Matematik klass 1 Problemlösning nummer 1

Storlek: px
Starta visningen från sidan:

Download "Matematik klass 1 Problemlösning nummer 1"

Transkript

1 Matematik klass 1 Problemlösning nummer 1 ditt eget matteproblem Skriv ditt namn här Anneli Weiland, HepPed A och O Matematik åk 1 Problemlösning 1

2 Kalle hade fem gamla böcker i sin låda. Nu fick han tre nya. Hur många har han då? 5+3=8 Kalle har 8 böcker i sin låda. Kalles lillasyster river sönder en av de 8 böckerna. Hur många är hela? Anneli Weiland Problemlösning åk 1 2

3 Under en vecka var Stina sjuk 3 dagar. En vecka har ju 7 dagar. Hur många dagar var hon frisk? Stina läser en bok som har 10 sidor. Hon har läst 4 sidor. Hur många har hon kvar att läsa? Anneli Weiland Problemlösning åk 1 3

4 Kalle tycker om matematik. På 2 minuter hann han göra 5 uppgifter. Men Stina klarade dubbelt så många uppgifter på samma tid! Hur många hann Stina? I somras badade Stina när det var 20 grader i vattnet. Kalle vill inte bada förrän det var 3 grader varmare. Hur varmt vill Kalle ha? Anneli Weiland Problemlösning åk 1 4

5 På gatan utanför Stinas hus står 8 bilar parkerade. Fem av dem hade samma färg, de var svarta. Resten hade olika färger. Hur många var de? Kalles familj har två bilar. Hur många däck måste bytas när det blir dags för vinterdäck? Anneli Weiland Problemlösning åk 1 5

6 Stina ska köpa lördagsgodis. Hon har 10 kronor. Hon köper godis för hälften av pengarna. Hur mycket har hon kvar? Kalle köper också lördagsgodis. Han har också 10 kronor. Han har 2 kronor kvar när han betalat. Vad kostade hans godis? Anneli Weiland Problemlösning åk 1 6

7 I somras fick Kalle 7 abborrar. Stina fick bara 2 abborrar. Hur många fler fick Kalle? Mamma fick rensa både Stinas och Kalles abborrar. Hur många fick hon rensa då? Anneli Weiland Problemlösning åk 1 7

8 Det blev fisk till middag. Mamma lovade att barnen skulle få två kronor för varje ben de hittade i fisken. Kalle hittade två ben och Lisa 3 ben. Hur mycket fick mamma betala? Av varje fisk får man två filéer. Hur många filéer får man då av tre fiskar? Anneli Weiland Problemlösning åk 1 8

9 Längd Då man mäter hur långt något är använder man linjal, måttband eller tumstock. Det finns olika enheter för att tala om hur långt något är. Vi börjar med meter och centimeter. 1 meter = 100 centimeter 1 m =100 cm Låna en linjal och mät. Skriv i tabellen hur långt det är. Ett gem En penna En skrivbok En läsebok Låna ett måttband och mät. Skriv i tabellen hur långt det är. Din bänk /ditt bord Golv till dörrhandtag Runt din midja Runt din handled Anneli Weiland Problemlösning åk 1 9

10 Kalle är 1 m och 30 cm lång. Det är samma som 130cm lång. Stina är 1 m och 25 cm lång. Hur lång är hon i bara cm? Till taket i deras klassrum är det 230 cm. Hur många meter är det? Hur många extra cm är det? Anneli Weiland Problemlösning åk 1 10

11 Hur långt är det till taket i ditt klassrum? Mät! Hur långt är det till taket hemma hos dig? Mät! Hur stor är skillnaden? Klassrummet Hemma Skillnad Gör om enheterna till bara cm 1 m 12 cm = 2 m 10 cm = 3 m = 4 m 4 cm = Gör om enheterna till både m och cm 126 cm 220 cm 99 cm 525 cm Anneli Weiland Problemlösning åk 1 11

12 En snabb snäcka kröp 45 cm på en timme. En mördarsnigel kröp 15 cm längre. Hur långt kröp den? Kalle och Stina tävlade att springa. De sprang 60 meter. Då Kalle var i mål, hade Stina 10 meter kvar. Hur långt hann hon? Anneli Weiland Problemlösning åk 1 12

13 Kalles morbror är lång, han är 205 cm. Han kan inte gå rak genom en dörröppning för den brukar vara 2 m. Hur stor är skillnaden för att han ska kunna gå rak? Stinas penna är 12 cm lång. När hon vässat den är den bara 9 cm. Hur mycket har hon vässat bort? Anneli Weiland Problemlösning åk 1 13

14 Grannen skulle fälla en gran. Jag gissade att den var 25 m hög. När den låg på marken mätte jag den. Den var 31 m lång. Hur fel gissade jag? Stinas linjal är 30 cm lång. Kalles har tyvärr gått av. Den är bara 18 cm lång, men den var 30 cm från början. Hur lång bit har gått av? Anneli Weiland Problemlösning åk 1 14

15 Massa Massa är hur tungt något är. Det finns olika enheter för att mäta massa. Vi börjar med kilo och hekto. För att mäta massa behöver man en våg. 1 kilo = 1 kg = 10 hekto = 10 hg Egentligen heter det kilogram och hektogram, men man brukar bara säga kilo och hekto. Låna en våg och vikter och väg, skriv i tabellen hur mycket det väger. En stor biblioteksbok En mjölkförpackning med sand Två äpplen En burk med kritor Gör om enheterna till bara hg 1 kg = 3 kg = 1 kg och 2 hg = 2 kg och 5 hg = Anneli Weiland Problemlösning åk 1 15

16 Gör om enheterna till både kg och hg 13 hg 35 hg 28 hg 9 hg Kalle har köpt 1 hg godis. Kalles morfar är en riktig godis gris, han har köpt 4 hg. Hur mycket har de tillsammans? En ledtråd för talserien +2,-1,+2,-1 Anneli Weiland Problemlösning åk 1 16

17 Stina gillar inte godis. Hon köpte frukt i stället. Frukten vägde 1 kg. Hur många hekto är det? Kalles hund väger 28 kg. Kalle väger 33 kg. Hur mycket mer väger Kalle? Anneli Weiland Problemlösning åk 1 17

18 Stinas katt väger 2 kg. En dag fick han strömming, det bästa han visste. Han åt 1 hg! Hur många hg borde han väga efter det? Stina väger 30 kg och hennes mamma väger 60 kg. Hur mycket väger de tillsammans? Anneli Weiland Problemlösning åk 1 18

19 Kalles kulpåse väger ett halvt kilo. Hur många hekto väger den då? Kalles kompis har också kulor. Hans påse väger 6 hg. Kalles vägde ju ett halvt kilo. Vem har mest kulor? Hur stor skillnad är det? Anneli Weiland Problemlösning åk 1 19

20 Fyra lika tjocka och tunga böcker väger 2 kg tillsammans. Hur mycket väger en bok? En liter mjölk väger 1 kg ungefär. En påse med 5 äpplen väger 6 hg. Hur tungt blir det tillsammans? Anneli Weiland Problemlösning åk 1 20

21 Lös sudoku En talserie (En ledtråd finns på sidan 16.) Anneli Weiland Problemlösning åk 1 21

22 Volym Volym är hur mycket det får plats inuti. Hur mycket vatten eller mjöl det finns i en skål eller burk. Vi börjar med liter och deciliter. För att mäta volym behöver du litermått och decilitermått. 1 liter = 1 l = 10 deciliter =10 dl Låna ett litermått och ett decilitermått och mät med vatten, skriv i tabellen hur mycket kärlet (burken, flaskan) rymmer. En liten petflaska läsk (tom!) En tom mjölk-förpackning En tom grädd-förpackning En stor petflaska Gör om enheterna till bara dl. 1 liter = 3 liter = 1 l och 2 dl = 2 l och 5 dl = Anneli Weiland Problemlösning åk 1 22

23 Gör om enheterna till både liter och deciliter 13 dl 35 dl 28 dl 9 dl Stina var jätte-törstig efter gympan. Hon drack två glas vatten. Glaset rymde 2 dl. Hur mycket drack Stina? Anneli Weiland Problemlösning åk 1 23

24 Mamma bjöd på saft en dag. Hon gjorde iordning 1 liter saft. Fyra barn fick 2 dl var. Räckte saften? Hur mycket blev över, eller hur mycket fattades? Till ett bak med bullar behövdes 16 dl vetemjöl. I mjölpåsen fanns 2 liter mjöl. Blev det något kvar i påsen? Hur mycket? Anneli Weiland Problemlösning åk 1 24

25 När man kokar ris behöver man dubbelt så mycket vatten som ris. Om jag vill koka 2 dl ris, hur mycket vatten behöver jag? Ett recept på pannkakor innehåller hälften så mycket mjöl som mjölk. Dessutom hälften så många ägg som deciliter mjöl. Alltså 1 ägg, 2 dl mjöl och 4 dl mjölk. Det blir lagom för två personer. Hur blir receptet för 4 personer? ägg Mjöl Mjölk Anneli Weiland Problemlösning åk 1 25

26 En tillbringare rymmer 1 liter och 5 dl. Om du häller ut 7 dl, hur mycket blir kvar? En stor hink rymmer 10 liter. Hur många deciliter rymmer samma hink? Anneli Weiland Problemlösning åk 1 26

27 Kalles akvarium rymmer 30 liter. En dag behövde han fylla på 7 liter för vattnet hade dunstat bort. Hur lite var det innan han fyllde på? Ett badkar rymmer ungefär 200 liter. För att spara vatten brukar jag bara fylla hälften av badkaret. Hur mycket vatten sparar jag? Anneli Weiland Problemlösning åk 1 27

28 En ny soduko En talserie Anneli Weiland Problemlösning åk 1 28

29 Tid För att mäta tid behöver du en klocka. Det finns analoga klockor med visare och urtavlor. De klockor som bara visar siffror är digitala, t ex klockradios. Vi börjar med analoga klockor och hel och halvtimmar. 1 timme = 1 tim eller 1 h. H står för hour som betyder timme på engelska. 1 timme = 60 minuter = 60 min En halvtimme = 30 minuter =30 min Sätt ut alla siffror på klockan. visare så klockan är 9: x 3 6 Anneli Weiland Problemlösning åk 1 29

30 Hur mycket är klockan? a med ord och siffror x 6 Klockan är natt eftermiddag Klockan är tidig morgon 6 kväll Anneli Weiland Problemlösning åk 1 30

31 Klockan är Klockan är natt dag morgon kväll Klockan är Klockan är natt em morgon kväll Anneli Weiland Problemlösning åk 1 31

32 Skriv alla siffror, rita visare till tiden Klockan är halv nio Klockan är sex 08:30 morgon 20:30 kväll 06:00 morgon 18:00 kväll Klockan är halv tre Klockan är tolv 02:30 natt 14:30 dag 00:00 natt 12:00 dag Anneli Weiland Problemlösning åk 1 32

33 Kombinera rätt klockslag 14:00 17:00 19:00 21:00 13:00 15:00 18:00 20:00 16:00 två Natt/morgon 07:00 03:00 06:00 04:00 02:00 05:00 01:00 Dag/kväll 19:00 Skriv vad klockan är 07:00 Klockan är 7 på morgonen 10:00 11:30 12:30 14:00 15:30 18:00 19:30 20:00 Anneli Weiland Problemlösning åk 1 33

34 Kalle ser på Bolibompa. Det börjar 18:00 och håller på en halvtimme. När är det slut? Stina går upp klockan sju. Klockan åtta börjar skolan. Hur lång tid har hon på sig? Anneli Weiland Problemlösning åk 1 34

35 Kalles skolväg tar 30 minuter. När måste han gå hemifrån om han börjar skolan 08:30? Stina är på fritids 3 timmar varje dag. Hon slutar 14:00 på onsdagar. När går hon från fritids den dagen? Anneli Weiland Problemlösning åk 1 35

36 Bra att kunna En timme = Ett dygn = En vecka = Ett år = Ett år = 60 minuter 24 timmar 7 dagar 365 dagar 12 månader Kan du nu? En halv timme = Två dygn = Två veckor = Fyra år = (ta miniräknare) Två år = minuter timmar dagar dagar månader Fyll i de tal saknas Anneli Weiland Problemlösning åk 1 36

37 Geometri Använd en linjal och rita en triangel, en kvadrat och en rektangel. Måla triangeln röd, kvadraten blå och rektangeln grön. Anneli Weiland Problemlösning åk 1 37

38 tre cirklar Har du en passare så använd den. Annars tar du något runt och ritar av. Anneli Weiland Problemlösning åk 1 38

39 Sidor, vinklar och hörn Sidor Vinklar Hörn Anneli Weiland Problemlösning åk 1 39

40 egna trianglar, kvadrater och rektanglar. Måla alla sidor röda. Måla alla hörn blå. Måla alla vinklar gula. Anneli Weiland Problemlösning åk 1 40

41 Suduko Talserie Denna är berömd, kallas Fibonacci efter uppfinnaren Anneli Weiland Problemlösning åk 1 41

Matematik klass 2 Problemlösning nummer 2

Matematik klass 2 Problemlösning nummer 2 Matematik klass 2 Problemlösning nummer 2 Anneli Weiland Matematik åk 2 Problemlösning 1 Tor hade sjutton gamla bilar i sitt rum. Nu fick han tre nya. Hur många har han då? 17+3=20 Tor har 20 bilar nu.

Läs mer

Matematik klass 3 Problemlösning nummer 3

Matematik klass 3 Problemlösning nummer 3 Matematik klass 3 Problemlösning nummer 3 Anneli Weiland Matematik åk 3 Problemlösning 1 Erik älskar dinosaurier. Han hade redan 26 stycken olika, men han önskade sig 7 till. Om han fick dem också, hur

Läs mer

Tid Muntliga uppgifter

Tid Muntliga uppgifter Tid Muntliga uppgifter Till uppgift 1 5 behövs en ställbar klocka. Tid Begrepp 1. Ställ elevnära frågor där du får svar på frågor om idag, igår och i morgon till exempel: Vilken dag är det idag? Vad gjorde

Läs mer

rektangel cirkel triangel 4 sidor 3 sidor 4 sidor

rektangel cirkel triangel 4 sidor 3 sidor 4 sidor geometriska former och figurer Vad heter figurerna? figur namn rektangel cirkel triangel Hur många sidor har varje figur? 4 sidor 3 sidor 4 sidor Para ihop varje föremål med en eller flera geometriska

Läs mer

150 cm 2 m 70 dm. 280 cm 3,5 m 40 dm 3,50 0,50. 200 cm 1,5 2,5. 6 m. 30 cm 4 dm 500 mm. 2 m. 70 dm. 150 cm. 3,5 m. 40 dm. 280 cm.

150 cm 2 m 70 dm. 280 cm 3,5 m 40 dm 3,50 0,50. 200 cm 1,5 2,5. 6 m. 30 cm 4 dm 500 mm. 2 m. 70 dm. 150 cm. 3,5 m. 40 dm. 280 cm. Skriv sträckorna i storleksordning. Längdenheter: meter (m), decimeter (dm), centimeter (cm) och millimeter (mm). Längden 15 cm kan skrivas på olika sätt: 15 cm = 1 m 5 cm = 1,5 m eller 15 dm cm eller

Läs mer

Catherine Bergman Maria Österlund

Catherine Bergman Maria Österlund Lgr 11 Matematik Åk 3 Geometri, mätningar och statistik FA C I T Catherine Bergman Maria Österlund Kan du använda geometriska begrepp? Kan du beskriva figurernas egenskaper, likheter och skillnader? Skriv

Läs mer

Svikten. enheter. Innehåll Tid och temperatur Längd Vikt Volym Problemlösning Kan du? Hur gick det?

Svikten. enheter. Innehåll Tid och temperatur Längd Vikt Volym Problemlösning Kan du? Hur gick det? Svikten enheter Innehåll Tid och temperatur Längd Vikt Volym Problemlösning Kan du? Hur gick det? 2 11 12 17 18 23 24 29 30 31 7, 9, 11, 15, 17, 21, 23, 27, 29 11, 17, 23, 29, 32 På sidorna 11, 17, 23,

Läs mer

Maria Österlund. I affären. Mattecirkeln Vikt 1

Maria Österlund. I affären. Mattecirkeln Vikt 1 Maria Österlund I affären Mattecirkeln Vikt 1 NAMN: Ringa in de vågar du känner till. I affären vägs en del varor i kassan. Ringa in de varor som brukar vägas i kassan. t.ex mat brev människor människor

Läs mer

parallellogram pentagon hexagon parallelltrapets

parallellogram pentagon hexagon parallelltrapets geometriska former och figurer Vad heter figurerna? Välj bland orden nedan. hexagon parallellogram parallelltrapets pentagon figur namn parallellogram pentagon hexagon parallelltrapets Hur många hörn och

Läs mer

Maria Österlund. Vatten. Mattecirkeln Volym 1

Maria Österlund. Vatten. Mattecirkeln Volym 1 Maria Österlund Vatten Mattecirkeln Volym 1 NAMN: Saftkannan rymmer 1 liter. I flaskan finns en liter saft. Vi kan säga att flaskan rymmer en liter. Prova hur många deciliter (dl) det behövs för att fylla

Läs mer

1 a) 8,3 b) 5,4. 2 a) 16,38 b) 20, m. 4 a) 6 cm 2 b) 5 cm 2. 5 a) m 2 b) m c) dm 2. 6 a) 12 m 2 b) 27 cm 2

1 a) 8,3 b) 5,4. 2 a) 16,38 b) 20, m. 4 a) 6 cm 2 b) 5 cm 2. 5 a) m 2 b) m c) dm 2. 6 a) 12 m 2 b) 27 cm 2 epetition Facit epetition a) 9, 7, 2 a),, a),,7 A,2 B,9 C,7 a),,0 c) 0,2 2,0 m 2, m 2,2 m, m 7 a) 0, m 0,0 m c) 0, m a) 9 a) 0 2 a) 7 a) st st 2 a) 7 0 a),0 kr,0 kr,7 m,7 km T.ex. 7 valpar dl 9 0, m 20

Läs mer

Öppna frågor (ur Good questions for math teaching)

Öppna frågor (ur Good questions for math teaching) Här är öppna frågor som jag hämtat från boken Good questions for math teaching som jag läste i våras när jag gick Lärarlyftet. Frågorna är sorterade efter ämne/tema och förhoppningsvis kan fler ha nytta

Läs mer

hund katt fiskar orm Hund Nej Mira frågade klasskompisarna vilket djur de gillade mest. Vilket djur var populärast?

hund katt fiskar orm Hund Nej Mira frågade klasskompisarna vilket djur de gillade mest. Vilket djur var populärast? sannolikhet statistk Mira frågade klasskompisarna vilket djur de gillade mest. hund katt fiskar orm Hund Vilket djur var populärast? Visar diagrammet rätt antal päron? Skriv ja eller nej. Nej 0 namn kopiering

Läs mer

Läxa nummer 1 klass 3

Läxa nummer 1 klass 3 Läxa nummer 1 klass 3 Skriv ditt namn i triangeln som ett konstverk! Det här är din läxbok för klass 3. Du kommer att få en läxa i veckan. Där det står X skriver du vilket tal X är under eller över X:et.

Läs mer

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll. ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,

Läs mer

Matematik. Namn: Datum:

Matematik. Namn: Datum: Matematik Namn: Datum: Multiplikation, tabell 2 och 4. Hur många ben har djuren tillsammans? + = = + + = = + + + + = = + = = + + + = = Skriv färdigt multiplikationen! 3 4 = 4 2 = 2 5 = 4 6 = 4 0 = 4 5

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 BEGREPP ÅR 3 Taluppfattning och tals användning ADDITION 3 + 4 = 7 term + term = summa I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 SUBTRAKTION 7-4 = 3 term term

Läs mer

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 =

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 = Arbetsblad NAMN: Addition och subtraktion i flera steg + 3 + 3 + + 3 + 3 + 9 3 3 9 9 9 39 3 3 + 39 3 + 99 0 3 Kopiering tillåten Matematikboken Författarna och Liber AB Arbetsblad Addition och subtraktion

Läs mer

Förtest. Hur kan jag arbeta med förtesten? Hur dokumenterar jag elevens kunskapsutveckling? Uppfattar du det som att eleven kan matematikinnehållet

Förtest. Hur kan jag arbeta med förtesten? Hur dokumenterar jag elevens kunskapsutveckling? Uppfattar du det som att eleven kan matematikinnehållet AB Vår LP (8766) Flik 0 Förtest (Lev vc).qxd 00-0-6 :5 Sida Förtest För alla lärare är det viktigt att skaffa sig en god bild av elevens kunskaper för att veta vad eleven behöver för att gå vidare i sin

Läs mer

Läxa nummer 1 klass 2

Läxa nummer 1 klass 2 Läxa nummer 1 klass 2 Rita hur det ser ut när du gör matteläxan! Skriv ditt namn också. Det här är din läxbok för klass 2. Du kommer i regel att få en läxa i veckan hela året. Skriv vilket tal som är X

Läs mer

Steg dl. 3 a) 12 b) eller 5 = = 6 a) 100% b) 75% 7 7 gröna rutor. Steg 5. 2 a) 600 b) 6% c) 270

Steg dl. 3 a) 12 b) eller 5 = = 6 a) 100% b) 75% 7 7 gröna rutor. Steg 5. 2 a) 600 b) 6% c) 270 Förtest Bråk och procent Steg a) b) dl Pizzadeg vatten jäst olja salt vetemjöl personer dl / paket msk / tsk / dl I den högra är störst del skuggad. a) T ex ruta av b) T ex rutor av Steg dl a) b) eller

Läs mer

FACIT Ö1A Ö1B. 1 a 25 b 40 c 50 d 500. 2 a 24 b 36 c 40 d 400. 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180.

FACIT Ö1A Ö1B. 1 a 25 b 40 c 50 d 500. 2 a 24 b 36 c 40 d 400. 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180. FACIT Ö1A 1 a 25 b 40 c 50 d 500 2 a 24 b 36 c 40 d 400 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180 Ö1B 1 a 3311 b 2042 2 a 2468 b 3579 c 1953 3 a 5566 b 7432 c 9876 4 a 1205

Läs mer

geometri och statistik

geometri och statistik Svikten geometri och statistik Innehåll Mönster Geometriska figurer Del av Matematiska ord Längd runt om Tredimensionella figurer Tabeller och diagram Problemlösning Kan du? Hur gick det? 2-3 4-5 6-7 8-9

Läs mer

Södervångskolans mål i matematik

Södervångskolans mål i matematik Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal

Läs mer

EKORREN gillar maskiner och teknik. Olstorpe Skoogh Johansson Lundberg. Bilder av Tomas Karlsson STEG 1. Grundbok 1B

EKORREN gillar maskiner och teknik. Olstorpe Skoogh Johansson Lundberg. Bilder av Tomas Karlsson STEG 1. Grundbok 1B MATTE MOSAIK EKORREN gillar maskiner och teknik. GRÄVLINGEN funderar noga på allting. Olstorpe Skoogh Johansson Lundberg Bilder av Tomas Karlsson BÄVERN är duktig på att tillverka saker. STEG 1 Grundbok

Läs mer

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal.

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. MATEMATIK ÅR1 MÅL Begrepps- och taluppfattning Kunna talbildsuppfattning, 0-10 EXEMPEL Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. Kunna

Läs mer

Ecolier för elever i åk 3 och 4

Ecolier för elever i åk 3 och 4 Till läraren Välkommen till Kängurutävlingen Matematikens hopp 17 mars 2016 Ecolier för elever i åk 3 och 4 Tävlingen ska genomföras under perioden 17 mars 1 april. Uppgifterna får inte användas tidigare.

Läs mer

1. Tina köper en joggingdress som kostar 186 kr. Hon betalar med två hundralappar. Hur mycket får hon tillbaka? Svar:

1. Tina köper en joggingdress som kostar 186 kr. Hon betalar med två hundralappar. Hur mycket får hon tillbaka? Svar: 8. MATEMATIK ÅK 5 8.1. Elevhäfte 8.1.1. Problemlösning 1 1. Tina köper en joggingdress som kostar 186 kr. Hon betalar med två hundralappar. Hur mycket får hon tillbaka? Svar: 2. Storleken av bildrutan

Läs mer

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation Bo skola Matematikmål år - Namn: Strävansmål: Vi strävar efter att varje elev ska Utveckla goda baskunskaper i de fyra räknesätten Utvecklar en god förståelse för matematik och matematiska begrepp att

Läs mer

Läxa nummer 1 klass 1

Läxa nummer 1 klass 1 Läxa nummer 1 klass 1 Rita hur det ser ut där du brukar göra läxan! Skriv namn! Det här är din läxbok för klass 1. Du kommer i regel att få en läxa i veckan hela året. Det är meningen att du ska läsa exemplet

Läs mer

Repetition 1A. Del I. a) 0,3 eller 0,13 b) 1,19 eller 1,2 c) eller. a) b) c) a) fem tiondelar = b) = c) tre hundradelar =

Repetition 1A. Del I. a) 0,3 eller 0,13 b) 1,19 eller 1,2 c) eller. a) b) c) a) fem tiondelar = b) = c) tre hundradelar = Repetition A Del I a) 976 + 2 = b) 07 233 = c) 6 = 2 Vilket av talen är störst? a) 0,3 eller 0,3 b),9 eller,2 c) 7 0 3 Hur stor andel av figuren är vit? a) b) c) eller 7 00 Skriv talen i decimalform. a)

Läs mer

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet

Läs mer

Volym. ARBETSBLAD kopiering tillåten sanoma utbildning Mönster i talföljder. ARBETSBLAD kopiering tillåten sanoma utbildning. Fortsätt talföljden.

Volym. ARBETSBLAD kopiering tillåten sanoma utbildning Mönster i talföljder. ARBETSBLAD kopiering tillåten sanoma utbildning. Fortsätt talföljden. Volym Välj olika kärl. Uppskatta hur mycket du tror att varje kärl rymmer. Mät sedan kärlets volym. 1 :1 Mönster i talföljder Fortsätt talföljden. 1 -hopp. : Kärl Jag uppskattar kärlets volym Kärlets volym

Läs mer

Övningsblad 1.1 A. Bråkbegreppet. 1 Skugga. 2 Hur stor andel av figuren är skuggad? 3 Ringa in 2 av stjärnorna.

Övningsblad 1.1 A. Bråkbegreppet. 1 Skugga. 2 Hur stor andel av figuren är skuggad? 3 Ringa in 2 av stjärnorna. Övningsblad 1.1 A Bråkbegreppet 1 Skugga 1 6 av figuren b) 2 3 av figuren 3 av figuren 4 2 Hur stor andel av figuren är skuggad? b) 3 Ringa in 2 av stjärnorna. 4 Skriv 20 valfria bokstäver och låt 1 av

Läs mer

Känguru 2012 Benjamin sid 1 / 8 (åk 6 och 7)

Känguru 2012 Benjamin sid 1 / 8 (åk 6 och 7) Känguru 2012 Benjamin sid 1 / 8 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt

Läs mer

Gillar du uppgifterna kan du hitta fler i bloggen, lillehammer.moobis.se. Matematik. Namn: Datum:

Gillar du uppgifterna kan du hitta fler i bloggen, lillehammer.moobis.se. Matematik. Namn: Datum: Matematik Namn: Datum: Mattepapper Blandad räkning 340 + 210 = 720 + 130 = 400-50 = 800-350 = 40 2 = 30 2 = 800 = + 300 700 = + 350 Visa hur du löser uppgifterna! 58 + 29 129 + 37 Visa hur du löser uppgifterna!

Läs mer

Högskoleverket NOG 2006-10-21

Högskoleverket NOG 2006-10-21 Högskoleverket NOG 2006-10-21 1. Rekommenderat dagligt intag (RDI) av kalcium är 0,8 g per person. 1 dl mellanmjölk väger 100 g. Hur mycket mellanmjölk ska man dricka för att få i sig rekommenderat dagligt

Läs mer

Matematik Formula, kap 3 Tal och enheter

Matematik Formula, kap 3 Tal och enheter Matematik Formula, kap 3 Tal och enheter Nedan berättar jag i punktform hur du ska arbeta och lite av det vi gör tillsammans. Listan kommer att fyllas på allteftersom vi arbetar. Då och då hittar du blå

Läs mer

Storvretaskolans Kursplan för Matematik F-klass- år 5

Storvretaskolans Kursplan för Matematik F-klass- år 5 2010-11-01 Storvretaskolans Kursplan för Matematik F-klass- år 5 Skolan skall i sin undervisning sträva efter att eleven : utvecklar intresse för matematik samt tilltro till det egna tänkandet och den

Läs mer

Matematik Formula, kap 3 Tal och enheter

Matematik Formula, kap 3 Tal och enheter Matematik Formula, kap 3 Tal och enheter Nedan berättar jag i punktform hur du ska arbeta och lite av det vi gör tillsammans. Listan kommer att fyllas på allteftersom vi arbetar. Då och då hittar du blå

Läs mer

Förskoleklassen År 1 År 2 År 3 År 4 År 5 År 6. Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall

Förskoleklassen År 1 År 2 År 3 År 4 År 5 År 6. Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Lokal kursplan i matematik Tal antal, mönster talmönster räkna antal oavsett föremålens storlek jämföra antalet föremål i två mängder genom att parbilda dem, t.ex. en tallrik till varje barn. räkna föremål

Läs mer

Lär dig hitta det dolda sockret!

Lär dig hitta det dolda sockret! Lär dig hitta det dolda sockret! Förr i tiden när man kokade sylt och saft hemma visste man hur mycket socker man använde. Idag köper de flesta all mat färdig i affären och därför är det svårt att veta

Läs mer

Taluppfattning och tals användning Matematik

Taluppfattning och tals användning Matematik Kartläggningsmaterial för nyanlända elever Taluppfattning och tals användning Matematik 1 2 Steg 3 SVENSKA Kartläggningsmaterial för nyanlända elever Taluppfattning och tals användning åk 3 MA 1 Skriv

Läs mer

Vikt och volym. Kapitel 4 Vikt och volym

Vikt och volym. Kapitel 4 Vikt och volym Vikt och volym Kapitel 4 Vikt och volym I kapitlet får eleverna arbeta med vikt och volym. Avsnittet om volym tar upp enheterna liter, deciliter och centiliter. Avsnittet om vikt tar upp enheterna kilogram,

Läs mer

Vad får du om du först halverar 180 och sedan halverar det nya talet en gång till?

Vad får du om du först halverar 180 och sedan halverar det nya talet en gång till? 1 Skriv tvåhundrafemtioentusensjuhundrasextiotre baklänges. Vad får du om du först halverar 180 och sedan halverar det nya talet en gång till? Vilken siffra står den romerska bokstaven V för? V Vilka siffror

Läs mer

Formulär för BARN 10-12 år. Det är så klart helt frivilligt att vara med. Om du inte vill svara på frågorna så kan du lämna tillbaka enkäten.

Formulär för BARN 10-12 år. Det är så klart helt frivilligt att vara med. Om du inte vill svara på frågorna så kan du lämna tillbaka enkäten. A B I S Formulär för BARN 10-12 år Det är så klart helt frivilligt att vara med. Om du inte vill svara på frågorna så kan du lämna tillbaka enkäten. Om du svarar på frågorna får du hoppa över de frågor

Läs mer

sträckan = tiden. hastigheten hastigheten = sträckan tiden 210 hastigheten = 3 = 70 Bilisten kör 70 km/h. tiden =

sträckan = tiden. hastigheten hastigheten = sträckan tiden 210 hastigheten = 3 = 70 Bilisten kör 70 km/h. tiden = Enheter och skala I det här kapitlet kan du lära dig mer om hastighet att skriva minuter som del av timme att räkna om km/h till m/s något om hastigheter till sjöss om volymenheterna cm 3, dm 3 och m 3

Läs mer

Avdelning 1, trepoängsproblem

Avdelning 1, trepoängsproblem Avdelning 1, trepoängsproblem 1. Vilket är ett jämnt tal? A: 2009 B: 2 + 0 + 0 + 9 C: 200 9 D: 200 9 E: 200 + 9 Frankrike 2. Var är kängurun? A: I cirkeln och i triangeln, men inte i kvadraten. B: I cirkeln

Läs mer

Algebra - uttryck och ekvationer

Algebra - uttryck och ekvationer Förenkla: Tänk så här: Du går till affären och köper 3 äpplen och 2 bananer och lösgodis för 7 kr. Din kompis köper 1 äpple och 3 bananer och lösgodis för 10 kr. Hur många äpplen och hur många bananer

Läs mer

Repstegen Diagnoser Enheter & tid

Repstegen Diagnoser Enheter & tid Repstegen Diagnoser Enheter & tid Diagnos Längd A a m b cm c mm Diagnos Längd B a m b mm c cm Fjärilen: mm Fröställningen: mm Skruven: mm Spindeln: cm eller 0 mm a 00 cm b 00 cm c 0 cm a 0 mm b 00 mm c

Läs mer

Extra-bok nummer 2B i matematik

Extra-bok nummer 2B i matematik Extra-bok nummer 2B i matematik Anneli Weiland 1 Öka 10 hela tiden -20-10 50 90 150 270 280 Skriv +, -, * eller / så att likheten stämmer 18 3 = 3 7 5 17 = 30 8 8 12 = 0 4 15 15 = 17 0 10 2 = 20 4 12 15

Läs mer

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter. M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per

Läs mer

Gymnasiets Cadet. a: 2 b: 4 c: 5 d: 6 e: 11

Gymnasiets Cadet. a: 2 b: 4 c: 5 d: 6 e: 11 Gymnasiets Cadet Avdelning 1. Trepoängsproblem 1. I en klass finns 1 flickor och 9 pojkar. Hälften av eleverna i klassen är förkylda. Vilket är det minsta antalet flickor som är förkylda? a: 2 b: 4 c:

Läs mer

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper.

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Lokala mål Tala och lyssna: Jag kan lyssna och förstå

Läs mer

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter:

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter: Matematik 1-5 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och

Läs mer

Facit Spra kva gen B tester

Facit Spra kva gen B tester Facit Spra kva gen B tester En stressig dag B 1 Pappan (mannen) låser dörren. 2 Han handlar mat efter jobbet. 3 Barnen gråter i affären. 4 Han diskar och tvättar efter maten. 5 Han somnar i soffan. C 1

Läs mer

Cadet. 1. I en klass finns 13 flickor och 9 pojkar. Hälften av eleverna i klassen är förkylda. Vilket är det minsta antalet flickor som är förkylda?

Cadet. 1. I en klass finns 13 flickor och 9 pojkar. Hälften av eleverna i klassen är förkylda. Vilket är det minsta antalet flickor som är förkylda? Cadet Avdelning 1. Trepoängsproblem 1. I en klass finns 1 flickor och 9 pojkar. Hälften av eleverna i klassen är förkylda. Vilket är det minsta antalet flickor som är förkylda? a: 2 b: 4 c: 5 d: 6 e: 11

Läs mer

Min skola - ቤ ት ቤ ት ት ም ህ ር ተ ይ. Klassrum ክ ፍ ሊ Matsal መብል ዒ መግ ቢ. Lekplats መጻ ወ ቲ ቦ ታ. Bokhylla ከ ብሒ (መቐ መጢ. Kontor ቤ ት ጽ ሕፈ ት.

Min skola - ቤ ት ቤ ት ት ም ህ ር ተ ይ. Klassrum ክ ፍ ሊ Matsal መብል ዒ መግ ቢ. Lekplats መጻ ወ ቲ ቦ ታ. Bokhylla ከ ብሒ (መቐ መጢ. Kontor ቤ ት ጽ ሕፈ ት. Min skola - ቤ ት ቤ ት ት ም ህ ር ተ ይ Klassrum ክ ፍ ሊ Matsal መብል ዒ መግ ቢ Lekplats መጻ ወ ቲ ቦ ታ Kontor ቤ ት ጽ ሕፈ ት Bok መጽ ሓፍ Bokhylla ከ ብሒ (መቐ መጢ መጻ ሕፍ ቲ ) Lärare መምህ ር Tavla ሰ ሌዳ Laptop - ላ ፕ ቶ ፕ (ኮ ምፑተ ር ) Skrivbok

Läs mer

Jämföra bråk 1. grön. grön blå. > > Måla. > > Måla de böcker där bråket är lika med 1 2.

Jämföra bråk 1. grön. grön blå. > > Måla. > > Måla de böcker där bråket är lika med 1 2. arbetsblad 7: Jämföra bråk > > Måla av figuren. Skriv med ett annat bråk hur stor del du målat. 0 > > Måla de böcker där bråket är lika med. _ 0 > > Måla så stor del av figuren som bråket visar. Måla grönt

Läs mer

LENNART SKOOGH. B. Låt eleverna ställa upp etappmål. A. Varje lärare är en matematiklärare. C. Kontinuitet i färdighetsträningen

LENNART SKOOGH. B. Låt eleverna ställa upp etappmål. A. Varje lärare är en matematiklärare. C. Kontinuitet i färdighetsträningen LENNART SKOOGH Det finns ingen kungsväg då det gäller att skaffa sig grundläggande färdigheter i matematik. Det behövs hårt och målmedvetet arbete. Men och det är ett viktigt men detta arbete kan göras

Läs mer

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning Allmänt om proven Detta prov består av del 1 och. Här finns också facit och förslag till poängsättning och bedömning. Provet finns på lärarwebben, dels som pdf-fil och dels som redigerbar Word-fil. Del

Läs mer

kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri

kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri Studieplan och bedömningsgrunder i Matematik för åk F-1 Stor-liten, framför - bakom, större än osv. kunna visa att du förstår ordens förhållande till varandra, tex. med hjälp av olika saker eller genom

Läs mer

Innehållsförteckning PEDAGOGISKA TANKAR 1. A LÄGENHET Story: Din familj flyttar in. B FRITIDSHUS Story: Du är 25 år och investerar i ett fritidshus

Innehållsförteckning PEDAGOGISKA TANKAR 1. A LÄGENHET Story: Din familj flyttar in. B FRITIDSHUS Story: Du är 25 år och investerar i ett fritidshus Innehållsförteckning PEDAGOGISKA TANKAR 1 A LÄGENHET Story: Din familj flyttar in Vikning - ritning 2 Tabell - stapeldiagram 3 Mäklaren - Att hyra 4 Problem 1: Mått 5 Problem 2: Renovera 6 Problem 3: Öppna

Läs mer

Matematik klass 2. Höstterminen. Anneli Weiland Matematik åk 2 HT 1

Matematik klass 2. Höstterminen. Anneli Weiland Matematik åk 2 HT 1 Matematik klass 2 Höstterminen Anneli Weiland Matematik åk 2 HT 1 Minns du från klass 1? Tiokamraterna 10=5+ 10=1+ 10=2+ 10=5+ 10=4+ 10=0+ 10=9+ 10=4+ 10=7+ 10=3+ 10=6+ 10=10+ 10=2+ 10=1+ 10=3+ 10=7+ 10=6+

Läs mer

Tal kors och tvärs. Lycka till!

Tal kors och tvärs. Lycka till! Tal kors och tvärs Runt omkring oss finns det fullt av tal: antal, årtal, talserier, lyckotal, olyckstal, udda tal, jämna tal, primtal, pyttesmå tal och gigantiskt stora tal. Det finns även gott om nummer:

Läs mer

Minska och öka ARBETSBLAD

Minska och öka ARBETSBLAD Minska och öka : 0 2 3 5 6 Minska med. Öka med. Minska med 2. Öka med 2. Addera 0. Subtrahera 0. Använd lämplig strategi. Räkna. + 5 2 + 2 + 2 + 0 2 5 0 0 2 6 5 + 6 0 + + 0 2 6 0 6 5 + 6 2 5 + 0 3 0 3

Läs mer

Lokal studieplan matematik åk 1-3

Lokal studieplan matematik åk 1-3 Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen

Läs mer

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60.

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60. Förord Det här häftet är tänkt som ett komplement till kapitel 5, Genrepet, i läroboken Matte Direkt år 9. Häftet vänder sig främst till de elever som har svårigheter att klara Genrepets nivå i boken och

Läs mer

Träna ordföljd Ett övningshäfte där du tränar rak ordföljd och omvänd ordföljd. Namn:

Träna ordföljd Ett övningshäfte där du tränar rak ordföljd och omvänd ordföljd. Namn: Träna ordföljd Ett övningshäfte där du tränar rak ordföljd och omvänd ordföljd. Namn: Träna rak ordföljd. Subjektet är först. Verbet är alltid på andra plats. Subjekt Verb Objekt Zlatan spelar fotboll.

Läs mer

Volym liter och deciliter

Volym liter och deciliter Volym liter och deciliter Måla så volymen stämmer. Skriv så volymen stämmer. : l och dl l dl l och 8 dl 0 l 9 dl dl l dl Hur många dl ska du hälla i för att få l? 7 9 dl dl dl dl dl Hur mycket? Skriv.

Läs mer

MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN

MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN Så här arbetar vi: Matematiken är ett språk. Vår undervisning har som mål att eleverna ska förstå och kunna använda det språket. Vi arbetar med grundläggande begrepp

Läs mer

ARBETSPLAN MATEMATIK

ARBETSPLAN MATEMATIK ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera

Läs mer

Gruppuppgift I. Tid. Säg till eleverna

Gruppuppgift I. Tid. Säg till eleverna Gruppuppgift I. Tid Introduktion till eleverna I den här uppgiften ska ni få arbeta tillsammans. Det betyder att alla ska hjälpas åt med uppgiften. Det är viktigt att alla får säga vad de tycker och varför

Läs mer

MÄSTERKATTEN 2B FACIT Kapitel 1

MÄSTERKATTEN 2B FACIT Kapitel 1 MÄSTERKATTEN B FACIT Kapitel EN lilla RÖA ÖNAN 0 en som är lat får ingen mat. Problemlösning Arbeta två oc två. En av de sex kycklingarna tycker inte om bullar. e andra äter en el bulle alla dagar. Gör

Läs mer

Idag ska jag till djurparken! Wow vad kul det ska bli. Det var 2 år sedan jag var där sisst? Hur gammal var Rut då?

Idag ska jag till djurparken! Wow vad kul det ska bli. Det var 2 år sedan jag var där sisst? Hur gammal var Rut då? MATTE PÅ ZOO HEJSAN! Jag heter Mattias och jag är 8 år. Jag kallas Matte, det har jag gjort sedan jag var väldigt liten. Jag har tre syskon. Elin, Matilda och Rut. Elin är två år mindre än mig. Matilda

Läs mer

Matematik Åk 3 Tal och räkning

Matematik Åk 3 Tal och räkning FA C I T Lgr 11 Matematik Åk 3 Tal och räkning Catherine Bergman Maria Österlund Kan du använda och beskriva tal? Hur långt kan du räkna framåt? Jag kan räkna till: Hur långt kan du räkna bakåt? Jag kan

Läs mer

Arbetsblad 3:1. Tolka uttryck. 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck.

Arbetsblad 3:1. Tolka uttryck. 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck. Arbetsblad :1 sid 78, 92 Tolka uttryck 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck. a) Karin är tre gånger så gammal: b) Katta är år yngre: a + a c) Kristina är en tredjedel så gammal:

Läs mer

PRIMA MATEMATIK UTMANING 1 FACIT

PRIMA MATEMATIK UTMANING 1 FACIT Kapitel om talen,,,, och 0 ela upp talen, och använa likhetstecknet. Va betyer siffran på bilen? Skriv eller berätta för en kompis. september Öva på att använa matematiska symboler. Va betyer siffran på

Läs mer

PENGAR TILLBAKA 2. GEOMETRI P. Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning

PENGAR TILLBAKA 2. GEOMETRI P. Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning 2. GEOETRI P R PENGAR TILLBAA Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning E R Löser problemet och ger korrekt svar E Redovisningen är

Läs mer

Facit åk 6 Prima Formula

Facit åk 6 Prima Formula 1 Facit åk 6 Prima Formula Kapitel 2 - Volym och skala Sidan 51 1 a C, F och G b D och H 2 A: sexsidigt prisma B: rätblock C: kon D: tetraeder (tresidig pyramid), E: tresidigt prisma F: klot G: cylinder

Läs mer

MATEMATIK. Åk 1 Åk 2. Naturliga tal Naturliga tal Större än, mindre än, lika med

MATEMATIK. Åk 1 Åk 2. Naturliga tal Naturliga tal Större än, mindre än, lika med MATEMATIK Åk 1 Åk 2 Naturliga tal 0-100 Naturliga tal 0-100 Talföljd Talföljd Tiokamrater Större än, mindre än, lika med Större än, mindre än, lika med Positionssystemet Sifferskrivning Talskrivning Add.

Läs mer

PRIMA MATEMATIK EXTRABOK 3 FACIT

PRIMA MATEMATIK EXTRABOK 3 FACIT PRIMA MATEMATIK EXTRABOK FACIT t.ex. Dela upp talet. = + + = + + = + + Dela upp talet i lika stora delar. = +, +++ = ++ = +, ++ = ++++ = + = + + Skriv alla uppdelningar du kan av talet, lika stora delar.,

Läs mer

Lokal kursplan i matematik för Stehags rektorsområde

Lokal kursplan i matematik för Stehags rektorsområde Lokal kursplan i matematik för Stehags rektorsområde MÅL Att eleverna ska få möjligheter att tillgodogöra sig de matematiska kunskaper som krävs för att uppnå kursplanens mål. Att eleverna ges en varierande

Läs mer

PRIMA MATEMATIK EXTRABOK 1 FACIT

PRIMA MATEMATIK EXTRABOK 1 FACIT PRIMA MATEMATIK EXTRABOK FACIT Hur många? Ringa in et minsta talet i varje ruta. Ringa in et största talet i varje ruta. Vilken siffra visar halva figuren? Skriv talraen. Prima kapitel, talen,,,, och,

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv

Läs mer

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10 Namn: Hela och halva tusental till 00 000 Addera och subtrahera. 000+ 000= 000 000+ 00 = 00 000-000= 000 000-00 = 00 Skriv talen i fallande ordningsföljd. 000 0 00 0 00 0 00 00 0 000 0 00 0 00 0 00 0 00

Läs mer

M onstertrubbel. till monstertrubbel

M onstertrubbel. till monstertrubbel M onstertrubbel Facit visar förslag på lösningar, men till vissa uppgifter hittar ni säkert även andra sätt att lösa problemen. F acit till monstertrubbel Det första monstret sitter inlåst i en trädkoja,

Läs mer

Samtals - och dokumentationsunderlag

Samtals - och dokumentationsunderlag Skolverkets kartläggningsmaterial för bedömning av nyanlända elevers kunskaper steg 2, dnr 2016:428 Samtals - och dokumentationsunderlag med uppgifter Numeracitet 1 Steg 2 3 Elever 9 år och äldre Samtals-

Läs mer

För barn över ett år gäller i stort sett samma kostråd som för vuxna.

För barn över ett år gäller i stort sett samma kostråd som för vuxna. Barn och mat Föräldrar har två viktiga uppgifter när det gäller sina barns mat. Den första är att se till att barnen får bra och näringsriktig mat, så att de kan växa och utvecklas optimalt. Den andra

Läs mer

Innehåll och förslag till användning

Innehåll och förslag till användning Övningar för de första skolåren med interaktiv skrivtavla och programmet RM Easiteach Next generation. Materialet är anpassat till och har referenser till. Innehåll och förslag till användning De interaktiva

Läs mer

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng Ämnesprov i matematik Skolår 9 Vårterminen 2004 Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 11 juni 2004. Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt

Läs mer

Kängurutävlingen Matematikens Hopp Ecolier 2003 Uppgifter

Kängurutävlingen Matematikens Hopp Ecolier 2003 Uppgifter Kängurutävlingen Matematikens Hopp Uppgifter Arrangeras av Kungl. Vetenskapsakademien & NCM/Nämnaren 3-poängsuppgifter 1. 0 + 1 + 2 + 3 + 4 3 2 1 0 = A: 0 B: 2 C: 4 D: 10 E: 16 2. Vilket tal ska stå på

Läs mer

Problem 1 2 3 4 5 6 7 Svar

Problem 1 2 3 4 5 6 7 Svar Känguru Ecolier, svarsblankett Namn Klass/Grupp Poängsumman Känguruskuttet Ta lös svarsblanketten. Skriv ditt svarsalternativ under numret. Lämna rutan tom om du inte vet svaret. Gissa inte, felaktigt

Läs mer

innehåll Vi handlar... 17 Pärlplattan... 4 Vi bygger... 18 Räcker pengarna?... 5 Klockan... 19 Vi mäter längden... 6 I affären... 20 Pilkastning...

innehåll Vi handlar... 17 Pärlplattan... 4 Vi bygger... 18 Räcker pengarna?... 5 Klockan... 19 Vi mäter längden... 6 I affären... 20 Pilkastning... innehåll Colin och Cilla.......... 2 Vi handlar............ Pärlplattan............ Vi bygger............. Räcker pengarna?....... Klockan.............. Vi mäter längden....... I affären............. 20

Läs mer

GUBBEN OCh GUMMAN SOM GJORDE ARBETSBYTE

GUBBEN OCh GUMMAN SOM GJORDE ARBETSBYTE MÄSTERKATTEN B FACIT GUBBEN OCh GUMMAN SOM GJORDE ARBETSBYTE Problemlösning Arbeta två och två. Gubben hade bakat plåtar med bullar. Några bullar på varje plåt blev brända.. Hur många bullar tror ni gubben

Läs mer

Tankenötter. från a till e

Tankenötter. från a till e Tankenötter från a till e H O L M S T R Ö M S M E D H A M R E Matematikserier av Holmström och smedhamre Kära Läsare Det här är den 4:e boken med tankenötter. Vissa nötter är enkla att knäcka, medan andra

Läs mer

Innehåll. Stryk under, ringa in, kryssa 2. I vilken ordning? 6. Vilken information? 10. På samma sätt 14. Följ ledtrådarna 18. Mönster 22.

Innehåll. Stryk under, ringa in, kryssa 2. I vilken ordning? 6. Vilken information? 10. På samma sätt 14. Följ ledtrådarna 18. Mönster 22. Innehåll Stryk under, ringa in, kryssa 2 I vilken ordning 6 Vilken information 10 På samma sätt 14 Följ ledtrådarna 18 Mönster 22 Glyfer 26 Pusselbitar 30 Den här boken tillhör 3 Stryk under, ringa in,

Läs mer

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod Lokal planering i Matematik, fskkl. 080415 Grundläggande taluppfattning 1-10, talkamrater 1-10. Träna begrepp som före/efter, mer/mindre, hälften/dubbelt. Parbildning. Ordningstal Längd meter. Vikt kg.

Läs mer

DAGBOK FÖR MATSVINN SAKER ATT TÄNKA PÅ NÄR DU FYLLER I DAGBOKEN

DAGBOK FÖR MATSVINN SAKER ATT TÄNKA PÅ NÄR DU FYLLER I DAGBOKEN DAGBOK FÖR MATSVINN Varje dag slängs stora mängder mat, anledningarna är nästan lika många som tillfällen det slängs. För att få bättre koll på vad som slängs i ditt hem har vi skapat den här lilla dagboken

Läs mer