälp Maple har ett omfattande inbyggt hjälpsystem. Om man klickar på Help i menyraden, så får man tillgång till hjälpfunktioner. Dessa fungerar på lite olika sätt, beroende på vilken Mapleversion man kör, men brukar vara lätta att använda. Man kan också få hjälp genom att skriva ett sökord föregånget av ett frågetecken, t. ex.?exp,?inifcn. I slutet på varje hjälptext nns exempel och hänvisningar till andra kommandon som kan vara av nytta. Fördenierade konstanter och funktioner Maple har några fördenierade konstanter (se?constant), t. ex. I, Pi och infinity (står för i, π resp ) Dessa är reserverade namn, som inte får användas till annat. Observera att Maple skiljer på stora och små bokstäver. Exempelvis måste π ( ) skrivas Pi (stort P). Skriver man pi får man ett π på skärmen, men är detta enbart en symbol och har inget numeriskt värde. För talet e nns ingen symbol utan man skriver exp(1) (se?exp). I Maple nns många fördenierade funktioner (se?inifcn), däribland de välkända funktionerna sin cos tan cot arcsin arccos arctan arccot abs sqrt exp ln log log10 (Här står abs för absolutbelopp, sqrt för kvadratroten, exp för exponentialfunktionen (e x ) både ln och log för naturliga logaritmen och log10 för tiologaritmen (lg). 1
2 Grundläggande kommandon och aritmetiska beräkningar I Maple-fönstret hittar du en 'prompt' >, som betyder att Maple väntar på ett kommando. Skriv in 7+5; och tryck på Enter, så utförs summationen. Observera att varje kommando till Maple måste avslutas med ett semikolon ; eller :, utan detta händer ingenting. Detta gör att man kan slå in långa formler som inte får plats på en rad. Skriver man semikolon ; utförs kommandot och resultatet visas på skärmen, skriver man kolon : så utförs operationen, men resultatet kommer inte upp på skärmen. Kontrollera att Maple kan fungera som en vanlig räknedosa. Prova i tur och ordning 2-3*5; 1/2+1/3; sqrt(4)*sqrt(3); Observera att Maple ger exakta svar, inte närmevärden. Närmevärden erhålles genom kommandot evalf;, som står för 'evaluate using oating point arithmetic'. För att få ett närmevärde för den senast utförda beräkningen (2 3 i vårt fall) kan man skriva evalf(%); Man kan naturligtvis också skriva evalf(sqrt(4)*sqrt(3));. På samma sätt kan resultatet av den näst senaste beräkningen åberopas genom %%, etc. En praktisk detalj i Maple är möjligheten att gå tillbaka till gamla kommandon på skärmen med pil-upp och pil-ner tangenterna, ändra i kommandona och utföra dem på nytt. Man kan också använda musen för att snabbt ytta sej till olika delar av skärmen. Testa genom att gå tillbaka till kommandot 1/2+1/3; och gör en annan bråkberäkning genom att ändra siror. När det gäller kommandot evalf så kan man ur hjälpfunktionen, som nås med?evalf, utläsa att man genom ett andra argument kan ange med hur många siror man vill ha svaret. Använd detta för att få ett värde på π med 1000 decimaler, evalf(pi,1000);. Variabler Maple kan inte bara räkna med tal utan också med variabler och med funktioner. Detta gör att ett Maplesystem blir större och ofta mer invecklat att programmera än ett vanligt programmeringspråk, men också oerhört mycket mera kraftfullt. Ge kommandot (x+1)^3;. Maple svarar med samma sak. Som svar på expand(%); så utvecklar Maple uttrycket enligt binomialsatsen. Prova även med expand((a-b)*(a+b)); expand(x*(x+1)*(x+2)*(x+3)); expand(cos(x+y)); Som bekant vill man ofta gå åt andra hållet, och faktoruppdela ett givet uttryck. Detta görs med kommandot factor. Prova detta på de polynomuttryck som du ck ovan. Ett annat kommando för förenkling är simplify. Prova detta genom att skriva simplify(1/(x-1)+1/(x+1)); Maple gör inte alltid det man önskar. Ett annat kommando man kan ha nytta av för att göra omskrivningar är normal. Tilldelningssatser Man kan tilldela en variabel ett värde, numeriskt eller symboliskt. Tilldelningssymbolen är liksom i Pascal och Simula :=. Prova med x:=2;. Kommandot x; ger nu variabelvärdet 2. Prova också med (x+1)^2;. En variabel som fått ett värde behåller detta tills man ger den ett annat värde eller tar bort värdet eller går ur Maple. För att ta bort värdet använder man kommandot x:='x';, som gör att Maple tolkar bokstaven x som en variabel, betecknad x, inte som variabelns värde. Det är lätt att glömma bort att man gett en variabel ett värde tidigare, vilket kan leda till obegripliga resultat av räkningar. Vill man ta bort alla värden på variabler och helt och hållet börja om från början skriver man restart;. Variabler kan förutom numeriska värden även ha Mapleuttryck som värden. Genom tilldelningskommandot 2
3 f:=(x+1)^3; så sätter vi f lika med (x + 1) 3. (Blir svaret 27 så tag bort det tidigare värdet från x och försök igen.) Man kan sedan räkna vidare med f och skriva t. ex. f^2; och expand(f^2);. Om man vill beräkna värdet av uttrycket f^2 för t. ex. x=2 utan att varaktigt tilldela x ett värde så kan man skriva eval(f^2,x=2); eller subs(x=2,f^2); Funktioner Maple kan hantera inte bara analytiska uttryck, som vi sett exempel på ovan, utan även funktioner. Dessa kan denieras på era olika sätt. Det för våra ändamål enklaste påminner om beteckningen x g(x) för en funktion g. Ge kommandot g:= x->(x+1)^3; Nu kan funktionsvärden beräknas på det sätt man är van vid. Prova t. ex. med g(0);, g(-1);, g(a); och g(y+z);. Anmärkning: Man måste noga hålla isär begreppen funktion och funktionsuttryck, där det senare behandlades under rubriken 'Tilldelningssatser' ovan. För säkerhets skull upprepar vi skillnaden: Om vi ger ett värde till F genom tilldelningen F:=exp(x)-sin(x); så är F ett uttryck med variabeln x inbyggt. Om vi i stället ger F ett värde genom F:=x->exp(x)-sin(x); så är F en funktion, där x bara används för att deniera en regel, och där man skulle kunna använda vilken annan symbol som helst. Funktioner är mycket mer exibla, men ibland något mer svårhanterliga än funktionsuttryck. Det nns ett enkelt sätt att göra om ett uttryck till en funktion, nämligen genom att använda kommandot unapply. Till exempel ger kommandot F:=unapply(exp(x)-sin(x),x); samma sak som F:=x->exp(x)-sin(x);. Maple klarar också funktioner av era variabler. Funktionen h(x, y) = x 2 y 3 + x 2 y 3 denieras i Maple på följande sätt: Vad ger h(0,0); och h(3,2);? Derivation h:= (x,y) -> x^2-y^3+x^2*y^3; Derivator beräknas med kommandot diff. Användningen framgår ur exemplen Andraderivator beräknas enligt diff(x^3+2*x^2,x); och diff(tan(x),x); diff(tan(x),x,x); På samma sätt beräknas derivator av högre ordning, där antalet x anger ordningen. För detta nns ett kortare skrivsätt. Beräkna fjärdederivatan av tan(x) genom att skriva diff(tan(x),x$4);. Här betyder $4 att derivationen upprepas 4 gånger. Prova även att förenkla svaret med hjälp av factor(%);. Vi kan derivera det tidigare denierade funktionsuttrycket f och funktionen g genom att skriva diff(f,x); resp diff(g(x),x); 3
4 Tänk ut vad som kommer ut ur kommandona diff(f,y);, diff(g,x);, diff(g(y),y); och prova om det stämmer. Anmärkning: Maple har också en derivationsoperator D, se?d. Pröva t. ex. D(g); och D(sin);. Bokstaven D kan inte användas som symbol för något annat. Man kan även lätt beräkna partiella derivator. Till exempel får man för funktionen h ovan genom kommandona h x och h y diff(h(x,y),x); resp diff(h(x,y),y); Högre derivator fås genom uppräkning av variabelnamnen. Pröva t. ex. diff(h(x,y),x,y); Anmärkning: Man kan också beräkna partiella derivator med hjälp av D-operatorn; om h är denierad som en funktion av två variabler så ger D[1](h) och D[1,2](h) funktionerna (x, y) h x (x, y) respektive (x, y) 2 h x y (x, y) Integration Med hjälp av kommandot int(f(x),x);, kan man beräkna en primitiv funktion till funktionen f(x) med avseende på x. Integrationskonstanten får man sedan själv lägga till om det skulle behövas. Om vi denierat ett funktionsuttryck f och en funktion g som på förra sidan, så fås en primitiv funktion med int(f,x); resp int(g(x),x); Repetera nu några primitiva funktioner från envariabelanalysen t. ex.: cos x (med kommandot int(cos(x),x);), e t 1 (skrivet exp(t)), och med avseende på respektive 1 z 2 variabel. Kvadratrotfunktionen skrivs i Maple som sqrt. Om Maple inte kan någon primitiv funktion, så svarar Maple genom att ge tillbaka det man stoppat in. Försök med int(x^x,x); så får du tillbaka x x dx. Prova också 1 2x 2 1 x 2 dx och e x2 dx. Dessa exempel visar att Maple känner till er primitiva funktioner än de vanliga elementära funktionerna. Den första av integralerna är exempel på en så kallad elliptisk integral. Vissa elliptiska integraler nns i Maple, se t. ex.?elliptice. I svaret på den andra integralen ingår den så kallade 'error function', erf. Denna uppträder bl a inom statistiken och i samband med värmeledning. För att beräkna integraler, till exempel 3 2 (x + 1) 3 dx måste även gränserna anges. Detta görs i Maple genom x=-2..3, eller allmänt x=a..b för a x b. Integralen ovan beräknas genom int((x+1)^3,x=-2..3); 4
5 Gränserna får gärna innehålla variabler, försök t. ex. med int(f,x=-y..(z+1));. Även generaliserade integraler kan beräknas. Prova t. ex. med int(1/(1+x^2),x=0..infinity); Använder man en stor begynnelsebokstav (t. ex. skriver Int(1/(1+x^2),x=0..infinity);) gör inte Maple någon beräkning utan svarar med en snygg utskrift av det man skrivit in. Detta är bra att använda om man vill kontrollera att man skrivit rätt. Summation Maple kan också användas för att beräkna summor. Syntaxen för summation är naturlig, n k=m a k fås genom Maplekommandot sum(a(k),k=m..n). Beräkna potenssummorna n k k=1 och med hjälp av kommandona sum(k,k=1..n); och sum(k^2,k=1..n);. Förenkla med kommandot simplify. Maple kan även summera vissa serier. Vad blir 1 k? 2 Gränsvärden Endimensionella gränsvärden beräknas med kommandot limit, prova limit(sin(x)/x,x=0); Taylor- och Maclaurinutvecklingar n k=1 k 2 k=1 limit((sqrt(1+exp(x))-1)/exp(x),x=infinity); Med kommandot mtaylor(f(x),x=a,n+1) får man Taylorutvecklingen (eller Maclaurinutvecklingen) av ordning n. T. ex. ger mtaylor(exp(sin(x)),x=0,7); Maclaurinutvecklingen av e sin x till ordning 6 (resttermen av ordning 7). (Vill man istället taylorutvecka sin x kring punkten x = 1 till ordning 9 (restterm av ordning 10) skriver man Ekvationslösning mtaylor(sin(x),x=1,10); Maple kan användas för att lösa ekvationer, se?solve och?fsolve. Prova de tre varianterna solve(x^3+x^2+x-3=0,x); fsolve(x^3+x^2+x-3=0,x); fsolve(x^3+x^2+x-3=0,x,complex); och läs om dem i hjälpfunktionen. Pröva också solve(sin(x)=1/2,x); I det senare fallet ger Maple endast en lösning. För att få alla lösningar kan man skriva _EnvAllSolutions := true: solve(sin(x)+cos(x)=sqrt(2),x); Dierentialekvationer Maple kan också lätt lösa (ordinära) dierentialekvationer, se?dsolve. Pröva med att lösa med kommandot y + 2y + 2y = e x dsolve(diff(y(x),x$2)+2*diff(y(x),x)+2*y(x)=exp(-x), y(x)); Har vi dessutom begynnelsevillkoren y(0) = y (0) = 0 kan vi skriva dsolve({diff(y(x),x$2)+2*diff(y(x),x)+2*y(x)=exp(-x), y(0)=0,d(y)(0)=0}, y(x)); 5
6 Grak Maple har omfattande graska möjligheter. Om du vill att Maples gurer skall hamna i egna fönster (vilket kan vara lättare att hantera) så går du in under menyn File, väljer Preferences och sen Plotting, Window. Antalet grakfönster har en tendens att växa snabbt. Man stänger dem man inte behöver genom att gå in under File och dra till Close när det aktuella grakfönstret är uppe. Med kommandot plot ritar man tvådimensionella gurer i Maple, t. ex. funktionskurvor. Se hjälpen till kommandona plot. Prova med plot(sin(x),x=-pi..pi); Axlarna skalas automatiskt så att bilden fyller grakfönstret maximalt. Om man vill ha samma skala på båda axlarna kan man gå in på menyraden vid Projection och välja Constrained. Detta kan man också åstadkomma genom att direkt skriva plot(sin(x),x=-pi..pi,scaling=constrained); Vill man hellre ha en grön kurva skriver man plot(sin(x),x=-pi..pi,scaling=constrained,color=green); Man kan också välja olika typer av axlar, linjetjocklek, linjestil mm, antingen från menyraden eller direkt på kommadoraden. För att rita era kurvor i en gur använder man [ ]-parenteser (även {}-parenteser fungerar). Pröva plot([sin(x),x-x^3/6],x=-pi..pi); Vad är det för speciellt med polynomet? Man kan också rita kurvor i parameterform. Enhetsirkeln (x, y) = (cos t, sin t), π t π ritas med plot([cos(t),sin(t),t=-pi..pi],scaling=constrained); Observera att parameterintervallet skrivs innanför hakparentesen. Maple har många er grakrutiner. För att få tillgång till många av dessa görs kommandot with(plots); Här är plots namnet på ett så kallat 'package'. Det nns ett antal sådana i Maple, för olika användningar. Avslutar man med ; får man en lista över de nya kommandon man får tillgång till. Ett annat 'package' för grak är plottools. Nu kan vi också rita implicit givna kurvor, t. ex. 4 + y2 = 1, med kommandot 9 implicitplot. Ange ekvationen samt ett lämpligt intervall för x och y. implicitplot(x^2/4+y^2/9=1,x=-3..3,y=-3..3,scaling=constrained); Ibland är det bra att först deniera och lagra bilden och sen titta på den. Om man vill se de båda kurvorna x 2 /4 + y 2 /9 = 1 och (x, y) = (2 cos t, 3 sin 3t), 0 t 2π i samma bild kan man göra så här: Låt A betyda bilden av den första kurvan och B bilden av den andra, skriv A:=implicitplot(x^2/4+y^2/9=1,x=-3..3,y=-3..3,color=red): B:=plot([2*cos(t),3*sin(3*t),t=0..2*Pi],color=green): Avsluta här med :, ej med ;. Maple visar nu inga bilder utan lagrar bilderna A resp B. Om vi nu skriver x 2 display([a,b],scaling=constrained); 6
7 visar Maple båda kurvorna i en bild. Maples tredimensionella grak har en mängd varianter, läs om dem i?plot3d. Funktionsytan z = xe x2 y 2, 2 x 2, 2 y 2 kan ritas med plot3d(x*exp(-x^2-y^2),x=-2..2,y=-2..2,scaling=constrained); Man kan vrida och vända på bilden genom att placera musmarkören i grakfönstret och hålla vänster musknapp nere och ytta på musen eller klicka pilarna bredvid vinkelbeteckningarna ϑ och φ i menyraden. Prova med hjälp av menyer de olika möjligheterna för 'axes', 'color' och 'style'. Denitionsmängden behöver ej vara en rektangel, gränserna i y kan bero på x, pröva t. ex. plot3d(x*exp(-x^2-y^2),x=0..2,y=-x..x,scaling=constrained); Vad är denitionsmängden här? Vill man bara se funktionens nivåkurvor skriver man contourplot(x*exp(-x^2-y^2),x=-2..2,y=-2..2,scaling=constrained); Det går också bra att rita ytor i parameterform. Cylindern y 2 + z 2 = 1 längs x-axeln kan ritas med plot3d([s,cos(t),sin(t)],s=-2..2,t=0..2*pi,scaling=constrained); Observera att parameterintervallen här skrivs utanför hakparentesen. (Här skiljer sig alltså det tre- och tvådimensionella fallen åt.) Vill man titta på två cylindrar (en längs x-axeln och en längs y-axeln) som skär varandra kan man göra så här: A:=plot3d([s,cos(t),sin(t)],s=-2..2,t=0..2*Pi): B:=plot3d([cos(t),s,sin(t)],s=-2..2,t=0..2*Pi,color=s*t): display([a,b],scaling=constrained); Här är färgvalet på cylindern B gjort, färgen på cylindern A kan varieras från menyraden. Välj här Projection Constrained. Vrid och vänd på guren. Pröva olika möjligheter av 'color' och 'style'. Vill man särskilt studera skärningen mellan cylindrarna (y 2 +z 2 = 1 resp x 2 +z 2 = 1) dvs den kropp som ligger 'innanför' båda cylindrarna skriver man plot3d({-min(sqrt(1-x^2),sqrt(1-y^2)),min(sqrt(1-x^2),sqrt(1-y^2))}, x=-2..2,y=-2..2,scaling=constrained); Pröva även olika Light Scheme under Color. För att rita cylindrar, och andra ytor med rotationssymmetri kring z-axeln, snyggt är det lämpligt att parametrisera ytan med användning av symmetrin. Exempelvis kan konen z = x 2 + y 2, x 2 +y 2 4 med fördel beskrivas i cylinderkoordinater (= polära koordinater i xy-planet) x = r cos θ, y = r sin θ, z = r 2 = r. Vi kan nu enkelt rita den som parametriserad yta plot3d([r*cos(t),r*sin(t),r],t=0..2*pi,r=0..2,scaling=constrained); Paraboloiden z = x 2 + y 2 fås av plot3d([r*cos(t),r*sin(t),r^2],t=0..2*pi,r=0..2,scaling=constrained); (En del av) ytan z = sin (x 2 + y 2 )/(x 2 + y 2 ) fås via plot3d([r*cos(t),r*sin(t),sin(r^2)/r^2],t=0..2*pi,r=0..5, En sfär kan ritas med kommandot scaling=constrained); plot3d([sin(s)*cos(t),sin(s)*sin(t),cos(s)],t=0..2*pi,s=0..pi,,scaling=constrained); 7
8 θ. Här är den första variabeln den vinkel som kallas ϕ i erdimboken och den andra variabeln Implicit givna ytor kan ritas med implicitplot3d, pröva t. ex. implicitplot3d(x^2+y^2-z^2=1,x=-2..2,y=-2..2,z=-2..2); (Denna yta kan ritas snyggare som parametriserad yta med plot3d.) Prova också implicitplot3d(x^2+4*y^2+9*z^2=1,x=-1..1,y=-1/2..1/2, z=-1/3..1/3,scaling=constrained); Fler roliga exempel på funktionsytor nns att hämta i övningshäftet i ervariabelanalys. Kurvor i rummet ritas med spacecurve, prova spacecurve([t*cos(t),t*sin(t),t],t=0..3*pi,scaling=constrained): Här skall parameterintervallet skrivas utanför hakparentesen. Vill man se kurvan tydligare kan man lägga in den på en kon (jfr erdimboken sid 24) skriv A:=spacecurve([t*cos(t),t*sin(t),t],t=0..3*Pi,color=red,thickness=4): B:=cylinderplot(z,t=0..2*Pi,z=0..10): display([a,b],scaling=constrained); Spara och skriva ut Man kan spara all text i Maple-fönstret genom att klicka på File och Save as samt ange ett lnamn. Texten sparas då i en l med namnet lnamn.mws. När du senare vill ta fram texten igen klickar du på File och Open och anger hela lnamnet, även.mws. Det går också att samla alla kommandon i en scriptl med ett enkelt namn, t. ex. prov. För att köra scriptet skriver du i Maple-fönstret read prov;. Om du vill ta ut en bild på skrivare, kan du spara den i PostScript-format genom att klicka på File och Print samt ange lnamn.ps. Alternativt kan man skicka bilden direkt till skrivaren. 8
Introduktion till Maple
Introduktion till Maple Allmänt Maple är ett mycket mångsidigt program, och man kan ägna mycket tid åt att utforska dess användningsmöjligheter. Dess mångsidighet gör det samtidigt svårare att använda
Introduktion till Maple
Flerdimensionell analys för F och π, vt 1 2007 Introduktion till Maple Allmänt Ett modernt datoralgebrasystem har som huvudfunktion att göra symboliska beräkningar, i motsats till numeriska. Det kan utföra
Introduktion till Maple
Introduktion till Maple Allmänt Flerdimensionell analys, ht 2012, Lp1 17 augusti 2012 Ett modernt datoralgebrasystem har som huvudfunktion att göra symboliska beräkningar, i motsats till numeriska. Det
Komplex Analys. Datorlaboration 1. av Sven Spanne. Reviderad ht av Anders Holst
Komplex Analys Datorlaboration 1 av Sven Spanne Reviderad ht 2005 av Anders Holst Inledning Syftet med datorövningen Övningens ändamål är att ge ett smakprov på hur ett datoralgebrasystem kan användas
Flervariabelanalys, inriktning bildbehandling, datorövning 1
Matematiska institutionen, LTH, 20 november 2003 Flervariabelanalys, inriktning bildbehandling, datorövning 1 Laborationen består av två delar. I den första använder vi det numeriska beräkningsprogrammet
Datorövning 1 med Maple
Flerdimensionell analys, ht 2011, Lp1 22 augusti 2011 Datorövning 1 med Maple Under denna datorövning skall vi lösa uppgifter från övningshäftet med hjälp av Maple. Vi skall rita kurvor och ytor. Syftet
Tillämpad matematik. Lineära system. LAB1
Tillämpad matematik. Lineära system. LAB1 20.02, 10.00-12.00 MH:230, 231 21.02, 10.00-12.00 MH:230 21.02, 13.15-15.15 MH:230 22.02, 10.00-12.00 MH:230 1 Tillämpad matematik. Lineära system. LAB1 Datörövning
Kontinuerliga system, Datorövning 2
Vårterminen 2003 Kontinuerliga system, Datorövning 2 Inledning Ett modernt datoralgebrasystem har som huvudfunktion att göra symboliska beräkningar, i motsats till numeriska. Det kan utföra algebraiska
Funktionsteori Datorlaboration 1
Funktionsteori Funktionsteori Datorlaboration 1 Rekursionsekvationer och komplex analys Syftet med datorövningen Övningens ändamål är att ge ett smakprov på hur ett datoralgebrasystem kan användas för
Datorövning 2 med Maple
Datorövning 2 med Maple Flerdimensionell analys, ht 2008, Lp1 15 september 2008 Under denna datorövning skall vi lösa uppgifter i övningshäftet med hjälp av Maple. Vi skall beräkna partiella derivator,
MAPLE MIKAEL STENLUND
MAPLE MIKAEL STENLUND. Introduktion I dina inlämningsuppgifter skall ett program som heter Maple användas för att lösa ett antal matematiska problem. Maple är ett symbolhanterande program som har ett antal
Användarmanual till Maple
Användarmanual till Maple Oktober, 006. Ulf Nyman, Hållfasthetslära, LTH. Introduktion Maple är ett mycket användbart program för symboliska och i viss mån numeriska beräkningar. I Maple finns ett stort
Extra datorövning med Maple, vt2 2014
Extra datorövning med Maple, vt2 2014 FMA430 Flerdimensionell analys Denna datorövning är avsett för självstudie där vi skall lösa uppgifter i övningshäftet med hjälp av Maple. Vi skall beräkna partiella
Datorövning 1 med Maple, vt
Flerdimensionell analys, vt 1 2010 Datorövning 1 med Maple, vt 1 2010 Under denna datorövning skall vi lösa uppgifter från övningshäftet med hjälp av Maple. Vi skall rita kurvor och ytor. Syftet är att
Laboration: Grunderna i Matlab
Laboration: Grunderna i Matlab Att arbeta i kommandofönstret och enkel grafik Den här delen av laborationen handlar om hur man arbetar med kommandon direkt i Matlabs kommandofönster. Det kan liknas vid
LABORATION I MAPLE MIKAEL STENLUND
LABORATION I MAPLE MIKAEL STENLUND. Introduktion I laborationen skall ett program som heter Maple användas för att lösa ett antal matematiska problem. Maple är ett symbolhanterande program som har ett
3.3. Symboliska matematikprogram
3.3. Symboliska matematikprogram Vi skall nu övergå till att behandla de vanligaste matematikprogrammen, och börja med de symboliska. Av dessa kan både Mathematica och Maple användas på flere UNIX-datorer.
SF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
Matematiska Institutionen, K T H. B. Krakus. Matematik 1. Maplelaboration 2.
Matematiska Institutionen, K T H. B. Krakus Matematik. Maplelaboration. . Kommandon, funktioner och konstanter i denna laboration: expand(uttryck) simplify(uttryck) utvecklar uttrycket. T.ex. expand((x+)*(x-)^);
Texten är en omarbetning av en text skriven av Rikard Bögvad för kursen Matematik I (30 hp).
Introduktion Med hjälp av dator kan man utföra omfattande matematiska beräkningar, men också få datorn att producera lösningar på icke-triviala uppgifter. I det här momentet av kursen ska vi bekanta oss
Allmänt om Mathematica
Allmänt om Mathematica Utvecklades av Wolfram Research (Stephen Wolfram) på 80-talet Programmet finns bl.a. till Windows, Mac OS X, Linux. Finns (åtminstone) installerat i ASA B121 (Stansen), i matematik
Mathematica. Utdata är Mathematicas svar på dina kommandon. Här ser vi svaret på kommandot från. , x
Mathematica Första kapitlet kommer att handla om Mathematica det matematiska verktyg, som vi ska lära oss hantera under denna kurs. Indata När du arbetar med Mathematica ger du indata i form av kommandon
Technology Management Mapleövning 1 och 2
Technology Management Mapleövning 1 och 2 Namn: Personnummer: Allmänt Maple är ett kraftfullt program för både symboliska och numeriska beräkningar Att det kan räkna symboliskt betyder i korthet att det
Introduktion till Matlab
Introduktion till Matlab Analys och Linjär Algebra, del A, K1/Kf1/Bt1, ht10 1 Inledning Ni kommer använda Matlab i nästan alla kurser i utbildningen. I matematikkurserna kommer vi ha studio-övningar nästan
Datorlaboration 1. 1 Komplexa funktioner som avbildningar (kan göras i slutet av läsvecka 1)
Funktionsteori, vt 207 Syftet med datorövningen Datorlaboration Övningens syftar till att ge fördjupad förståelse för några viktiga begrepp och att ge ett smakprov på hur ett datoralgebrasystem kan användas
Introduktion till Matlab
Introduktion till Matlab Inledande matematik, I1, ht10 1 Inledning Detta är en koncis beskrivning av de viktigaste delarna av Matlab. Till en början är det enkla beräkningar och grafik som intresserar
Innehåll. Vad är MATLAB? Grunderna i MATLAB. Informationsteknologi. Informationsteknologi.
Grunderna i MATLAB eva@it.uu.se Innehåll Vad är MATLAB? Användningsområden MATLAB-miljön Variabler i MATLAB Funktioner i MATLAB Eempel och smakprov: Grafik Beräkningar Bilder GUI Vad är MATLAB? Utvecklat
Tentamen i Matematisk analys MVE045, Lösningsförslag
Tentamen i Matematisk analys MVE5 26-8-23 Lösningsförslag Kl. 8.3 2.3. Tillåtna hjälpmedel: Mathematics handbook for science and engineering (BE- TA) eller CRC Standard Mathematical Tables. Indexeringar
av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)
Lösningsskisser till TATA69 Flervariabelanalys 16-1- 1 Stationära punkter ges av f (4x 3 + 4x, 3y + 6z, z + 6y (,,, dvs (x, y, z (,, eller (x, y, z (, 6, 18 Ur andraderivatorna fås de kvadratiska formerna
Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS
Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan
Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder.
Kap 5.7, 7. 7.. Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. 8. (A) Beräkna arean av det ändliga område som begränsas av kurvorna x a. y = + x och y = b. y = x e x och y = x
Kap Inversfunktion, arcusfunktioner.
Kap 3. 3.5. Inversfunktion, arcusfunktioner. 30. (A) Förenkla uttrycken så långt som möjligt a. ln 8 ln + ln 8 ln + ln b. ln 3 log 0 3 log 0 e + 3 ln 3 log 3 e 30. (A) Lös ekvationerna a. e x = e x b.
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1
v0.2, Högskolan i Skövde Tentamen i matematik
v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A
Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm
LABORATION cos (3x 2 ) dx I =
SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför
Instuderingsfrågor för Endimensionell analys kurs B1 2011
Instuderingsfrågor för Endimensionell analys kurs B1 2011 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp
Inledning till Maple
Institutionen för matematik 2000 04 06 KTH Bronislaw Krakus Inledning till Maple www.math.kth.se/~bronek/maple/inledning.pdf > tubeplot([cos(t), sin(t), 0], t = Pi..2*Pi, radius = 0.25*(t - Pi), orientation
SF1625 Envariabelanalys
Föreläsning 7 Institutionen för matematik KTH 12 september 2016 Injektiva funktioner En funktion är en regel som till varje tal i definitionsmängden ordnar ett bestämt tal i värdemängden. Injektiva funktioner
Datorövning 2 med Maple, vt
Flerdimensionell analys, vt 1 2009 Datorövning 2 med Maple, vt 1 2009 Under denna datorövning skall vi lösa uppgifter i övningshäftet med hjälp av Maple. Vi skall beräkna partiella derivator, transformera
Lösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
Fri programvara i skolan datoralgebraprogrammet Maxima
Per Jönsson & Thomas Lingefjärd Fri programvara i skolan datoralgebraprogrammet Maxima I takt med att priserna sjunker utrustar allt fler skolor sina elever med små bärbara datorer. Detta innebär nya och
Laborationer i kursmomentet Datoranvändning E1. Laboration nr 3: Matematikverktyget Maple
Sid 1 Laborationer i kursmomentet Datoranvändning E1 http://www.etek.chalmers.se/~hallgren/eda/ : Matematikverktyget Maple 1 Introduktion 1992-1997 Magnus Bondesson 1998 och 99-09-16 Thomas Hallgren Syftet
Matematik 1. Maplelaboration 1.
Matematiska Institutionen, K T H. B. Krakus Matematik. Maplelaboration. Före laborationen: Bekanta Dig med innehållet på sid 3. Ögna igenom de genomräknade exemplen 8 på sid 4 7. Använd PoP (papper och
Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning
Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon
LMA515 Matematik, del B Sammanställning av lärmål
LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)
x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.
. Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig
Introduktion till MATLAB
29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna
x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.
. Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim 0. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig
= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud B 7, ifferential- och integralkalkyl II, del, flervariabel, för F. Tentamen tisdag 8 augusti 7, 4.-9. Förslag till lösningar.. Om F (x, y, z) x y + y z
2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen
Institutionen för matematik, KTH Mattias Dahl 5B, Dierential- och integralkalkyl I, del, för TIMEH2 Tentamen, tisdag 29 mars 25 kl.9.. Svara med motivering och mellanräkningar. Tillåtet hjälpmedel är formelsamlingen
= 0 genom att införa de nya
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik ES, IT, W Flervariabelanals 9 1 19 Skrivtid: 8 13. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer.
Introduktion till Matlab
CTH/GU STUDIO 1 LMA515b - 2016/2017 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk
Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik
Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel
Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller
Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både
Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 2-5-5 kl 8.3-3.3 Hjälpmedel : Inga hjälpmedel utöver bifogat
At=A' % ' transponerar en matris, dvs. kastar om rader och kolonner U' % Radvektorn U ger en kolonnvektor
% Föreläsning 1 26/1 % Kommentarer efter %-tecken clear % Vi nollställer allting 1/2+1/3 % Matlab räknar numeriskt. Observera punkten som decimaltecken. sym(1/2+1/3) % Nu blev det symboliskt pi % Vissa
Kapitel 5: Primitiva funktioner
Kapitel 5: Primitiva funktioner c 005 Eric Järpe Högskolan i Halmstad Primitiva funktioner är motsatsen till derivata. Att integrera är motsatsen till att derivera. Definition F är primitiva funktion till
(x + 1) dxdy där D är det ändliga område som begränsas av kurvorna
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik ES, W Flervariabelanalys 8 1 1 Skrivtid: 9-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Varje
Laboration i Maple, kurs HF1905, Matematisk analys Skolår: 2018/19. Laboration i Maple, Matematisk analys HF1905.
Laboration i Maple, kurs HF1905, Matematisk analys Skolår: 018/19 Laboration i Maple, Matematisk analys HF1905. Matematisk analys, Kurskod: HF1905 Skolår: 018/19 Lärare: Klass A: Jonas Stenholm Klass B:
Uppgift 1. (SUBPLOT) (Läs gärna help, subplot innan du börjar med uppgiften.) 1 A) Testa och förklara hur nedanstående kommandon fungerar.
INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Kurskod: HF1006, HF1008 Skolår: 2016/17 armin@kth.se www.sth.kth.se/armin Redovisas under sista två (av totalt fem) labbövningar i Analys-delen. Preliminärt:
LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering
SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med
vux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker vux 3b/3c GeoGebraexempel Till läsaren i elevböckerna i serien matematik origo finns uppgifter där vi rekommenderar användning
de uppgifter i) Under m-filerna iv) Efter samlade i en mapp. Uppgift clear clc Sida 1 av 6
Inlämningsuppgift 2, HF1006.. (MATLAB) INLÄMNINGSUPPGIFT 2 (MATLAB) Kurs: Linjär algebra och analys Del2, analys Kurskod: HF1006 Skolår: 2018/19 Redovisas under en av de tre schemalaggs gda redovisningstillfällen
Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26
TAIU07 Föreläsning 2 Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 Matriselement och Index För att manipulera
M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1
M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1 Ove Edlund LTU 2014-11-07 Ove Edlund (LTU) M0043M, M1 2014-11-07 1 / 14 Några elementära funktioner i Matlab Exempel exp Beräknar e
Preliminärt lösningsförslag till del I, v1.0
Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel
R AKNE OVNING VECKA 2 David Heintz, 13 november 2002
RÄKNEÖVNING VECKA 2 David Heintz, 3 november 22 Innehåll Uppgift 29.4 2 Uppgift 29. 3 3 Uppgift 29.2 5 4 Uppgift 3. 7 5 Uppgift 3. 9 6 Uppgift 3.2 Uppgift 29.4 Prove that ln( + x) x for x >, and that ln(
Några saker att tänka på inför dugga 2
LINKÖPINGS UNIVERSITET 17 oktober 017 Matematiska institutionen TATA68 Matematik och tillämpad matematik Några saker att tänka på inför dugga Dugga omfattar HELA kursen, så titta även på de tips som lämnades
Att undervisa och studera matematik med datoralgebraprogrammet Maxima. Per Jönsson och Thomas Lingefjärd
Att undervisa och studera matematik med datoralgebraprogrammet Maxima Per Jönsson och Thomas Lingefjärd Malmö och Göteborg 2009 1 Kort om Maxima Begreppet CAS (computer algebra system) eller på svenska
i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3,
Repetition Matematik. Bestäm koefficienten vid x i utvecklingen av ((+ x - x ) 5.. Bestäm koefficienten vid x 3 i utvecklingen av (( x + x ) n för n =,,3º. 3. a 5-5a b + 5a3 b - 5a 8b 3 + 5a 6b - 3b 5
Lab 2, Funktioner, funktionsfiler och grafer.
Lab 2, Funktioner, funktionsfiler och grafer. Laborationen innehåller 8 deluppgifter. Uppg. 1-3: behandlar Matlabs grundläggande operationer Uppg. 4-5: behandlar kurvritning Uppg. 6-8: behandlar funktionsfiler
Lab 1, Funktioner, funktionsfiler och grafer.
Lab 1, Funktioner, funktionsfiler och grafer. Starta gärna en dagbok genom att ge kommandot diary lab1. Skriv in alla beräkningar som efterfrågas i uppgifterna i dagboken. Glöm inte diary off om det skrivna
Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.
Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.
Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 3b GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
Symboliska beräkningar i Matlab
CTH/GU LABORATION 6 MVE45-5/6 Matematiska vetenskaper Inledning Symboliska beräkningar i Matlab Verktygslådan Symbolic Math Toolbox i Matlab kan utföra symbolisk matematik. Vi skall se på ett antal exempel
+ 5a 16b b 5 då a = 1 2 och b = 1 3. n = 0 där n = 1, 2, 3,. 2 + ( 1)n n
Repetition, Matematik I.. Bestäm koefficienten vid 2 i utvecklingen av ( + 2 2 ) 5. 2. Bestäm koefficienten vid 2 i utvecklingen av ( + ) n för n =, 2,,.. Beräkna a 5 5a 2b + 5a 2b 2 5a 2 b + 5a 6b 2b
Datorlaboration 2. 1 Serier (kan göras från mitten av läsvecka 4)
Datorlaboration 2 ht 2016 Funktionsteori, vt 2016 Inledning Denna laboration handlar om serier och likformig konvergens. Hela laborationen, utom uppgift 3.9 där Maple är att föredra, bygger på Matlab.
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet
Tentamen i TATA43 Flervariabelanalys
Linköpings universitet Matematiska institutionen Kurskod: TATA4 Provkod: TEN Tentamen i TATA4 Flervariabelanalys 5--7 kl 8 Inga hjälpmedel tillåtna inte heller miniräknare 8//6 poäng med minst /4/5 uppgifter
5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004
KTH Matematik 5B4 Matematik och modeller Lösningsförslag till tentamen den oktober 4. Två av sidlängderna i en triangel är 8 m och m. En av vinklarna är 6. a) Bestäm alla möjliga värden för den tredje
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 24-8-2 DEL A. Bestäm och skissera definitionsmängden till funktionen fx, y) = x 2 + y 2 + 2x 4y + + x. Är definitionsmängden kompakt? 4 p) Lösning.
Något om Taylors formel och Mathematica
HH/ITE/BN Taylors formel och Mathematica Något om Taylors formel och Mathematica Bertil Nilsson 207-0-0 I am the best Ett av Brooks många ödmjuka inlägg i den infekterade striden som under början av 700
Tentamen : Lösningar. 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall:
Tentamen 010-10-3 : Lösningar 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall: x 5 0 och 3 x > 0 x 5 och x < 3, en motsägelse, eller x 5 0 och
x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.
. Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig
Laboration 3. Funktioner, vektorer, integraler och felskattning
1 SF1520 K2 HT2014 NA 21 december 2015 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,
Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 3c GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
Mer om generaliserad integral
Föreläsning XI Mer om generaliserad integral Ex 64: Givet h(x) = ( x 2 5x + 2 ) e x/2. (a) Bestäm en p.f. till h(x). (b) Beräkna h(x)dx. (a) Vi har här en integrand som är en produkt av ett polynom av
MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och...
Allt du behöver veta om MATLAB: Industristandard för numeriska beräkningar och simulationer. Används som ett steg i utvecklingen (rapid prototyping) Har ett syntax Ett teleskopord för «matrix laboratory»
Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:
TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger
Matematisk analys, laboration II. Per Jönsson Teknik och Samhälle, Malmö Högskola
Matematisk analys, laboration II Per Jönsson Teknik och Samhälle, Malmö Högskola Viktig information om laborationerna I analyskursen ingår tre obligatoriska laborationer. Under laboration används Matlab/GNU
Inledning till matematik med Matlab kompendium för M1 och TD
Matematiska vetenskaper Carl-Henrik Fant 16 september 2005 Inledning till matematik med Matlab kompendium för M1 och TD1 2005. Allmänt. MATLAB är ett interaktivt program med mycket kraftfulla numeriska
Laboration: Grunderna i MATLAB
Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar
Approximation av funktioner
Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner
201. (A) Beräkna derivatorna till följande funktioner och förenkla så långt som möjligt: a. x 7 5x b. (x 2 x) 4. x 2 +1 x + 1 x 2 (x + 1) 2 f.
Kap..5,.8.9. Lutning, tangent, normal, derivata, höger och vänsterderivata, differential, allmänna deriveringsregler, kedjeregel, derivator av högre ordning, implicit derivering. Gränsvärden. 0. (A) Beräkna