Matematik. Namn: Datum:

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Matematik. Namn: Datum:"

Transkript

1 Matematik Namn: Datum:

2 Multiplikation, tabell 2 och 4. Hur många ben har djuren tillsammans? + = = + + = = = = + = = = =

3 Skriv färdigt multiplikationen! 3 4 = 4 2 = 2 5 = 4 6 = 4 0 = 4 5 = 8 2 = 6 2 = 2 5 = 4 4 = 3 2 = 4 5 = 4 = 16 5 = 20 4 = 40 4 = 8 5 = 20 6 = 18 2 = 14 4 = 28 2 = 18 2 = 16 4 = 0 2 = 2 Hugo ser 4 hundar. Hur många ben har hundarna tillsammans? Svar: Hur säker kände du dig när du gjorde uppgifterna?

4 Multiplikation och division, tabell 2 och 4. Skriv färdigt multiplikationen! 3 2 = 4 2 = 2 5 = 9 2 = 8 0 = 4 5 = 1 2 = 6 2 = 4 8 = 7 4 = 4 3 = 0 5 = 2 2 = 4 2 = 1 3 = 3 4 = 0 4 = 2 8 = 2 = 4 3 = 6 2 = 2 2 = 6 1 = 8 4 = = 6 4 = 16 5 = 25 = = 40 4 = 36 = 18 7 = 14 4 = 24 = 40 6 = 24 6 = 12 = 20 7 = 21 4 = 16 = 50 6 = 18 4 = 12

5 Multiplikation och division, tabell 2 och = 8 6 = = = 2 14 = = = = = = = = Fyra barn ska dela på 20 kulor. Hur många kulor får de var? Svar: Hur säker kände du dig när du gjorde uppgifterna?

6 Multiplikation, tabell 2-5. Hur många ben har djuren tillsammans? + = = + + = = = = = = = =

7 Skriv divisionen! Hundarna ska dela lika på hundgodiset. A B C D Hugo ser 6 djur på en bondgård. Hur många ben kan djuren ha tillsammans? Hur säker kände du dig när

8 Multiplikation, tabell 5 och 10. Öva tills du kan tabellerna utantill! Femmans tabell Tians tabell 1 5 = 1 10 = 2 5 = 2 10 = 3 5 = 3 10 = 4 5 = 4 10 = 5 5 = 5 10 = 6 5 = 6 10 = 7 5 = 7 10 = 8 5 = 8 10 = 9 5 = 9 10 = 10 5 = = Hur säker är du på tabellerna 5 och 10?

9 Att välja räknesätt när du löser matematiska problem. Ringa in det matematiska uttryck som beskriver uppgiften. Athena har köpt tre stora påsar popcorn. Varje påse kostar 15 kronor. Hur mycket ska Athena betala? I klassen är det 21 elever. När de ska duka finns det bara 12 glas. Hur många glas till behöver de? De 21 eleverna i klassen har samlat 50 kr var till klasskassan. Hur mycket har de samlat in tillsammans? I fruktskålen finns det päron och bananer. Det finns åta päron och dubbelt och så många bananer. Hur många bananer finns det?

10 Division och multiplikation hör ihop. Skriv färdigt divisionerna och multiplikationerna = = = 4 = 12 3 = 15 4 = = = = 5 = 15 6 = 12 4 = = = = = = = 10 Hur säker kände du dig när du gjorde uppgifterna?

11 MULTIPLIKATION Namn: datum: 1 9 = 4 2 = 4 10 = 2 8 = 2 2 = 3 6 = 3 4 = 3 3 = 10 8 = 4 5 = 2 5 = 6 10 = 1 8 = 1 4 = 5 3 = 7 2 = 1 4 = 3 2 = 3 5 = 3 6 = 9 2 = 4 5 = 2 5 = 6 2 = 0 8 = 4 4 = 5 10 = 7 1 = 4 0 = 3 10 = 0 5 = 1 6 = 9 10 =

12 MULTIPLIKATION Namn: datum: 9 9 = 4 8 = 3 7 = 8 8 = 2 9 = 3 0 = 7 4 = 3 9 = 3 10 = 9 5 = 8 5 = 6 6 = 6 8 = 9 4 = 5 6 = 7 7 = 4 4 = 3 9 = 6 5 = 3 6 = 9 7 = 9 8 = 8 4 = 5 5 = 8 7 = 4 5 = 6 6 = 6 7 = 4 6 = 9 4 = 6 9 = 4 3 = 8 10 =

13 Matematiska likheter, algebra. Lös ekvationerna. Vilket tal ska stå istället för bokstaven? 16 + a = a = 190 a = a = 600 x = x = 650 x = x = z = z = 198 z = z = 350 x = x = 2862 x = x = 2 x = x = 96 x = x =

14 Räkna med proportionella samband. Varje vecka får Milton 2000 kr i lön. Hur mycket har han fått efter två veckor? Svar: kr Hur mycket har han fått efter tre veckor? Svar: kr Skriv färdigt tabellen! Antal veckor Veckolön 1 vecka kr = kr 2 veckor kr = kr 3 veckor 2000 kr = kr 5 veckor = kr 8 veckor = kr 10 veckor = kr Öva tills du kan multiplikationerna utantill! 5 9 = 6 6 = 6 9 = 8 8 = 9 7 = 7 8 = 5 7 = 9 9 = 9 6 = Hur säker kände du dig när du gjorde uppgifterna?

15 Räkna med proportionella samband. Räkna med proportionella samband 1 kg äpple kostar 10 kr 1 10 kr = 10 kr 2 kg äpple kostar kr 10 kr = kr 3 kg äpple kostar kr kr = kr 5 kg äpple kostar kr kr = kr Lös ekvationerna. Vilket tal ska stå istället för bokstaven? 16 + a = a = 10 a = a = 600 x = x = 343 x = x =

16 Visa hur du löser uppgifterna! På Nyhensskolan finns det två klasser i årskurs tre. I klass 3 A går det 24 elever och i klass 3 B går det 23 elever. A) Hur många elever går i årskurs 3? B) Hur många treor är i skolan om 9 elever är sjuka? Svar: Svar: Hur säker kände du dig när du gjorde uppgifterna?

17 Jämföra areor och omkrets. Räkna hur många cm² (kvadratcentimeter) arean är! Måla figuren med störst area röd! Måla figuren med störst omkrets grön! Arean är Arean är Arean är Omkretsen är Omkretsen är Omkretsen är Arean är Arean är Arean är Omkretsen är Omkretsen är Omkretsen är Räkna ut omkretsen! =

18 Rita en figur med arean 12 cm² (kvadratcentimeter). Färglägg ytan! Rita en figur med arean 25 cm² (kvadratcentimeter). Färglägg ytan! Hur säker kände du dig när du gjorde uppgifterna?

19 Jämföra areor och omkrets. Area kommer från latinets area som betyder "öppen plats", "jämn plan" och "plan yta". KVADRATCENTIMETER cm² 1 cm 1 cm Så här räknar du ut arean 1 cm 1 cm = 1 cm² A Hur stor area har figurerna? Figur A har arean Figur B har arean B Figur C har arean Figur D har arean C D AREA & OMKRETS med huvudräkning En kvadrat har sidorna 5 cm. Då har kvadraten arean och omkretsen En rektangel har längden 10 cm och bredden 5 cm. Då har kvadraten arean och omkretsen

20 Arean av hela figuren är 100 cm² 10 cm Så här lätt räknar du ut arean 10 cm 10 cm = 100 cm² 10 cm Färglägg 10 cm² av figuren svart. Färglägg 20 cm² av figuren rött. Färglägg 19 cm² av figuren gult. Färglägg 50 cm² av figuren grått. Har du gjort rätt ska 100 mm² av figuren nu vara vit. Hur säker kände du dig när du gjorde uppgifterna?

21 Använda skala vid förminskning och förstoring. Skala - Förminskning Skala 1:1 Mät och rita figuren i skala 1:2. Mät och rita figuren i skala 1:4.

22 Skala - Förstoring Skala 1:1 Mät och rita figuren i skala 3:1. Hur säker kände du dig när du gjorde uppgifterna?

23 Area och omkrets. Area och omkrets Rita två olika figurer med arean 10 cm². Rita två olika figurer med omkretsen 20 cm.

24 Varje vecka kan brandstationen ta emot tre skolklasser. A) Hur många klasser kan de ta emot på sju veckor? B) Hur många klasser kan de ta emot på nio veckor? Svar: Svar: Den stora tankbilen rymmer 9000 liter vatten. Efter en uttryckning var en tredjedel av vattnet kvar. Hur mycket vatten fanns kvar? Svar: På brandstationen finns många vattenslangar. Didrik ser fyra slangar. Varje slang är 30 meter lång. Hur långa är de tillsammans? Svar: Hur säker kände du dig när du gjorde uppgifterna?

25 Del av helhet. Måla ½ av varje figur. Måla ⅓ av varje figur. Måla ¼ av varje figur. Hur säker kände du dig när du gjorde uppgifterna?

26 Använda skala vid förminskning och förstoring. SKALA 1:3 Skala 1:3 betyder att du förminskar tre gånger Rita av den här figuren i skala 1:3 SKALA 1:10 Rita av valfritt föremål i skala 1:10 Skala 1:10 betyder att du förminskar tio gånger Föremålet jag har valt har i skala 1:1 längden och bredden Hur säker kände du dig när du gjorde uppgifterna?

27 Måttenheter m dm cm mm , Eleverna i trean håller måttet! OBS! Han åker längdskidor l dl cl ml 0, kg hg g ,5 Hur säker kände du dig när du gjorde uppgifterna?

28 Dela upp tal. Exempel 5000 = = = = Testa själv! Gör på fyra olika sätt! 6000 = = = = = = = = + + Hur säker kände du dig när du gjorde uppgifterna?

29 Jämföra och beskriva geometriska objekt. Skriv rätt ord i rutorna. Välj mellan: Fyll i det som saknas. Rätblocket har hörn sidor kanter Sätt prickar på objektens hörn. Skriv hur många hörn det är. Triangeln har hörn. Kvadraten har hörn. Rektangeln har

30 Sätt kryss på objektens sidor. Skriv hur många sidor det är. Triangeln har sidor. Kvadraten har sidor. Skriv hur många sidor objektet har. Kuben har sidor. Rätblocket har sidor. Ta fram en kub, till exempel en tärning. Fyll i det som saknas. Kuben har hörn. Kuben har sidor. Kuben har kanter. Hur säker kände du dig när du gjorde uppgifterna?

31

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning Allmänt om proven Detta prov består av del 1 och. Här finns också facit och förslag till poängsättning och bedömning. Provet finns på lärarwebben, dels som pdf-fil och dels som redigerbar Word-fil. Del

Läs mer

FACIT Ö1A Ö1B. 1 a 25 b 40 c 50 d 500. 2 a 24 b 36 c 40 d 400. 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180.

FACIT Ö1A Ö1B. 1 a 25 b 40 c 50 d 500. 2 a 24 b 36 c 40 d 400. 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180. FACIT Ö1A 1 a 25 b 40 c 50 d 500 2 a 24 b 36 c 40 d 400 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180 Ö1B 1 a 3311 b 2042 2 a 2468 b 3579 c 1953 3 a 5566 b 7432 c 9876 4 a 1205

Läs mer

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 BEGREPP ÅR 3 Taluppfattning och tals användning ADDITION 3 + 4 = 7 term + term = summa I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 SUBTRAKTION 7-4 = 3 term term

Läs mer

150 cm 2 m 70 dm. 280 cm 3,5 m 40 dm 3,50 0,50. 200 cm 1,5 2,5. 6 m. 30 cm 4 dm 500 mm. 2 m. 70 dm. 150 cm. 3,5 m. 40 dm. 280 cm.

150 cm 2 m 70 dm. 280 cm 3,5 m 40 dm 3,50 0,50. 200 cm 1,5 2,5. 6 m. 30 cm 4 dm 500 mm. 2 m. 70 dm. 150 cm. 3,5 m. 40 dm. 280 cm. Skriv sträckorna i storleksordning. Längdenheter: meter (m), decimeter (dm), centimeter (cm) och millimeter (mm). Längden 15 cm kan skrivas på olika sätt: 15 cm = 1 m 5 cm = 1,5 m eller 15 dm cm eller

Läs mer

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60.

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60. Förord Det här häftet är tänkt som ett komplement till kapitel 5, Genrepet, i läroboken Matte Direkt år 9. Häftet vänder sig främst till de elever som har svårigheter att klara Genrepets nivå i boken och

Läs mer

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter. M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per

Läs mer

Lokal studieplan matematik åk 1-3

Lokal studieplan matematik åk 1-3 Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen

Läs mer

Rep 1 NÅGOT EXTRA. Sidan 88. Sidan 85. Sidan 89. Sidan 86. Sidan 87. Sidan 90

Rep 1 NÅGOT EXTRA. Sidan 88. Sidan 85. Sidan 89. Sidan 86. Sidan 87. Sidan 90 2 VOLYM OCH SKALA / REP 1 FACIT TILL ELEVBOKEN 125 a dl b ml c cl d l 126 5 st 127 200 cm 3 (2 dl = 0,2 l = 0,2 dm 3 = 200 cm 3 ) Sidan 85 128 A B C D Vas tom 235 g 528 g 0,85 kg 1,250 kg Vas med vatten

Läs mer

Lathund, geometri, åk 9

Lathund, geometri, åk 9 Lathund, geometri, åk 9 I årskurs 7 och 8 räknade ni med sträckor och ytor i en dimension (1D) respektive två dimensioner (2D). Nu i årskurs 9 har ni istället börjat räkna volymer av geometriska kroppar

Läs mer

Addition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning 1 3 5 = 2 2 2 + 5 = 3 3 7 + 3 = 4 4 1 4 = 5 7 2 + 7 5

Addition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning 1 3 5 = 2 2 2 + 5 = 3 3 7 + 3 = 4 4 1 4 = 5 7 2 + 7 5 OH 1 Addition och subtraktion Vilka uträkningar visas på tallinjerna nedan? 1 = 7 6 1 0 1 + = 7 6 1 0 1 7 + = 7 6 1 0 1 1 = 7 6 1 0 1 Beräkna med huvudräkning 8 6 6 8 7 + 7 8 9 7 9 1 8 10 1 + 0 Kopiering

Läs mer

Facit åk 6 Prima Formula

Facit åk 6 Prima Formula 1 Facit åk 6 Prima Formula Kapitel 2 - Volym och skala Sidan 51 1 a C, F och G b D och H 2 A: sexsidigt prisma B: rätblock C: kon D: tetraeder (tresidig pyramid), E: tresidigt prisma F: klot G: cylinder

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

Gruppledtrådar 6-2A (i samband med sidorna 50-60) Ledtråd 2 Den har 4 begränsningsytor (B). Ledtråd 1 Polyedern är regelbunden.

Gruppledtrådar 6-2A (i samband med sidorna 50-60) Ledtråd 2 Den har 4 begränsningsytor (B). Ledtråd 1 Polyedern är regelbunden. Gruppledtrådar 6-2A (i samband med sidorna 50-60) Polyedern är regelbunden. Den har 4 begränsningsytor (B). Polyedern har 4 hörn (H). Antal kanter (K) kan beräknas med formeln B + H K = 2 Begränsningsytorna

Läs mer

Kunskapsmål och betygskriterier för matematik

Kunskapsmål och betygskriterier för matematik 1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under

Läs mer

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet

Läs mer

2. 1 L ä n g d, o m k r e t s o c h a r e a

2. 1 L ä n g d, o m k r e t s o c h a r e a 2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda

Läs mer

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att

Läs mer

PRIMA MATEMATIK EXTRABOK 3 FACIT

PRIMA MATEMATIK EXTRABOK 3 FACIT PRIMA MATEMATIK EXTRABOK FACIT t.ex. Dela upp talet. = + + = + + = + + Dela upp talet i lika stora delar. = +, +++ = ++ = +, ++ = ++++ = + = + + Skriv alla uppdelningar du kan av talet, lika stora delar.,

Läs mer

Avdelning 1, trepoängsproblem

Avdelning 1, trepoängsproblem Avdelning 1, trepoängsproblem 1. Vilket är ett jämnt tal? A: 2009 B: 2 + 0 + 0 + 9 C: 200 9 D: 200 9 E: 200 + 9 Frankrike 2. Var är kängurun? A: I cirkeln och i triangeln, men inte i kvadraten. B: I cirkeln

Läs mer

Sammanfattningar Matematikboken X

Sammanfattningar Matematikboken X Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för

Läs mer

Matematik 92MA41 (15hp) Vladimir Tkatjev

Matematik 92MA41 (15hp) Vladimir Tkatjev Matematik 92MA41 (15hp) Vladimir Tkatjev Lite inspiration Går det att konstruera 6 kvadrater av 12 tändstickor? Hur gör man då? (Nämnaren, Nr 2, 2005) Litet klurigt kanske, bygg en kub av stickorna: Uppgift

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv

Läs mer

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod Lokal planering i Matematik, fskkl. 080415 Grundläggande taluppfattning 1-10, talkamrater 1-10. Träna begrepp som före/efter, mer/mindre, hälften/dubbelt. Parbildning. Ordningstal Längd meter. Vikt kg.

Läs mer

4-4 Parallellogrammer Namn:..

4-4 Parallellogrammer Namn:.. 4-4 Parallellogrammer Namn:.. Inledning Hittills har du arbetat bl.a. med linjer och vinklar. En linje är ju någonting som bara har en dimension, längd. Men när två linjer skär varandra och det bildas

Läs mer

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Matematik Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven

Läs mer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna

Läs mer

Maria Österlund. På vikingarnas tid. Mattecirkeln Geometri 1

Maria Österlund. På vikingarnas tid. Mattecirkeln Geometri 1 Maria Österlund På vikingarnas tid Mattecirkeln Geometri 1 namn: I Vinland bodde Rigmor, Harald Blåtand, Orm och Ylva i vikingabyn. Orm och Harald Blåtand kom hem efter ett lyckat rövartåg. Här ser du

Läs mer

1 a) 8,3 b) 5,4. 2 a) 16,38 b) 20, m. 4 a) 6 cm 2 b) 5 cm 2. 5 a) m 2 b) m c) dm 2. 6 a) 12 m 2 b) 27 cm 2

1 a) 8,3 b) 5,4. 2 a) 16,38 b) 20, m. 4 a) 6 cm 2 b) 5 cm 2. 5 a) m 2 b) m c) dm 2. 6 a) 12 m 2 b) 27 cm 2 epetition Facit epetition a) 9, 7, 2 a),, a),,7 A,2 B,9 C,7 a),,0 c) 0,2 2,0 m 2, m 2,2 m, m 7 a) 0, m 0,0 m c) 0, m a) 9 a) 0 2 a) 7 a) st st 2 a) 7 0 a),0 kr,0 kr,7 m,7 km T.ex. 7 valpar dl 9 0, m 20

Läs mer

Ämnesplan i matematik för Häggenås, Bringåsen och Treälven

Ämnesplan i matematik för Häggenås, Bringåsen och Treälven Ämnesplan i matematik för Häggenås, Bringåsen och Treälven (2009-05-14) Namn Utarbetad under läsåret 08/09 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik

Läs mer

fredag den 11 april 2014 POOL BYGGE

fredag den 11 april 2014 POOL BYGGE POOL BYGGE KLADD Såhär ser min kladd ut: På min kladd så bestämde jag mig för vilken form poolen skulle ha och ritade ut den. På min kladd har jag även skrivit ut måtten som min pool skulle vara i. Proportionerna

Läs mer

Min pool. Hanna Lind 7:2 Alfa

Min pool. Hanna Lind 7:2 Alfa Min pool Hanna Lind 7:2 Alfa RITNING Jag började med att räkna ut ett antal rimliga mått som jag visste blev heltal när jag delade dom på 30, det gjorde jag då skalan var 1:30. I min ritning visar jag

Läs mer

geometri och statistik

geometri och statistik Svikten geometri och statistik Innehåll Mönster Geometriska figurer Del av Matematiska ord Längd runt om Tredimensionella figurer Tabeller och diagram Problemlösning Kan du? Hur gick det? 2-3 4-5 6-7 8-9

Läs mer

a) 4a + a b) 4a 3a c) 4(a + 1)

a) 4a + a b) 4a 3a c) 4(a + 1) REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll. ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,

Läs mer

Per Berggren och Maria Lindroth 2012-10-30

Per Berggren och Maria Lindroth 2012-10-30 Varierad undervisning Per Berggren och Maria Lindroth 2012-10-30 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga

Läs mer

P O O L B Y G G E. Bilden tagen utav - Andrej Trnkoczy, ifrån flickr. tisdag 8 april 14

P O O L B Y G G E. Bilden tagen utav - Andrej Trnkoczy, ifrån flickr. tisdag 8 april 14 P O O L B Y G G E Bilden tagen utav - Andrej Trnkoczy, ifrån flickr Det du behöver veta i denna keynote är.. Vad skala är/ hur man räknar med skala Vad omkrets är/ hur man räknar med omkrets Vad area är/

Läs mer

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod: SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på

Läs mer

Läxa 1 efter sidan 11

Läxa 1 efter sidan 11 Läxa 1 efter sidan 11 1 Skriv det tal som har a) 5 tiotusental 3 tusental 8 hundratal 7 tiotal 4 ental b) 9 hundratusental 2 tiotusental 5 tusental 4 hundratal 3 ental c) 2 hundratusental 4 tusental 9

Läs mer

Känguru 2012 Benjamin sid 1 / 8 (åk 6 och 7)

Känguru 2012 Benjamin sid 1 / 8 (åk 6 och 7) Känguru 2012 Benjamin sid 1 / 8 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt

Läs mer

18 a) 36 b) 900 c) 25 d) 1 REPETITIONSUPPGIFTER 2. 1 a) 20 m 2 b) 16 m 2 c) 10 m 2 d) 48 m 2 (50, 24 m 2 )

18 a) 36 b) 900 c) 25 d) 1 REPETITIONSUPPGIFTER 2. 1 a) 20 m 2 b) 16 m 2 c) 10 m 2 d) 48 m 2 (50, 24 m 2 ) epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver

Läs mer

parallellogram pentagon hexagon parallelltrapets

parallellogram pentagon hexagon parallelltrapets geometriska former och figurer Vad heter figurerna? Välj bland orden nedan. hexagon parallellogram parallelltrapets pentagon figur namn parallellogram pentagon hexagon parallelltrapets Hur många hörn och

Läs mer

Lokala mål i matematik

Lokala mål i matematik Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal

Läs mer

Förtest. Hur kan jag arbeta med förtesten? Hur dokumenterar jag elevens kunskapsutveckling? Uppfattar du det som att eleven kan matematikinnehållet

Förtest. Hur kan jag arbeta med förtesten? Hur dokumenterar jag elevens kunskapsutveckling? Uppfattar du det som att eleven kan matematikinnehållet AB Vår LP (8766) Flik 0 Förtest (Lev vc).qxd 00-0-6 :5 Sida Förtest För alla lärare är det viktigt att skaffa sig en god bild av elevens kunskaper för att veta vad eleven behöver för att gå vidare i sin

Läs mer

Mattestegens matematik

Mattestegens matematik höst Decimaltal pengar kr 0 öre,0 kr Rita 0,0 kr på olika sätt. räkna,0,0 storleksordna decimaltal Sub för lite av två talsorter 7 00 0 tallinjer heltal 0 0 Add med tiotalsövergångar 0 7 00 0 Sub för lite

Läs mer

32 Skriv med siffror. 33 Vilket tal ska stå istället för rutan? 34 Skriv talen i storleksordning. Börja med det minsta.

32 Skriv med siffror. 33 Vilket tal ska stå istället för rutan? 34 Skriv talen i storleksordning. Börja med det minsta. Målgången I det här kapitlet får du möjlighet att repetera och träna mer på det du hittills lärt dig om > taluppfattning > räknesätten > bråk > procent > sannolikhetslära > algebra > geometri > statistik

Läs mer

Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18

Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18 Innehåll 1 Allmän information Seriens uppbyggnad Lärobokens struktur 6 Kapitelinledning 7 Avsnitten 7 Pratbubbleuppgifter Aktivitet Taluppfattning och huvudräkning 9 Resonera och utveckla 9 Räkna och häpna

Läs mer

Högstadiets matematikorientering

Högstadiets matematikorientering Högstadiets matematikorientering STARTKORT MATEMATIKORIENTERING KONTROLLER FYLL I DINA SVAR FRÅN DE OLIKA KONTROLLERNA. HITTA OCH LÖS SÅ MÅNGA KONTROLLER DU HINNER. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Läs mer

Södervångskolans mål i matematik

Södervångskolans mål i matematik Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal

Läs mer

Centralt innehåll. Problemlösning. Taluppfattning och tals användning. Tid och pengar. Sannolikhet och statistik. Geometri.

Centralt innehåll. Problemlösning. Taluppfattning och tals användning. Tid och pengar. Sannolikhet och statistik. Geometri. MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Arbetsblad 3:1. Tolka uttryck. 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck.

Arbetsblad 3:1. Tolka uttryck. 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck. Arbetsblad :1 sid 78, 92 Tolka uttryck 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck. a) Karin är tre gånger så gammal: b) Katta är år yngre: a + a c) Kristina är en tredjedel så gammal:

Läs mer

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.

Läs mer

Storvretaskolans Kursplan för Matematik F-klass- år 5

Storvretaskolans Kursplan för Matematik F-klass- år 5 2010-11-01 Storvretaskolans Kursplan för Matematik F-klass- år 5 Skolan skall i sin undervisning sträva efter att eleven : utvecklar intresse för matematik samt tilltro till det egna tänkandet och den

Läs mer

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal.

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. MATEMATIK ÅR1 MÅL Begrepps- och taluppfattning Kunna talbildsuppfattning, 0-10 EXEMPEL Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. Kunna

Läs mer

Geometri. Mål. 50 Geometri

Geometri. Mål. 50 Geometri Geometri Mål När eleverna har arbetat med det här kapitlet ska de kunna mäta och räkna ut omkretsen på olika geometriska figurer räkna ut arean av rektanglar, kvadrater och trianglar använda de vanligaste

Läs mer

Att förstå bråk och decimaltal

Att förstå bråk och decimaltal Att förstå bråk och decimaltal Flera undersökningar som är gjorda visar att elever har svårt att förstå bråk. I undervisningen är det också vanligt att eleverna lär sig olika regler för bråk, men få förstår

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

Matematikplanering 3 geometri HT-12 VT-13 7 a KON

Matematikplanering 3 geometri HT-12 VT-13 7 a KON Matematikplanering 3 geometri HT-12 VT-13 7 a KON MÅL Grundkurs Mäta (med gradskiva) och beräkna vinklar Känna till triangelns vinkelsumma och använda den för att räkna ut vinklar Kunna namnen på några

Läs mer

Vardagsord. Förstår ord som fler än, färre än osv. Har kunskap om hälften/dubbelt. Ex. Uppfattning om antal

Vardagsord. Förstår ord som fler än, färre än osv. Har kunskap om hälften/dubbelt. Ex. Uppfattning om antal TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det femte skolåret: Eleven skall ha förvärvat sådana grundläggande kunskaper i matematik som behövs för att kunna beskriva och hantera situationer

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

Svårighetsnivåer: 1 6

Svårighetsnivåer: 1 6 Svårighetsnivåer: 1 6 Uppgiften är att först bygga en cirkel med hjälp av koner och en lina (cirkelns radie), och sedan göra olika uppgifter som går ut på att dela in cirkeln i delar med hjälp av linor.

Läs mer

Känguru 2012 Cadet (åk 8 och 9)

Känguru 2012 Cadet (åk 8 och 9) sid 1 / 7 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt svar ger minus 1/4

Läs mer

Övningsblad 1.1 A. Bråkbegreppet. 1 Skugga. 2 Hur stor andel av figuren är skuggad? 3 Ringa in 2 av stjärnorna.

Övningsblad 1.1 A. Bråkbegreppet. 1 Skugga. 2 Hur stor andel av figuren är skuggad? 3 Ringa in 2 av stjärnorna. Övningsblad 1.1 A Bråkbegreppet 1 Skugga 1 6 av figuren b) 2 3 av figuren 3 av figuren 4 2 Hur stor andel av figuren är skuggad? b) 3 Ringa in 2 av stjärnorna. 4 Skriv 20 valfria bokstäver och låt 1 av

Läs mer

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10 Namn: Hela och halva tusental till 00 000 Addera och subtrahera. 000+ 000= 000 000+ 00 = 00 000-000= 000 000-00 = 00 Skriv talen i fallande ordningsföljd. 000 0 00 0 00 0 00 00 0 000 0 00 0 00 0 00 0 00

Läs mer

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK RÖDA TRÅDEN MATEMATIK F-KLASS ÅK 5 F-KLASS TALUPPFATTNING ALGEBRA Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas Matematiska likheter och likhetstecknets

Läs mer

MÄSTERKATTEN REPETITON OCH UTMANING 3 FACIT. VÄlKoMMEN Till hur lätt eller svår du tyckte sidan var: Måla de sidor du gjort: Repetition och Utmaning

MÄSTERKATTEN REPETITON OCH UTMANING 3 FACIT. VÄlKoMMEN Till hur lätt eller svår du tyckte sidan var: Måla de sidor du gjort: Repetition och Utmaning MÄSTERKTTEN REPETITON OCH UTMNING FCIT Reflektion VÄlKoMMEN Till hur lätt eller svår du tyckte sidan var: MÄSTERKTTEN = svår gul = mittemellan grön = lätt et är dubbelt så många päron som apelsiner röd

Läs mer

Förskoleklassen År 1 År 2 År 3 År 4 År 5 År 6. Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall

Förskoleklassen År 1 År 2 År 3 År 4 År 5 År 6. Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Lokal kursplan i matematik Tal antal, mönster talmönster räkna antal oavsett föremålens storlek jämföra antalet föremål i två mängder genom att parbilda dem, t.ex. en tallrik till varje barn. räkna föremål

Läs mer

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation Bo skola Matematikmål år - Namn: Strävansmål: Vi strävar efter att varje elev ska Utveckla goda baskunskaper i de fyra räknesätten Utvecklar en god förståelse för matematik och matematiska begrepp att

Läs mer

Uppgifter till Första-hjälpen-lådan

Uppgifter till Första-hjälpen-lådan Uppgifter till Första-hjälpen-lådan Många Stockholmslärare har fått en första-hjälpen-låda i matematik då de deltagit i de kurser som letts av Karin Kairavuo, matematiklärare från Mattelandet i Helsingfors.

Läs mer

kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri

kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri Studieplan och bedömningsgrunder i Matematik för åk F-1 Stor-liten, framför - bakom, större än osv. kunna visa att du förstår ordens förhållande till varandra, tex. med hjälp av olika saker eller genom

Läs mer

MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN

MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN Så här arbetar vi: Matematiken är ett språk. Vår undervisning har som mål att eleverna ska förstå och kunna använda det språket. Vi arbetar med grundläggande begrepp

Läs mer

Gemensam presentation av matematiskt område: Geometri Åldersgrupp: år 5

Gemensam presentation av matematiskt område: Geometri Åldersgrupp: år 5 Gemensam presentation av matematiskt område: Geometri Åldersgrupp: år 5 Mål för lektionen: Eleverna skall kunna skilja på begreppen area och omkrets. Koppling till strävansmål: - Att eleven utvecklar intresse

Läs mer

PENGAR TILLBAKA 2. GEOMETRI P. Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning

PENGAR TILLBAKA 2. GEOMETRI P. Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning 2. GEOETRI P R PENGAR TILLBAA Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning E R Löser problemet och ger korrekt svar E Redovisningen är

Läs mer

Värt att veta om högstadiets matematik

Värt att veta om högstadiets matematik Värt att veta om högstadiets matematik Av: Thomas Sundell Dessa uppgifter är övningsexempel gjorda för godkänd nivå. Upprepa gärna övningar inför varje prov. Aritmetik sid Jämförelsepris Sid Bråk Sid Procent

Läs mer

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform. 1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd

Läs mer

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 =

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 = Arbetsblad NAMN: Addition och subtraktion i flera steg + 3 + 3 + + 3 + 3 + 9 3 3 9 9 9 39 3 3 + 39 3 + 99 0 3 Kopiering tillåten Matematikboken Författarna och Liber AB Arbetsblad Addition och subtraktion

Läs mer

Uppfriskande Sommarmatematik

Uppfriskande Sommarmatematik Uppfriskande Sommarmatematik Matematiklärarna på Bäckängsgymnasiet genom Johan Espenberg juni 206 Välkommen till Naturvetenskapsprogrammet GRATTIS till din plats på Naturvetenskapsprogrammet på Bäckängsgymnasiet!

Läs mer

Mattelandet/KK 1. Första hjälpen lådan. Innehåll: Tiobasmaterial Bråkkakor Geobräde Talstavar och skena(1m) Geometriska former Tangram Logiska block

Mattelandet/KK 1. Första hjälpen lådan. Innehåll: Tiobasmaterial Bråkkakor Geobräde Talstavar och skena(1m) Geometriska former Tangram Logiska block Mattelandet/KK 1 Första hjälpen lådan Innehåll: Tiobasmaterial Bråkkakor Geobräde Talstavar och skena(1m) Geometriska former Tangram Logiska block Som namnet antyder är materialet avsett för lärare som

Läs mer

Problem 1 2 3 4 5 6 7 Svar

Problem 1 2 3 4 5 6 7 Svar Känguru Cadet, svarsblankett Namn Klass/Grupp Poängsumman Känguruskuttet Ta lös svarsblanketten. Skriv ditt svarsalternativ under numret. Lämna rutan tom om du inte vet svaret. Gissa inte, felaktigt svar

Läs mer

A. Kunna arbeta med de varierade arbetssätt som förekommer. B. Eleven ska kunna redovisa lösningar så att de kan följas av läraren.

A. Kunna arbeta med de varierade arbetssätt som förekommer. B. Eleven ska kunna redovisa lösningar så att de kan följas av läraren. Vifolkaskolan Utdrag ur Bedömning och betygssättning : Det som sker på lektionerna och vid lektionsförberedelser hemma, liksom närvaro och god ordning är naturligtvis i de flesta fall förutsättningar och

Läs mer

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna.

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna. REPETITION Hur mcket är a) 9 b) 00 0 c) 00 På en karta i skala : 0 000 är det, cm mellan två små sjöar. Hur långt är det i verkligheten? Grafen visar hur långt en bil hinner de se första sekunderna efter

Läs mer

PRIMA MATEMATIK EXTRABOK 1 FACIT

PRIMA MATEMATIK EXTRABOK 1 FACIT PRIMA MATEMATIK EXTRABOK FACIT Hur många? Ringa in det minsta talet i varje ruta. Ringa in det största talet i varje ruta. Måla rutor så att det stämmer åt båda håll. Exempel: Skriv talraden.,,, Skriv

Läs mer

8-1 Formler och uttryck. Namn:.

8-1 Formler och uttryck. Namn:. 8-1 Formler och uttryck. Namn:. Inledning Ibland vill du lösa lite mer komplexa problem. Till exempel: Kalle är dubbelt så gammal som Stina, och tillsammans är de 33 år. Hur gammal är Kalle och Stina?

Läs mer

Planering Geometri a r 9

Planering Geometri a r 9 Planering Geometri a r 9 Mål När du har arbetat med det här kapitlet ska du kunna: förstå vad volym är för något ge namn och känna igen olika rymdgeometriska kroppar, till exempel rätblock, kub, cylinder,

Läs mer

Fira Pi-dagen med Liber!

Fira Pi-dagen med Liber! Fira Pi-dagen med Liber! Specialuppdrag från Uppdrag: Matte o Kul-diagram o Geometri med färg UPPDRAG: MATTE Mattedetektiverna Mattespanarna Hej! Den 14 mars är det Pi-dagen (3.14). Det är värt att uppmärksammas

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 6

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 6 Kompletterande lösningsförslag och ledningar, Matematik 000 kurs A, kapitel Kapitel.1 101, 10, 10 Eempel som löses i boken. 104, 105, 10, 107, 108, 109 Se facit 110 a) Ledning: Alla punkter med positiva

Läs mer

Lokal kursplan i matematik för Stehags rektorsområde

Lokal kursplan i matematik för Stehags rektorsområde Lokal kursplan i matematik för Stehags rektorsområde MÅL Att eleverna ska få möjligheter att tillgodogöra sig de matematiska kunskaper som krävs för att uppnå kursplanens mål. Att eleverna ges en varierande

Läs mer

och symmetri Ur det centrala innehållet Förmågor Problemlösning Metod

och symmetri Ur det centrala innehållet Förmågor Problemlösning Metod Längd, Kapitlets innehåll Kapitlet börjar med att eleverna får träna på längd i decimalform. De olika längdenheterna tränas och eleverna får själva mäta längd. Nästa avsnitt handlar om olika trianglar

Läs mer

Arbetsblad 2:1. 1 a) Figuren ska vikas till en kub. Vilken av kuberna blir det? 2 Vilka av figurerna kan du vika till en kub?

Arbetsblad 2:1. 1 a) Figuren ska vikas till en kub. Vilken av kuberna blir det? 2 Vilka av figurerna kan du vika till en kub? Arbetsblad 2:1 Vika kuber 1 a) Figuren ska ikas till en kub. Vilken a kuberna blir det? Grundbok: grundkurs s. 59, blå kurs s. 81 b) Vilken a figurerna kan ikas till den här kuben? A B A B C D C D 2 Vilka

Läs mer

5.6 MATEMATIK. Hänvisning till punkt 7.6 i Lpgr 16.1.2004

5.6 MATEMATIK. Hänvisning till punkt 7.6 i Lpgr 16.1.2004 5.6 MATEMATIK Hänvisning till punkt 7.6 i Lpgr 16.1.2004 Undervisningen i matematik skall hos eleverna utveckla det matematiska tänkandet, ge matematiska begrepp samt de mest använda lösningsmetoderna.

Läs mer

hund katt fiskar orm Hund Nej Mira frågade klasskompisarna vilket djur de gillade mest. Vilket djur var populärast?

hund katt fiskar orm Hund Nej Mira frågade klasskompisarna vilket djur de gillade mest. Vilket djur var populärast? sannolikhet statistk Mira frågade klasskompisarna vilket djur de gillade mest. hund katt fiskar orm Hund Vilket djur var populärast? Visar diagrammet rätt antal päron? Skriv ja eller nej. Nej 0 namn kopiering

Läs mer

Bedömningsexempel. Matematik årskurs 6

Bedömningsexempel. Matematik årskurs 6 Bedömningsexempel Matematik årskurs 6 Innehåll Ämnesprovet i matematik i årskurs 6 läsåret 2011/2012 Exempel på provuppgifter... 3 Inledning... 3 Muntligt delprov... 3 Skriftliga delprov... 3 Övrigt webbmaterial...

Läs mer

Sammanfattningar Matematikboken Y

Sammanfattningar Matematikboken Y Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller

Läs mer

Övningsuppgifter omkrets, area och volym

Övningsuppgifter omkrets, area och volym Stockholms Tekniska Gymnasium 01-0-0 Övningsuppgifter omkrets, area och volym Uppgift 1: Beräkna arean och omkretsen av nedanstående figur. 4 7 Uppgift : Beräkna arean och omkretsen av nedanstående figur.

Läs mer

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte i årskurs 3

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte i årskurs 3 BEDÖMNINGSSTÖD till TUMMEN UPP! matte i årskurs 3 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper i årskurs 3. Av tradition har man i den svenska skolan

Läs mer

Matematik CD för TB = 5 +

Matematik CD för TB = 5 + Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:

Läs mer

Nyckelord Grundläggande matematik. Ord- och begreppshäfte. Elisabet Bellander ORD OCH BEGREPP. Matematik

Nyckelord Grundläggande matematik. Ord- och begreppshäfte. Elisabet Bellander ORD OCH BEGREPP. Matematik Nyckelord Grundläggande matematik Ord- och begreppshäfte Elisabet Bellander ORD OCH BEGREPP Matematik 1. BANK - VARDAGSORD 1. Minst 2. Uttag 3. Insättning 4. Kontonummer 5. Uttaget belopp kvitteras 6.

Läs mer

4-5 Kvadrater och rotuttryck Namn:...

4-5 Kvadrater och rotuttryck Namn:... 4-5 Kvadrater och rotuttryck Namn:... Inledning Du har nu lärt dig en hel del om kvadrater i kapitlet om ytorparallellogrammer. Du lärde dig bland annat att om kvadratens sida var given, säg 5 cm så kan

Läs mer

Planering Geometri år 7

Planering Geometri år 7 Planering Geometri år 7 Innehåll Övergripande planering... 2 Bedömning... 2 Begreppslista... 3 Metodlista... 6 Arbetsblad... 6 Facit Diagnos + Arbeta vidare... 10 Repetitionsuppgifter... 11 Övergripande

Läs mer